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PREDGOVOR

Postoje¢i udzbenik Sumarska statistika (Koprivica, 2015) odgovara
nastavnom programu, alisadrzi materijuvisih kurseva,izmijeSanusaprogramom
za prvi ciklus. To ovaj udzbenik ¢ini preobimnim i preteskim za studente. Osim
toga, u njemu nedostaju neki novi pojmovi, na primjer boxplot i p-vrijednost.
Cinjenica je da studenti statistiku mogu pronadi i u nekoj drugoj literaturi, kao i
na internetu. Medutim, sve te “statistike” ne odgovaraju studentima Sumarskog
fakulteta. One su namijenjene razli¢itim oblastima i pisane su svaka “na svoj
nacin“, U njima se Sumarstvo najcesce i ne spominje kao polje moguce primjene
statistike. To su samo neki od razloga za nastanak ove knjige.

Cilj nam je bio da pojmove i statisti¢cke postupke objasnimo na jednostavan
nacin, prilagoden studentima koji uce zanat Sumarskog inZenjera. U knjizi ima
nekih novina, ali i razlika u odnosu na postoje¢i udzbenik. Mi smo nastojali
jasnije razdvojiti skup i uzorak. Regresionu analizu prebacili smo na kraj i dali
joj veci znacaj u odnosu na korelaciju.

Znamo da studenti ne vole preduge i guste tekstove. Dosljedno smo koristili
kratke recenice, uobicajene izraze i simbole, kao i jednostavne graficke prikaze.
Cesto smo se oslanjalina osnovnu knjigu, obi¢no navodeéibrojstrane za detaljnija
objasnjenja. Iz Knjige smo preuzimali formule i grafikone. Koristili smo iste, ali i
nove primjere iz Sumarstva, postepeno uvodeci Sumarsku terminologiju.

PokusSali smo zainteresovati Citaoca za ono $to ga ocCekuje. Unijeli smo u
knjigu neke citate, koji su nam se ucinili zanimljivim i vrlo korisnim, kao i par
originalnih ilustracija. Govorili smo o Sumi, kao masovnoj pojavi (statistickoj
masi), dajuci pojmu ,Suma"“ opste (Sire) znacenje. Ukazivali smo, manjim fontom,
na razlicite pristupe u literaturi i prakti¢ne aspekte problema.

Za studente je posebno vazna povezanost Sumarske biometrike sa stru¢nim
predmetima (Dendrometrija, Prirast Suma, Uredivanje Suma) i Metodologijom
istrazivackog rada (izradom stru¢nih, seminarskih i zavr$Snih radova).
IstraZivanje (nauka) u Sumarstvu, kao i premjer (inventura) Suma u praksi, ne
mogu se ni zamisliti bez statistickih metoda.

Knjiga ima tri glavna poglavlja:
- Opsti dio,

- Deskriptivna statistika i

- Inferencijalna statistika.

U poglavlju I (Opsti dio) pro¢i ¢emo kroz materiju u vidu jednog saZetka,
bolje rec¢i najave onoga Sto nas oCekuje. Nakon uvoda, objasni¢emo osnovne
pojmove (statisticki skup i druge), a potom navesti vaznije statisticke metode.
Opstem (uvodnom) dijelu posvetili smo posebnu paznju.



U poglavlju II (Deskriptivna statistika) vidjecemo kako statistika, pomoc¢u
razlic¢itih parametara, numericki opisuje masovne pojave. Materija se odnosi na
stvarne pojave sa konkretnim podacima (stvarni rasporedi frekvencija). Drugim
rijeCima, u ovom poglavlju bavimo se statistickim skupovima.

U poglavlju Il (Inferencijalna statistika) ¢eka nas slozeniji (tezi) dio
statistike, a to je statisticko zakljucivanje o masovnim pojavama na bazi uzorka.
Jedan dio se odnosi na procjenjivanje parametara masovne pojave (uzorci),
drugi dio na statisticko testiranje parametara (testovi) i tre¢i na utvrdivanje
zavisnosti jedne pojave od drugih pojava (regresija). Na pocetku ovog poglavlja
obradili smo teorijske rasporede frekvencija.

Nadamo se da ¢e ova knjiga, osim u nastavi, pomoc¢i studentima da uvide
koristi od statistickih metoda, ali i ,opasnosti“ u njihovoj primjeni.

Septembar, 2025. godine

Autori



SADRZA]

I. OPSTI DIO
1. UVOD 1

1.1. Istorijski uvod

1.2. Cime S€ DaVi StAtISTIKA? ..ooooooceeveeeeeeesssssssesesseesssssssssssessssssssssssssssssssssssssessssssssssssssessssssssssseees 1
1.3. Osnovni PrincCipi STAtISTIKE. ..o ssssssssssssssssssssssssss 3
2. STATISTICKI SKUP 5
2.1. 5ta je MASOVNA POJAVA? ..vvveessesseressssssssesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssessssses 5
2.2. Definisanje statiStiCKOZ SKUPA ......eeurermeeemrersseessesssseesssessssseesssessssessssssssssessssssssssesssssssanees 5
2.3. Karakteristike statiStiCKOZ SKUPA ......cvurieeeeereneerseeesesssesssesssesssessssesssesssessssssssessssssssssssessanes 7
2.4. Jedinice (elementi) SKUPA ...coirenerimremeseessissssssssssssssssssssssssssssssssssesssssssssssssssssssssssssssses 8
2.5. StatiStiCKO ODIIJEZIE wovuureeurereereernreeessseesssessssseesssessssesssses st sssssss s sssss s sssssssses s sssssssessssssssasss 9
2.6. Taksacioni elementi Sume kao statisticka obiljeZja .....coenrenneeneeenseenseesneeenneens 10
2.7. Podjela statistiCKih SKUPOVA .....vevecererereersersseessesssssess s sssssssessssssssssesssseesas 12
3. STATISTICKI RAD 13
3.1. Sta Su brojevi, @ $ta POAACI? ....vvweeeeeessesseeesssssssseesssssssesssssssssssssssssesssssssssssssssssessssssssssnes 13
3.2. VIste Drojeva U STAtISTICE .. erereeseerrerseesseersessseeseessesssesssesssesssssssessssssssssssesssssssesssessanes 13
3.3. SKale (NIVOID) MJEIENjai.rrrerrersrssesssessssssssesssssesssesss s ssssssessssssssssesssssssssesssanees 15
3.4. Opis masovnih pojava .17
3.5. UPOLIEDA TACUNATA cveuvreereeseeseesseesssesssessseesssesssesssessssssssessssssssesssessssesssessssssssesssessssssssssssssssessseees 20
3.6. Pojam ,,@reSKe" U SEAtISTICT c.uvvueueermieereereeeseisesssseess st ssssssssssssessss s ssssssssssssesssss s sssssssssssseses 20

II. DESKRIPTIVNA STATISTIKA

1. UREPIVANJE STATISTICKIH SKUPOVA 25
1.1. RedUKCija POAAtaka ...ceeeeeemeeeseemeeseersrersseesseesssesssessssessseessessssesssessssssssesssessssesssessssssssesssessaes 25
1.1.1. Klasifikacija KA0 POJAIM....ieereeerrineesseeesesssesssssessesssessssesssssssessssssssessssssssesssesssssssseses 25
1.1.2. Grupisanje eleMEeNAta ..o.oenesmersmsesesssesssessesssssssssssssssssssssssssssssssssssssssssssssssssans 25
1.1.3. Broj KIaSa/SIUPa ....occeeeeemreerneeseeseessessssessesssessssssssessssssessssssssssssessssssssssssssssssssssssssenns 27
1.1.4. Razgranicenje Klasa/grupa. .. ssssssssssssssssssssssssssssssssssssssnns 28
1.2. Frekvencije (ucestalost) ..30
1.2.1. VISte fTEKVENCI]Auuurieurerresseesseeesseesseesssssssesssessssssssessssssssssssesssssssssss s s sssassssssssssssesssssssseses 30
O v 0 S o LY =) PP 31

1.2.3. Oblici rasporeda frERVEINCI]a . ereeeeeeeeeseeesseessssessseesssssesssessssesssssesssssssssssssssnees

1.3. Tabelarni prikaz rasporeda freKVENCIja....ceneenmeeneernseeseessesssssessssssessssssssssseenns

1.4. Nacini grafickog prikazivanja rasporeda frekvencija



2. MJERE CENTRALNE TENDENCIJE (SREDNJE VRIJEDNOSTI) 37
2.1. Racunske srednje VITJedNOSt ... ieireessesssssssssssesssssssssssssssssssssssssssssssssssssssseses 39
2.1.1. Aritmeticka sredina (X)

2.1.2. Harmonijska sredina (X))

2.1.3. Geometrijska ST€diNa (X) ueeeeessmsssssssmmmmmmmmmssssssssssssssssssssssssssssssssssssssssssssssssssss 45

2.1.4. Kvadratna Sredina (X, ) ... 46

2.1.5. Veza izmedu raCunskih STEAINa ... erceereeerssesessseessrsssessssssesssssesssssssssssssesess 47

2.2. Pozicione srednje VIijednOSti. s ssssssesssssssssessssssses 48

2.2.1. Medijana (X ) cmssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssses 48

2.2.2. MO (X)) crrrrrrrsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss s 50

3. MJERE VARIJABILITETA ...covstsmmmnmmmsmmsssmssssssssssssss s ssssssssssssssens 51

3.1. Apsolutne mjere varijabiliteta ... sssessssessssessssessssessseees 52
3.1.1. Raspon varijacije (RV) .eeeseeessneessssssessssssssessssesssssssessssssssssssessssssssesssssenss

3.1.2. Interkvartilni raspon (IQR) ..c.coovevrennees
3.1.3. Srednje apsolutno odstupanje (D)
3.1.4. Varijansa (S%) i Standardna devijacija (S) ...cmeememsmmeesssmesssssesesssesessas 54
3.2. Relativne mjere varijabiliteta ... eeereereesneesseessessesssesssssssesssessesssessssessessaees 56
3.2.1. Koeficijent varijacije (KV) . 56
3.2.2. Standardizovano odstupanje (z) .57
4. MJERE OBLIKA RASPOREDA FREKVENCIJA ....ccovimmmmssnssmssssmsssssssssssssssssssssssssssssens 59
4.1. Mjera aSimetrije (0,) cusmmmmmmssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssess 59
4.2. Mjera izdUZENOST (0, ) s ssssssssssssssssssssess 61
5. PREGLED DESKRIPTIVNIH MJERA .....ovnmmnmmmmmsmssssssssssssssssssssssssa 63
6. PRIMJER 67

III. INFERENCIJALNA STATISTIKA

1. TEORIJSKI RASPOREDI

O V4 1<) 07 U o Yo TSP
1.1.1. POJAIM VJEIOVALNOCE c.uureeurrerreressesssssessssesssssessssssssssessssssssssessssessssssssssssssssessssssssssesssssssssnas 79
1.1.1.1. MatematiCka VjerovatnOoCa ......eresssersssssesssssssssssssssssssssssssssssssssnns 80
1.1.1.2. StatistiCka VJErovatnoCa .....eesneeseesssssssssesssssesssesssssssssesssssesssnns 81
1.1.2. Vjerovatnoca sloZenih dogadaja .82
1.1.2.1. TeOrema SADIraNja ..cuureeeeereesreseessesssesesssssssssssssssssssssssssssssssssssssssssssssssnsssnes 82
1.1.2.2. TEOTEIMA MNNOZENJA wrvureurrersrersseesseesssesssasssessssessssssssesssesssessssesssassssssssessssssssssssassanes 83

1.1.3. SIUCAJNA PrOMJENITIVA..cuurreerrrererrsnessssrsseseessssssssssssssssssssesssssssssssssssssssssssssssssssssssssssssssss

1.1.3.1. Prekidna slucajna promjenljiva.... .. eeseeseesesssessssssssssssssseesnes

1.1.3.2. Neprekidna slu¢ajna promjenljiva



1.2. PreRidni raSPOTEai .o eeeeeeseseesssesssesssssesssessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssesssssens 89

1.2.1. Binomski raspored

1.2.2. Poasonov raspored

1.2.3. Hipergeometrijski raSpOred....eeereereemeersersenseesssessseessesssesssessssesssessessaseens 95
1.2.4. UNifOrmni TaSPOTEA ....cceueeueeeeerneesseersesssesssessssesssessssesssessssssssssssessssssssssssessssssssessssssssesss 96
1.3. NepreKidni raspOredi. ... esssssssssssssssssssssssssssssesssssssssessssssssssssssssssssssssssssssesss 96
1.3.1. Normalni (Z) TaSPOTEd....ccceuueeesmeesmessssessssessssessssssssssesssssssssssssssessssssssssssssssessssssssanas 96
1.3.2. StUdENtOV () TASPOTEM ..uveureurerrreereeseerseesseessesssesssesssessssesssesssesssssssssssssssssssssssssssnses

1.3.3. Fiserov (F) raspored

1.3.4. Hi-Rvadrat (X2) raSPOTed....eeeesseessssessssssssssssssssssssssssssssssssssssssssssssssssses
2. STATISTICKI UZORCI 107
2.1. OSNOVINO O UZOTCIMA .. iuueurieueeseessersessesssesesssessssssssssssssssssssssssssssesssssssssssssesssessesssessssssessssssssans 107
2.1.1. POJAIM UZOTKA ceorverureeeereeeseeseessesssesssessssssesssesssssssssssssssssssesssesssesssssssssssssssssssssssssssssnes 108
2.1.2. Opravdanost Primjene UZOTaKa ......oeeeeeesseeessesssesssssssesssessssesssessssssssesssessseses 109
2.1.3. Koje karakteristike skupa procjenjujemo pomocu uzorka?.........uenees 109
2.1.4. Veliki i Mali UZOTAK ..oveeeeeeeeeereeseresessseesseesssessssessssssessssssssesssesssssssesssessssesssessssssens
2.2.1ZDOr eleMeNAta UZOTKA ..o ieeeeeeresreesseesseeessesssesssessssesssessssssssesssessssssssesssessssssssessssssssssssessans

2.2.1. Objektivni nacin izbora...
20720 U0 TR 6 To= ) o LB /4 010 ) oo PR
2.2.1.2. SistematSKi iZDOT ... ssessssssesanes

2.2.2. Subjektivni NACin iZDOTa ... sessss

2.3. TIPOVI (VISEE) UZOTAKA.cuuureeureeseeerseessssessssessssesesssesssssssssesssssssssesssssssssessssssssssesssssessssssssanes

2.3.1. JedNOSTAVI UZOTCl cuovverireeesiesesssessesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnsssssanes
2.3.1.1. Jednostavni slucajni uzorak
2.3.1.2. Jednostavni sistematski UZOTaK .....cccccoreeeorerererenesesesesesessessetssssessesneenns

2.3.2. SloZeni (KOMbDINOVANT) UZOTCluueuuieurieeereneesseesseseseesseesssesssesssessssesssssssssssesssessssssssees
2.3.2.1. StratifikOVani UZOTAK .......cieeesinesnsisssssssssssssssssssssssssssssssssssssssssssnns
ARSIV 1 = o) o R R0 i 1 PP
2.3.2.3. FAZNi UZOTAK ..ot ssssssssssssssssssssssssssssssssssenes
2.3.2.4. Uzorak grupa
2.3.2.5. Uzorak nejednake vjerovatnoce izbora

2.4. TeorijSka 0SNOVA UZOTAKA.....ciueurereesrersseeessesssesssessssesssessssesssssssessssssssesssessssssssessssssssssssessans
2.4.1. SKUP STedina UZOTAKa....cccrerrerrermsesssssesssesssssssssesssssssssessssssssssessssssssssssssssssssesssanes
2.4.2. SKUD PropOrcija UZOTAKa. .o ieeeeeeesreeseessesssessssesssesseesssesssssssesssesssessssssssesssesssssssens

2.5. Procjena parametara SKUPQ ..o eeeeeermeesnesssesssmesssesssessssesssessssssssssssessssssssssssessssssssssssessans
2.5.1. Procjena aritmeticke sredine

2.5.2. PrOCJENA PrOPOICIJE coureereerseeserseessesssessseesssesssesssesssesssessssssssesssessssssssessssssssesssesssssssees



2.6. Odredivanje (planiranje) veliCine UZOTKA .......creneeereeesnmeessesessseessesssseesssesessesssees 130

3. STATISTICKI TESTOVI .....vvuureerussessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnanes
700 R 0 )01 1 U O
3.1.1. Osnovno o statistiCKim teStOVIMAL......couurerieereeeneesseessseesesssesssessssessessessssssssesnes
3.1.2. Logika i posStupak teStiranja.....ceeesmeeseessmssssesssssessessssessssessssssssssessssssesens
3.1.3. Vrste i podjela testova
3.2, ZEEST I E-TeS ittt bR
3.2.1. Testovi na bazi jedN0g UZOTKA ......cerereerreeeereerseesseessessseessessessseesssesssssssssssesnes
3.2.1.1. Testiranje aritmeticke STEAINE....ourrreernrereersreress s
3.2.1.2. TeStranje PrOPOTCI] €. mrrreerrersreessessesssessssesssesssessssesssesssesssessssesssssssessasesns
3.2.1.3. Testiranje KOrelacije ... eeenmeeseeessiesseesssessssessessssessessssssssssssssssssssssssseens

3.2.2. Testovi na bazi AVa UZOTKA.......cenemerneesessesnssessssssssssssssssesssssssssssesssssssssssssnes
3.2.2.1. Testiranje aritmetickih sredina dva UZOTKa .....cccomeemeermeeneemreeeseeenseeens
3.2.2.2. Testiranje proporcija dva uzorka

3.2.2.3. Test na bazi dva zavisna uzorka (test Parova) .........eeeessseesnns

3.3.2. F-test na bazi tri ili viSe uzoraka (analiza varijanse)

3.4, Hi—KVAATAL TEST couurererreeessetseessssssesssssssss s s s ssssssssssss s s bbb ssssssssssnssssssas
3.5. Softversko testiranje (P—VIijednost) ...eeeeenesseeseesssesssessseessssssessssssssessesens

4. REGRESIONA ANALIZA....ovcirmssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssasassssass

4.1. Uvod U 1egreSionu aNAliZU ... eeueereersreeseessessseessesssesssesssesssessssssssesssessssssssesssessssesssessans

4.1.1. Matematicka i statiStiCKa VEZa.....crrrrnrerisssersessssessesssssessessssssssessssssens
4.1.2. KOTElacija 1 TEETESI]A cuuurerurermeersmeersessssnesssseessseesssesssssssssessssssssssessssssssssesssssessssessssseees
4.1.3. Visestruka i neto regresija
4.2. Podjela statiStiCKIN VEZa ....cceeeeenessnsiresnesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssans

4.3, DIJagram FaStUTAN .. .cereeeessiesessesssessessssssssssesssessesssesssssssssssssssssssssssssssssssssssssssssessssssssases

4.4. Odredivanje parametara regresione jednacine ...

4.4.1. Graficko-raCunski NACIN ..eereeereeesrseesrsseeessssesesssssessssssesssssessssssssssssssessssaeees
4.4.2. Metod najmanjih kvadrata (MNK).....ccmssss
4.5. Standardna greSka regresije (S) s
4.6. Koeficijent determinacije (r?)
4.7. ViSestruka regresiona analiza (VRA) ..ceeeesssesssessesssssssssessssssesssesssssess
LS A\ 1= W0 (=Y 4 T - PP

4.9. Specijalni oblici statiStiCKiN VEZa ...

KORISTENA LITERATURA 175




[. OPSTI DIO

Karl Pirson
(1857-1936)
Osniva¢ matematicke statistike






OPSTI DIO: Uvod

1 UVO D ,Ne Zelimo da vidimo

pojedinacno drvece,
vec citavu sumu” (4)

1.1. Istorijski uvod

Tek pocCetkom XIX vijeka dolazi do spoznaje da se varijacije javljaju, ne
samo kod drustvenih ve¢ i kod prirodnih pojava, ¢ime statistika postaje opsti
naucni metod. Prethodno je dva puna vijeka vladalo misljenje da je statistika
disciplina nauke o drus$tvu. Poznate su dvije Skole statistike iz tog vremena.
To su njemacka i engleska Skola. S ciljem vodenja drzavne politike njemacki
profesori su sve podatke o drZavi (teritoriji, stanovnisStvu, privredi, finansijama)
sistematizovano prikazivali u tzv. Drzavopisu. Tada je nastao naziv ,statistika“
(od ital. stato = drzava). Dao ga je profesor Ahenval (Gottfried Achenvall) 1748.
godine. U isto vrijeme u Londonu sluzbe administracije, prateci registre umrlih,
dosle su do tzv. ,zakona smrtnosti“, po kome nema promjena u strukturi uzroka
smrtnosti (bolesti, nesrece, samoubistva, ...). U novije vrijeme, razvojem teorije
vjerovatnoce, put moderne statistike trasirali su Karl Pirson i Ronald FiSer. Oni
se smatraju najpoznatijim statisti¢arima.

U Sumarstvu Evrope statistika je primijenjena prvo u Skandinavskim zemljama,
gdje su pocetkom XX vijeka izvedene nacionalne inventure Suma. U BiH, nakon Drugog
svjetskog rata, izvrSena su obimna istrazivanja Suma (1952-1958), kao i nacionalna
inventura Suma (1964-1968). Prvo uredivanje Suma na statistiCkim principima
provedeno je 1962. godine.

1.2. Cime se bavi statistika?

Najveca korist od nauke je Sto omogucuje predvidanje (planiranje). Da
bismo predvidali pojave, moramo znati zakone (pravila) po kojima se one
deSavaju. Te zakone otkrivamo posmatranjem jedinica pojave u velikom broju
(masi slucajeva), a ne pojedinacno. Takve pojave nazivamo masovne pojave
(skupovi). One su u prirodi Ceste.

Statistika je nauka o masovnim pojavama. Pomocu statistickih parametara
(aritmeticke sredine i drugih), statistika kvantitativno opisuje pojave, istrazuje
varijabilitet i utvrduje zakonitosti u ponasanju pojava. Statistika se u biologiji
naziva biometrika (lat. bios - Zivot, metrein - mjeriti), a za statisticke metode u
oblasti Sumarstva najbolje odgovara naziv Sumarska biometrika.

Statisticko istrazivanje ima dva dijela, odnosno dvije etape. To su
deskriptivna statistika (posmatranje i opis pojava) i inferencijalna statistika
(statisticka analiza pojava i zakljucivanje). Deskriptivna statistika opisuje
pojavu na osnovu svih njenih individualnih slucajeva ispoljavanja. Ona se sastoji
od prikupljanja podataka o svakom pojedinom slucaju (jedinici), grupisanju
jedinica prema nekom obiljezju, tabelarnom i grafickom prikazu statistickih
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serija i izraCunavanju sumarnih statistickih parametara (srednjih vrijednosti,
mjera varijabiliteta i drugih). Statisticka analiza obuhvata razli¢ite metode. O
njima ¢emo govoriti u nastavku.

Statistika

Statistika opisuje pojave (deskriptivna statistika) i
istrazuje pojave (inferencijalna statistika).

Statisticke metode

Sve statistiCke metode svrstavaju se u tri grupe: staticke, dinamicke i
regresione (Slika 1). U statickoj analizi na apscisi se nalazi obiljeZje, a na ordinati
frekvencija; u dinamickoj analizi na apscisi je vrijeme, a na ordinati veli¢ina
pojave; dok u regresionoj analizi imamo dvije pojave u koordinatnom sistemu.

STATISTICKE METODE
P
N (FREKVENCIJA) Y (VELICINA POJAVE) Y (ZAVISNA POJAVA)
STATICKA DINAMICKA REGRESIONA
ANALIZA ANALIZA ANALIZA
OBILJEZJE (X) VRIJEME (X) NEZAVISNA POJAVA (X)

Slika 1. Tri grupe statistickih metoda

Staticko ispitivanje ne uzima vrijeme kao faktor, tj. tada ne utvrdujemo
promjene pojave tokom vremena, ve¢ utvrdujemo njeno stanje (strukturu
mase). Na primjer, pri redovnom uredivanju Suma prikazujemo stanje Suma u
doba uredivanja po viSe obiljezja: po vrstama drveca, debljini stabala, kvalitetu
stabala i drugim karakteristikama. Vrijeme sluzi samo za definisanje mase.
Poredenje stanja Suma sa prethodnim uredajnim periodima ve¢ ima karakter
dinamicke analize.

U nastavku (sitnim fontom) prenosimo originalan tekst iz udzbenika Osnovi
statisticke analize (6, str. 23), koji ,na svoj nacin“ govori o navedenim statistickim
metodama.
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Statisticka analiza obuhvata mnogobrojne i vrlo razlicne probleme. Ako bismo hteli
da te probleme jasnije sagledamo, morali bismo ih grupisati na neki nacin. Uzimajuci
vreme kao faktor promena za merilo, mogli bismo probleme statisticke analize podeliti
u dve velike grupe: prvo, istrazivanje strukture pojave u jednom momentu ili periodu,
pri ¢emu se vreme ne uzima kao faktor, i istraZivanje razvitka pojave tokom vremena,
pri cemu se promene pojave ispituju kao funkcije vremena. Prva grupa istrazivanja
obelezava se kao staticka a druga kao dinamicka.

Varijacija kao karakteristika masovnih pojava ve¢ sama po sebi implicira kretanje.
Ali varijacija kod izvjesnih, naroc¢ito prirodnih pojava, zbiva se oko istog proseka, dok
kod drugih, narocito drustvenih pojava, dolazi vremenom i do menjanja proseka, Sto
znaci do pomeranja u strukturi mase. U statistiCkom smislu samo se ovi procesi, koji
izrazavaju razvoj, oznacuju kao dinamicki. Prema tome, za upoznavanje ve¢ine prirodnih
pojava dovoljna je upotreba statickih metoda istrazivanja.

Dvojna podela na staticke i dinamicke probleme iscrpljuje sve probleme statisticke
analize. Metodima staticke analize moZemo ispitivati ne samo strukturu pojave u datom
vremenu nego i meduzavisnost karakteristika te strukture, kao i njihovu uslovljenost
raznim faktorima. Dinamic¢ki moZemo ispitivati ne samo tendenciju razvitka pojave
tokom vremena nego i naporedne promene raznih faktora koji uti¢u na takav razvitak.
Pa ipak, ispitivanje veza izmedu raznih pojava, bilo statickim ili dinamickim metodima,
predstavlja jedan sloZeniji problem koji, i zbog njegove vaZznosti za tumacenje pojava,
treba posebno izucavati. Zbog toga ¢emo probleme statisticke analize obuhvatiti u tri
grupe: staticki problemi, dinamicki problemi i problemi korelacije ili regresije.

Kada je u pitanju nastavni program prvog ciklusa studija upoznacemo se
sa svim statistickim metodama, ali ¢e teziSte svakako biti na statickoj analizi.
U dinamickoj analizi obradi¢emo trend. Tre¢a grupa metoda, poznata kao
regresiona analiza, za nas je vazna, jer je primijenjena u istrazivanju zalihe i
prirasta Suma, odnosno prilikom izrade odgovarajucih tablica u Sumarstvu.

1.3. Osnovni principi statistike

Statistika se moZe podijeliti na dva dijela. Prvi dio, teorijska statistika
(otkrivanje novih metoda), nije predmet naSeg interesovanja (zanimanja).
Drugi dio je prakti¢na (primijenjena) statistika. Nju posmatramo na dva nacina:
kao metod istraZivanja (postupci i radnje) i kao rezultat istraZivanja (parametri
skupa, statistika uzorka). Statistika je alat, bez kojeg nema istrazivackog
(nauc¢nog), ali ni stru¢nog (prakti¢nog) rada. Za njenu primjenu neophodno je
poznavanje oblasti u kojoj se primjenjuje.

Statisticko istraZivanje je masovnog karaktera, jer obuhvata sve jedinice
(slucajeve) mase (a ne samo jedan ili njih nekoliko). Osim toga, ono je i
kvantitativnog karaktera, jer znacaj karakteristika (obiljezja) pojave odreduje
prema njihovoj frekvenciji (brojnom stanju) i dalje ih matematicki obraduje.
Na primjer, u Sumi obuhvatamo sva stabla po debljini (masovni karakter), a
znacaj tankih stabala odreden je njihovim brojem, tj. u¢es¢em u ukupnom broju
(kvantitativni karakter).
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Induktivni nacin rada

Prvi cilj statistickih istrazivanja je prikaz obima i strukture masovnih
pojava. U opisivanju takvih pojava polazi se od pojedinacnih elemenata i na
osnovu njih donosi zakljucak o cijeloj pojavi. Samo u velikom broju slucajeva (u
masi) mozemo otkriti ono $to je zajednicko (opSte, generalno) za neku pojavu.
Utvrdena zakonitost vazi za masu, ali ne i za individue iz te mase. Statistika se,
dakle, zasniva na principu indukcije. 1z pojedina¢nih informacija (podataka)
induktivnim nacinom dolazi se do opsStih (generalnih) karakteristika pojave.
Zakljucivanje se oslanja na zakon velikih brojeva.

Zakon velikih brojeva (ZVB)

Navedimo jednu opStepoznatu statistiCku zakonitost. Na svjetskom nivou
rada se oko 50% muske i 50% Zenske djece (po literaturi 106:100). Ova
statistiCka zakonitost ne vazi za individualne slucajeve. U nekim viseclanim
porodicama sva rodena djeca mogu biti istog pola. Zakon vazi samo u masi
slucajeva i vjerodostojniji je Sto je broj posmatranih slucajeva veci (ovdje, Sto
viSe rodene djece posmatramo bliZi smo navedenom odnosu). Ova zakonitost
poznata je u statistici kao Zakon velikih brojeva (ZVB). Zakon moze da glasi
ovako: slucajni dogadaj u masi (velikom broju) slucajeva postaje zakon.

ZVB se zasniva na pretpostavci da u velikom broju slucajeva ili ponavljanja
srednja vrijednost prestaje da bude slucajna veli¢ina. Ona, na kraju, postaje
jedna fiksna (matematicka) vrijednost. Prava aritmetic¢ka sredina skupa bi bila
poznata tek onda kad bismo uzeli u obzir sve elemente ispitivane pojave. U
praksi, uzimanjem uzorka, te prave (stvarne) vrijednosti skupa predvidamo s
velikom pouzdano$éu.

Rad sa uzorcima

Statistika uglavnom radi sa uzorcima. Ako izmjerimo visine odredenog
broja stabala, njihova srednja visina odnosi se samo na ta stabla, tj. ona ne vazi
za cijelu Sumu. Medutim, statistika ima nacin da, uz odgovaraju¢u pouzdanost
i preciznost, procijeni srednju visinu svih stabala u Sumi. Ako smo, takode
uzorkom, u nekoj drugoj Sumi dobili prosje¢nu visinu stabala vec¢u za dva metra,
postavlja se pitanje da li ista tolika razlika postoji izmedu svih stabala ove dvije
Sume. Statistika omogucuje i takvo zakljucivanje uz veliku sigurnost. Uobicajena
vjerovatnoca koja se Koristi u Sumarstvu iznosi 95%.

Napomena: Statistika moze obraditi netac¢ne (izmisljene) podatke. Takvi podaci u
Sumarstvu, koje prikupljamo na terenu, ¢esto su problem. Da bismo to dovoljno jako
istakli, stavili smo na kraju knjige ilustraciju: Skart ulazi - skart izlazi. Treba da znamo
da statistika uvijek polazi od pretpostavke da su podaci koji se obraduju ta¢ni.
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“Pogibija jednog covjeka je tragedija,
a hiljade ljudi statistika“

Erik Marija Remark (1898 - 1970)

2. STATISTICKI SKUP

2.1. Staje masovna pojava?

Statistika se, kako ve¢ rekosmo, bavi masovnim pojavama. Kakve su to
pojave? Obic¢no kad se nesto pojavljuje (ispoljava) u velikom broju (masovno)
kaZemo da se radi o masovnoj pojavi. Na primjer, u Sumi govorimo o masovnoj
pojavi potkornjaka (vrsta Sumske Stetocine) ili u druStvu o masovnoj pojavi
oboljelih od nekog virusa.

Masovne pojave Cesto nemaju granicu i zahvataju Siri prostor. Na primjer,
$uma ili stanovni$tvo pokrivaju veliki dio nase planete. Cesto nije mogucée ili
nismo zainteresovani za istrazivanje ovakvih masovnih pojava na cijeloj njihovoj
povrsini. Sta je statisti¢ki skup i da li ima razlike izmedu masovne pojave i
statistickog skupa?

2.2. Definisanje statistickog skupa

Ako Zelimo masovnu pojavu posmatrati statisticki, tj. kao statisticku masu
- skup podataka, onda to zahtijeva njeno prostorno, vremensko i pojmovno
definisanje. Tako dolazimo do pojma statisticki skup ili populacija. Naziv skup
potice otuda sto se radi o skupovima (skupinama) jedinica (podataka), dok
je naziv populacija vezan za bioloski (Zivi) sistem jedinki neke vrste. Skup
se definiSe u skladu sa svrhom (ciljem) istrazivanja. Termini u upotrebi su:
statisticki skup, osnovni skup, skup, populacija, statisticka masa.

Statisticki skup

Masovna pojava definisana prostorno, vremenski i pojmovno predstavlja
statisticki skup.

Prostorni aspekt

Masovnu pojavu Cine sve njene jedinice, dok statisticki skup obuhvata samo
one jedinice masovne pojave koje se nalaze unutar svoje (definisane) granice.
Na primjer, dok masovnu pojavu predstavlja cijela Suma, dotle skup moze biti
neki dio te $ume, npr. Sumskoprivredno podruéje (SPP) ili samo jedan odjel.



OPSTI DIO: Statisticki skup

Definisanje prostornog okvira uslov je za statistiCko posmatranje masovne
pojave kao statistickog skupa. Od toga kako smo definisali skup zavisi broj
elemenata skupa. Znadi, skup ne mora uvijek imati jako veliki broj jedinica
(elemenata).

Vremenski aspekt

Osim prostorno, skup definiSemo vremenski. Uvijek se mora navesti
vrijeme posmatranja pojave. Ako smo utvrdili stanje Suma mora se navesti
kalendarsko vrijeme za koje to stanje vazi, a ako se radi o proizvodnji Sumskih
drvnih sortimenata (skra¢eno SDS) potrebno je navesti vremenski interval na
koji se ta proizvodnja odnosi (godina, 10 godina).

Pojmovni aspekt

Skup jos treba definisati pojmovno (sadrzajno). Ovdje se opisuju jedinice
skupa i definiSe obiljezje. Na primjer, ako je u pitanju mjerenje precnika stabala
mora biti naglaseno: koja stabla dolaze u obzir, da li sve vrste drveéa, da li samo
ziva stabla, koliko iznosi grani¢ni prec¢nik (taksacioni prag), nacin mjerenja
(npr. jedan precnik s gornje strane) i drugo. Ovaj opis daje se u skladu s ciljem
istrazivanja. Cesto je vrlo opsiran, ponekad u vidu uputstva ili metodike rada.

NaveS§¢emo, skra¢eno, dva primjera definisanja skupa, jedan Sumarski, a
drugi iz drustvenih oblasti (Slika 2). U prvom primjeru zanima nas struktura
privatnih Suma po veli¢ini posjeda na nekoj opstini. Cilj moze biti rjeSavanje
problema ustitnjenosti Sumskih posjeda u gazdovanju privatnim Sumama, koji
nastaje zbog razlic¢itih interesa Sumovlasnika. U drugom primjeru posmatrana
je polna struktura stanovniStva, gdje skup Cine sva lica sa stalnim mjestom
boravka u nekoj opStini.

SUMA DEFINISANJE STANOVNISTVO
(kao masovna pojava) SKUPA (kao masovna pojava)
TERITORIJA OPSTINE TERITORIJA OPSTINE
(kao statisticki skup) PROSTORNO (kao statisticki skup)
31.12.2024. VREMENSKI 30.06.2024.

_ 5 Samo lica sa stalnim
Samo privatne Sume mjestom boravka
Jedinice: Sumski posjedi POJMOVNO Jedinice: gradani
Obiljezje: povrsina posjeda Obiljezje: pol

Slika 2. Definisanje statistickog skupa
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2.3. Karakteristike statistickog skupa

Statisticki skup cine jedinice, ali ne bilo kakve jedinice. Da bi skup imao
smisla moraju biti ispunjena dva uslova. Prvo, jedinice moraju biti istovrsne i
drugo, sve jedinice moraju imati neko zajednicko varijabilno obiljezje.

Karakteristike jedinica skupa

Skup Cine istovrsne (jednorodne) jedinice, koje su medusobno razlicite
(varijabilne) po nekom obiljezju.

Istovrsnost jedinica

Ovo je osnovna, posve logi¢na, odrednica statistickog skupa. Istovrsnost
znadi da skup ¢ine samo oni podaci koji se mogu sabirati, tj. za koje se moze
izracunati aritmeticka sredina. U 8koli nas prvo uce da se kruske i jabuke ne
mogu sabirati. Ili, primjer kupusa i mesa, figurativno. Ako ljudi jedu razlicito,
jedni samo kupus, a drugi samo meso, to ne znaci da oni u prosjeku jedu sarmu.

Istovrsnost se naglasava (precizira) kod pojmovnog definisanja skupa.
Stabla u Sumi kao elemente €ini istovrsnim to Sto pripadaju Sumskim vrstama
drveca. U zavisnosti od ciljaistrazivanja, istovrsnost se moze odnositi (ograniciti)
na samo jednu vrstu drveca. Na primjer, kod izrade zapreminskih tablica bukvu
treba posmatrati odvojeno od jele, jer se ove dvije vrste drveca razlikuju po
obliku debla. U tom slucaju to su dva statisticka skupa, pa ¢emo imati posebne
tablice - jedne za bukvu, a druge za jelu.

Varijabilnost obiljezja

Masovne pojave imaju viSe razlic¢itih karakteristika. Na primjer, studenti
se medusobno razlikuju po polu, mjestu rodenja, opStem znanju itd. Ovo su
razlicita obiljezja. U statistici obi¢no posmatramo samo jedno obiljezje (oznaka
»X“). S obzirom na to da obiljezje ,X“ koje se nalazi na apscisi (po tome je i
dobilo oznaku), ima razliCite vrijednosti, govorimo o njegovoj varijabilnosti
(promjenljivosti).

Zapravo, fokus statistike je na varijabilitetu. Proizvodnja cigle u nekoj fabrici,
gdje su sve cigle iste (identi¢ne), nije predmet statistike. TeZina samo jedne cigle
je dovoljna da znamo tezinu svih ostalih (tu se prakticno nema Sta racunati).
Statistika se bavi samo pojavama sa varijabilnim obiljezjima. Stabla u Sumi se
diferenciraju po precniku, pa kaZzemo da je precnik varijabilan (promjenljiv, tj.
razlicit od stabla do stabla). Upravo ta varijabilnost jedinica omogucava da se
analizira kvalitativna struktura, a ne samo obim (veli¢ina) pojave.

Za varijabilnost racunamo razliCite mjere. Na osnovu njih donosimo
zakljuc¢ak o homogenosti skupa. Ako skup ima malu varijabilnost kazemo da je
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homogen, dok je u suprotnom heterogen. Statistika ima razlicit pristup (metode)
u ovim slucajevima. Zato je homogenost vazna.

Homogenost, odnosno heterogenost u statistici ima specificno znacenje. S obzirom
na to da se skup sastoji od istovrsnih elemenata, ne moZemo govoriti o0 homogenosti
(heterogenosti) prema opstem znacenju ovih pojmova (heterogen gr¢. znaci ,razlicita
roda“). Po ovome, svi skupovi bili bi homogeni, jer su po definiciji sastavljeni od
istorodnih jedinica.

Posmatrajmo skup cije su jedinice jabuke, a obiljezje njihova tezina. Ako su
razlike u tezini jabuka male skup je homogen, a ako su velike onda je heterogen. Mjera
varijabiliteta je koeficijent varijacije. Ako izmijeSamo kruske sa jabukama to viSe nije
statisticki skup, jer jedinice viSe ne pripadaju istoj vrsti. Dakle, moramo razlikovati
raznovrsnost od heterogenosti. Raznovrsnost govori o razli¢itim vrstama jedinica
(jabuke i kruske), a heterogenost o razlikama unutar jedinica iste vrste (razlike medu
jabukama).

2.4. Jedinice (elementi) skupa

Svaka masovna pojava sastavljena je od jedinki, odnosno pojedinacnih
elemenata. Njih nazivamo jedinice ili elementi skupa. To mogu biti ljudi (npr.
zaposleni u Sumarstvu), zivotinjska bi¢a (divlja¢ po loviStima), biljne vrste
(stabla neke Sume), predmeti (mehanizacija u Sumskim gazdinstvima) ili
dogadaji (Sumski pozari). Izmedu termina jedinice skupa i elementi skupa
nema sustinske razlike. Prvi termin je bliZi upotrebi u prirodi, a drugi kasnije u
fazi obrade. Napomena: u Sumi, Cesto iz prakti¢nih razloga, uzimamo odredene
povrsine kao vjestacke jedinice skupa.

Jedinice (elementi) skupa

Jedini¢ni (elementarni) dijelovi skupa nazivaju se
jedinice (elementi) skupa.

Elementi izvorno (sami po sebi) iako ¢ine skup oni ga ne predstavljaju. Da
bismo formirali skup, odnosno statisticki niz podataka, uzimamo vrijednosti
(modalitete) posmatranog obiljezja svih elemenata skupa. Na primjer, ako
je precnik nekog izmjerenog stabla 39 cm, u daljem statistickom radu, ova
vrijednost Ce predstavljati taj element skupa. Tako ¢e svako stablo (svaki
element) imati svoju vrijednost obiljezja. Podvlacimo: vrijednosti (modaliteti)
obiljezja nisu elementi skupa.

Suma je specifi¢tna kao masovna pojava, pa tako i $umarstvo kao oblast. Sumu
statisticki posmatramo na dva nacina. Prvo, kao skup stabala, gdje su prirodne jedinice
stabla i drugo, kao skup malih elementarnih povrsina, gdje su one vjestacki elementi
skupa. U statistickom radu, u Sumi prvo biramo povrsine, a onda na tim povrsinama
mjerimo stabla. O ovome viSe u poglavlju Statisticki uzorci.



OPSTI DIO: Statisticki skup

2.5. Statisticko obiljezje

Pojam obiljezja

Masovne pojave (statisticki skupovi) uvijek imaju vise karakteristika, koje
se ispoljavaju na njihovim elementima. U statistici te karakteristike (svojstva,
osobine, odlike) elemenata skupa nazivamo obiljezjima. Naziv obiljezje poticCe
od toga Sto te karakteristike obiljezavaju skup, tj. vazne su za njegov opis. U
statistiCkom radu posmatramo obi¢no ona obiljezja koja su vazna (interesantna).
Pojavni oblici (vrijednosti, modaliteti) obiljeZja su promjenljivi, varijabilni od
jedne do druge jedinice, pa se obiljeZje joS naziva promjenljiva ili varijabla.
Promjenljiva je viSe domacdi izraz, a varijabla strani. Ovi termini viSe se koriste
kasnije u drugom dijelu statistike. Za vrijednosti (modalitete) obiljezja X koriste
se i izrazi: rezultati, podaci, opaZanja, opservacije i drugi.

Statisticko obiljezje
Zajednicka (opsSta) karakteristika svih jedinica skupa, koja na neki nacin
obiljezava skup, naziva se obiljezje (promjenljiva, varijabla).

Vrste obiljeZja

Prema nacinu izrazavanja, postoje dvije grupe obiljezja: numericka i
atributivna (Slika 3). Za nas su manje vazne druge podjele obiljezja, kao Sto su
po svojoj prirodi (bioloska, ekonomska, socijalna obiljezja itd) ili prema skalama
kojima se mjere (nominalna i druga).

OBILJEZJA
NUMERICKA ATRIBUTIVNA
PREKIDNA NEPREKIDNA - KATEGORIJE
- RANG VRIJEDNOSTI |
- PROSTORNA OBILJEZJA
(brojimo jedinice) (mjerimo jedinice) (opisujemo jedinice)

Slika 3. Podjela obiljezja
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Numericka obiljeZja

Numericka (broj¢ana) obiljezja kvantitet (veli¢inu) pojave iskazuju
brojevima. Te brojeve nazivamo vrijednosti obiljezja. Numericka obiljeZja mogu
biti:

- prekidnai

- neprekidna.

Prekidna obiljeZja. Veli¢ina pojave sa prekidnim obiljezjem iskazuje se
cijelim brojevima. Statisticki niz se dobija brojanjem jedinica. Na primjer: broj
djece u porodici, broj radnih jedinica (Sumskih radilista) ili broj Sumskih poZzara.
Broj stabala po hektaru takode predstavlja prekidno obiljezje.

Neprekidna obiljezja. Podaci za skup sa neprekidnim obiljezjem dobijaju
se mjerenjem. Na primjer: precnik stabala u centimetrima, visina stabala u
metrima ili zapremina drvne mase po hektaru u kubnim metrima. Iskazuju se
cijelim brojevima ili na decimale.

Neprekidna obiljeZja, unutar svog intervala variranja, mogu imati bilo
koju vrijednost, jer ih ima teorijski beskona¢no mnogo. Kod ovih obiljezja
nema prekida, Sto graficki izgleda kao kontinuelna linija. Izmedu susjednih
vrijednosti uvijek se moze ubaciti neka nova vrijednost (ona se povecavaju za
beskonacno male iznose). Napomena: za neprekidna obiljeZja, teorijski gledano,
treba uzimati intervale umjesto pojedinac¢nih vrijednosti, jer je vjerovatnoca
pojedinacnih vrijednosti jednaka nuli.

Atributivna obiljeZja

Atributivna (opisna) obiljeZja kvalitet pojave iskazuju opisno (rijecima). Ova
obiljezjajavljaju se u razli¢itim oblicima, koje nazivamo modaliteti (za razliku od
vrijednosti kod numerickih obiljezja). U atributivna obiljezja spadaju obiljezja
kao Sto su: kategorijska obiljezja (npr. kategorije Suma), rang vrijednosti (npr.
bonitet staniSta) i prostorna obiljezja (npr. opstine, kao geografske jedinice).
Moguénosti statistike kod atributivnih obiljezja su mnogo manje nego kod
numerickih, jer nisu pogodna za matematicke operacije.

2.6. Taksacioni elementi Sume kao statisticka obiljezja

Karakteristike koje mjerimo u Sumi, bilo na pojedinacnim stablima ili
po hektaru, obi¢no nazivamo taksacioni elementi. U statistici su to statisticka
obiljezja. Najvazniji taksacioni elementi (obiljezja) stabla su: precnik, visina,
zapremina i zapreminski prirast. Na osnovu prec¢nika utvrdujemo osnovne
karakteristike Sume, kao $to su debljinska struktura i zaliha drvne mase.
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[ako je istraZivanje pojedinacnih stabala vazZno, u Sumarstvu se fokus
stavlja na Sumsku proizvodnju (taksacione elemente) po hektaru. Upravo je to
pogodnost za primjenu statistike. Glavni taksacioni elementi Sume (u literaturi
se obitno govori sastojine) su: precnik, visina, temeljnica i njen prirast,
zapremina i njen prirast, te broj stabala. Ovi elementi se statisticki medusobno
sustinski razlikuju. Svrstavamo ih u tri grupe:

- srednje vrijednosti,
- agregatii
- specifi¢ni elementi.

Srednje vrijednosti

Kao srednje vrijednosti racunaju se srednji precnik i srednja visina. One
predstavljaju sva stabla, odnosno Sumu u cjelini. Razlog je jednostavan. Bilo bi
besmisleno sabirati precnike, odnosno visine svih stabala i iskazivati taj zbir
po hektaru. Srednji precnik i srednja visina racunaju se uglavnom za Sume u
kojima su stabla iste starosti (jednodobne sastojine).

Agregati

Kao agregati (zbirne vrijednosti svih stabala po hektaru) racunaju se
temeljnica i zapremina, te prirast temeljnice i prirast zapremine. Ve¢a vaZnost
daje se zapremini i prirastu drvne mase po hektaru. Statisticka obrada agregata
ne odvija se direktno preko stabala (prirodnih jedinica skupa), ve¢ se koriste
povrsine kao vjestacki elementi skupa.

Specifi¢ni elementi

Prilikom premjera, Sumu dijelimo na manje povrsine, koje tako smatramo
elementima skupa. Na tim povr§inama mjerimo stabla i utvrdujemo taksacione
elemente. Jedan od njih je broj stabala po hektaru. Svrstavamo ga u specificne
elemente, jer se dobija izbrajanjem (prebrojavanjem) stabala, a ne sumiranjem
pojedinacnih vrijednosti, kao $to je to kod agregata (na primjer zapremine).

Ako posmatramo jednu Sumu kao skup, gdje su jedinice skupa stabla, postavlja
se pitanje da li je u ovom slucaju broj stabala statisticko obiljeZje? Izmedu stabala
nema razlike po broju, svako stablo je samo jedna jedinka - jedinica (stablo od 15 cm

predstavlja jedno stablo, isto kao i stablo od 70 cm). U ovom slucaju broj stabala ne
moZe biti obiljezje, jer nije ispunjen drugi uslov, a to je varijabilnost obiljeZja.

Jedan od specificnih taksacionih elemenata (statistickih obiljezja) Sume
je procent prirasta. Dobija se iz odnosa dva agregata (prirasta zapremine i
zapremine). Procent prirasta je racunska veli¢ina. [zrazava se u procentima.
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2.7. Podjela statistickih skupova

Statisticke skupove dijelimo po viSe osnova:

- po uredenosti,
- po broju elemenata i
- po broju obiljezja.

Skupovi po uredenosti

Po uredenosti skupovi mogu biti neuredeni i uredeni. Podaci prikazani
onako kako su prikupljeni, bez ikakvog reda, ¢ine neureden skup. Sredivanjem,
tj. grupisanjem podataka dolazimo do uredenog skupa. Taj postupak se naziva
uredivanje statistickih skupova.

Skupovi po broju elemenata

S obzirom na broj elemenata, skupovi mogu biti konacni i beskonacni. Broj
stabala u jednom odjelu Sume ili broj gradana u jednom kvartu predstavljaju
konacne skupove. Podaci nekog mjerenja ili potomstvo neke vrste predstavljaju
beskonacne skupove. Beskonacni skupovi imaju veliki znacaj u statistickoj
teoriji. Jedan od primjera je Tablica slucajnih brojeva.

Skupovi po broju obiljezja

Po ovoj podjeli postoje jednodimenzionalni i visedimenzionalni skupovi.
Posmatranjem skupa po jednom obiljezZju (jednoj dimenziji) dobijamo
jednodimenzionalan skup. Na primjer, skup stabala po visini. Ako istovremeno
posmatramo visinu i prec¢nik stabala radi se o dvodimenzionalnom skupu, a ako
uklju¢imo zapreminu o trodimenzionalnom skupu.

U desKkriptivnoj statistici uobicajeno je da posmatramo jednodimenzionalne
skupove (skupove sa jednim obiljezjem). U regresionoj analizi ispituju se
veze izmedu dva ili viSe obiljezja, pa tada govorimo o dvodimenzionalnim ili
viSedimenzionalnim skupovima.
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,On koristi statistiku kao pijanac ulic¢nu svjetiljku - vise za
oslonac nego za rasvjetu”

Endru Lang (1844 - 1912)
Skotski knjizevnik

3. STATISTICKI RAD

Upoznajmo se na pocetku sa brojevima, odnosno vrstama brojeva. To je
vazno jer njima obicno iskazujemo karakteristike (obiljezja). Nekada umjesto
brojeva koristimo rijeci. Sve te radnje nazivamo mjerenjima, bilo da se radi o
kvantitetu ili kvalitetu pojave. Mjerenja se izvode na razli¢itim nivoima, koji se
definisu skalama mjerenja. Statisticki skup moZemo posmatrati u cjelini (sve
njegove jedinice) ili samo dio skupa (uzorak). O svemu ovome, u vidu najave
onoga Sto nas ocekuje kasnije, govorimo u nastavku ovog poglavlja.

3.1. Sta su brojevi, a $ta podaci?

Broj je kratak, jasan i precizan nacin izrazavanja. U matematici se koriste
apstraktni (Cisti, neimenovani) brojevi, dok je statistika nauka empirijskih
(iskustvenih, imenovanih) brojeva. NapiSemo li 35, za matematiku to je broj,
dok u statistici nema znacenje. Medutim, ako kazemo 35 cm onda to moZe biti
precnik stabla, odnosno podatak.

Podaci su brojevi s odgovaraju¢éim znacenjem, tj. brojevi koji nesto
predstavljaju. Osim brojem, podaci se iskazuju rijecima. Takvi su modaliteti kod
atributivnih obiljeZja, na primjer kvalitet debla: dobar, srednji i los.

Podaci

Podaci su brojevi sa odredenim znacenjem. To mogu biti i rije¢i (modaliteti
atributivnih obiljeZja ili razne informacije, zapaZzanja i slicno).

3.2. Vrste brojeva u statistici

U statistici razlikujemo dvije vrste brojeva:

- apsolutni brojevi i
- relativni brojevi.

Apsolutni brojevi

Apsolutni brojevi pokazuju koli¢inu pojave. Dobijaju se mjerenjem ili
brojanjem, a predstavljaju osnovni (izvorni) materijal (podatke). Oni daju uvid u
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stvarno stanje pojave. Koli¢ina (intenzitet, veli¢ina) pojave iskazuje se najceSce
u jedinicama mjere (npr. precnik stabla u cm, visina stabla u m). ObiljeZja sa
razli¢itim jedinicama mjere (npr. visina u metrima i zapremina stabla u metrima
kubnim), kao i obiljezja, sa istim jedinicama mjere, a razliCita po veli¢ini (npr.
zapremina i prirast, gdje je zapremina mnogostruko vec¢a od prirasta) ne mogu
se uporedivati u apsolutnom iznosu. To je najve¢i nedostatak ovih brojeva.
Napomena: apsolutno znaci bezuslovno, nepromjenljivo.

Relativni brojevi

Relativni brojevi pokazuju koli¢inske odnose. Nastaju dijeljenjem dva
apsolutna broja, kao izraz neke veli¢ine mjeren drugom veli¢inom, koja sluzi
kao baza (mjerilo za poredenje). PoSto imaju istu bazu relativni brojevi se mogu
uporedivati bez ograniCenja. Zato ih statistika Cesto koristi kao svoje parametre.
Napomena: relativno znaci da to vrijedi samo pod odredenim uslovima ili u
odnosu na nesto drugo.

Relativni brojevi iskazuju se na viSe nacina, kao:

1. Decimalni brojevi,

2. Procenti,

3. Standardizovane vrijednosti i
4. Koeficijenti.

Razlikujemo viSe vrsta relativnih brojeva. Nazive im dajemo u zavisnosti od
toga kako su nastali. NaveS¢emo neke od njih.

Relativne frekvencije. Kod uredivanja statistickih skupova utvrdujemo broj
elemenata po klasama ili grupama. Taj broj predstavlja apsolutne frekvencije, a
njihov zbir je ukupan broj elemenata skupa. Ako stavimo u odnos apsolutne
frekvencije sa ukupnim brojem dobijamo relativne frekvencije. Njihov zbir je
jedan. Ako ih mnozimo sa 100, relativne frekvencije bice iskazane u procentima.
Tada ¢e njihov zbir biti 100. Relativne frekvencije jasnije i upadljivije isticu
strukturu mase (skupa) od apsolutnih frekvencija.

Proporcije. Proporcije su specifican tip odnosa gdje je brojilac dio
imenioca. Takav je odnos neke apsolutne frekvencije i ukupnog broja elemenata.
Na primjer, broj oboljelih stabala prema ukupnom broju stabala. Tada kaZzemo
proporcija zaraZenih stabala je npr. 7%. Proporcije se nalaze u intervalu od nula
do jedan ili u odgovaraju¢im procentima.

Indeksi. Indeksi (indeksni brojevi) sluZe za poredenje smjera i intenziteta
varijacija. Oni pokazuju odnose izmedu €lanova nekog statistickog niza. Baza
(mjerilo) za poredenje bira se prema cilju. Ovdje se jedna veli¢cina mjeri drugom.
Na primjer, kod uticaja proreda (sjece) na prirast, kroz zZivotni vijek Sume, baza
moZe biti slaba proreda. Indeksi za jaku proredu ve¢i od jedan pokazivace
pozitivan, a manji od jedan negativan uticaj ove prorede. Vrijednosti indeksa u
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blizini jedinice znae da nema uticaja ili je vrlo slab. Indeksi se ¢esto iskazuju u
procentima.

Stope. Kad se prati frekvencija (npr. broj zarazZenih stabala po godinama)
u odnosu na dugogodisnji prosjek govorimo o stopi. Ona se obi¢no iskazuje u
procentima. Kao primjer, Cesto cujemo da se govori o stopi rasta BDP-a (bruto
drustvenog proizvoda).

Standardizovane vrijednosti. One su Ceste u statistici. Kako bismo mogli
porediti pojave i donositi zakljucke, potrebno je njihove originalne vrijednosti
standardizovati. Najbolji primjer imamo kod teorijskih rasporeda. Kod primjene
normalnograsporeda standardizujemo (transformiSemo) originalne vrijednosti
obiljeza X u standardizovane vrijednosti Z.

Koeficijenti. Koeficijenti su posebna vrsta standardizovanih
vrijednosti. Na primjer, Koeficijenti asimetrije i koeficijenti izduZenosti,
kao neimenovani relativni brojevi, omogucuju poredenja oblika rasporeda
razlicitih pojava. Koeficijent varijacije pokazuje relativni varijabilitet (apsolutno
variranje u odnosu na aritmeticku sredinu). Zapreminski koeficijent (f,,)
pokazuje odnos zapremine stabla i zapremine valjka. Koeficijent medusobnog
prekrivanja krosnji pokazuje relativno prekrivanje krosnji.

Relativne veli¢ine u Sumarstvu

Sumovitost je odnos povr$ine pod $umom i ukupne povrsine, iskazana u
procentima. Stepen sklopa je odnos povrsine prekrivene kroSnjama stabala
i ukupne povrsine. Obrast je odnos stvarne temeljnice i tablicne temeljnice,
iskazan kao decimalni broj. Omjer smjese predstavlja udio neke vrste drveca u
ukupnoj drvnoj masi. Procent prirasta je relativan prirast, tj. prirast drvne mase
u odnosu na drvnu masu.

U statistici zakljucke obi¢no donosimo na bazi relativnih brojeva. Uzmimo jedan
primjer iz nase prakse. Sumska gazdinstva imaju razli¢itu strukturu $uma. Ako Zelimo
uporediti dva Sumska gazdinstva po ,snazi“ (Sumskom bogatstvu) prvo Sto ¢emo
uporediti je povrSina visokih (ekonomskih) Suma, s kojom ta gazdinstva raspolazu.
Prema apsolutnim brojevima (povrsini u hektarima) zakljucak moZze biti pogresan.
Sumsko gazdinstvo koje ima 20.000 ha visokih (ekonomskih) $uma nalazi se u
povoljnijem poloZaju, ako one zauzimaju 70% ukupne povrSine Suma, od gazdinstva sa
25.000 ha visokih Suma, cije je ucesce 20% u ukupnoj povrsini Suma.

3.3. Skale (nivoi) mjerenja

U prirodi i drustvu postoje razli¢ite masovne pojave, Cije karakteristike
(obiljezja) trebamo izmjeriti. U nekim sluc¢ajevima bi¢e moguée izmjeriti jedinice
skupa i to mjerenje iskazati brojevima (kvantitativne razlike), dok ¢emo Cesto
morati razlike izmedu jedinica po nekom drugom obiljezju opisivati rije¢ima
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(kvalitativne razlike). U statistici i uopSte za sve sluCajeve mjerenja postoje
Cetiri skale mjerenja. To su:

- nominalna,

- rang (ordinalna),

- intervalnai

- numericka (omjerna) skala.

Nominalna skala

Nominalna skala se koristi za mjerenje kvaliteta jedinica po nekom
atributivnom obiljezju. Ovo je zapravo skala po kojoj se samo daju imena (nazivi)
modalitetima (nomen = ime). Na primjer, kvalitet Sumskih drvnih sortimenata
mjeri (odreduje) se po ovoj skali. Pa tako imamo standardom definisane
sortimente kao Sto su Fi L trupci, trupci za rezanje, ogrevno drvo itd. Nominalna
klasifikacija podrazumijeva dodjeljivanje modaliteta atributima, kategorizaciju
ili klasifikaciju obiljeZja. Ovo je najgrublja skala.

Rang (ordinalna) skala

Ova skala je nesto visi nivo od nominalne skale. U njoj se odreduje redoslijed
u kvalitetu (ordinalni = redni). Na primjer, trupci za rezanje rangiraju se po
kvalitetu na I, II i III klasu. Prva klasa je kvalitetnija od druge, druga od trece.
Ovdje izrazi klasa i klasiranje imaju svoje posebno znacenje, razli¢ito od onoga
kod numerickih obiljezja. Uslovi za rad u Sumi se odreduju (mjere) uglavnom
prema konfiguraciji terena. Na primjer, vrlo teski uslovi, teski uslovi, srednji
uslovi i povoljni uslovi. Kao Sto vidimo po ovoj skali nije odredeno kolika je
razlika izmedu modaliteta, ve¢ samo redoslijed u njihovom znacaju (kvalitetu).
Nominalna i rang skala primjenjuju se za atributivna obiljezja.

Napomenimo da postoje neka obiljezja koja pripadaju ovoj skali, a za njih ipak
rac¢unamo prosjecne vrijednosti. Takav primjer je bonitet staniSta. To se pokazalo

korisnim, a opravdanje je u tome $to je jednak razmak izmedu modaliteta (npr. izmedu
prvog i drugog, drugog i tre¢eg boniteta itd). Slicno je i sa ocjenama na ispitu.

Intervalna skala

Primjenjuje se za numericka obiljezja, gdje obiljeZja imaju jedinicu mjere. To
znaci da se uspostavlja funkcionalni odnos (jednake razlike) izmedu susjednih
vrijednosti. Zato su kod ove skale moguce racunske operacije. Obi¢no se kao
primjeri navode temperatura i kalendarsko vrijeme. PoloZaj nule i mjerna
jedinica za ovu skalu odredeni su dogovorno (konvencijom). Nulta tacka nije
prava vrijednost nule (temperatura na nuli ne zna¢i da nema temperature).
Intervalna skala se primjenjuje za vremenske serije, odnosno dinamicka
istrazivanja.
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Numericka (omjerna) skala

Ova skala naziva se joS mjerna, apsolutna ili skala odnosa. Ona predstavlja
najvisi nivo mjerenja. Omjerna skala pokazuje jednakost izmedu uzastopnih
vrijednosti, ali za razliku od intervalne skale, ona ima pravu nultu vrijednost
(ako vaga pokazuje nulu to znaci da nema mase - masa ne postoji). Mjerenja
numerickih obiljezja u Sumarstvu, npr. precnika i visine stabala, obavljaju se po
ovoj skali.

3.4. Opis masovnih pojava

,Pojave u prirodi, specijalno u onoj oblasti prirode koja je objekat Sumarskih
istrazivanja, jesu masovne. Njihovo ispitivanje vrsi se, pored ispitivanja samih
individua, na skupovima odredenih individua (skup stabala sastojine, kulture ili
plantaze, skup odredene vrste gljiva, insekata i slicno). Ovakav skup, koji se statisticki
zove jo$ i kolektiv, populacija ili statisticCka masa, posjeduje izvjesna karakteristi¢na
svojstva, na osnovu kojih se razlikuje jedan skup od drugoga, a ¢ije je poznavanje od
velike teoretske i prakti¢ne koristi. Osnovna karakteristi¢na svojstva skupa su raspored
(razdioba) elemenata skupa, centralna tendencija i variranje - rasturanje elemenata
skupa. Na primjer: za Sumarskog struc¢njaka ima teoretski i prakti¢ni znacaj poznavanje
rasporeda, srednje vrijednosti (mjera centralne tendencije) i srednjeg rasturanja (mjera
variranja) skupa stabala jedne sastojine, u stvari poznavanje karakteristi¢nih svojstava
taksacionih elemenata: debljine, visine, zapremine, prirasta, kvaliteta stabala i dr. U
matematickoj statistici taksacioni elementi zovu se obiljezja elemenata skupa, pri ¢emu
su pojedina stabla elementi skupa“ (11, str. 473).

Statisticki rad obuhvata tri faze rada. To su prikupljanje podataka, obrada
podataka i analiza (interpretacija) rezultata (Slika 4). Dva su osnovna nacina
prikupljanja podataka: potpuni obuhvat svih jedinica skupai djelimi¢ni obuhvat.
U Sumarstvu za potpuni obuhvat kazemo potpuni premjer, a za djelimi¢ni
obuhvat reprezentativni metod. Premjer Suma se jo$ naziva taksacija (lat. taxatio
= procjena) ili inventura Suma. U druStvenim oblastima koriste se nazivi popis,
za potpuni obuhvat i anketa, za djelimicni obuhvat.

¥

SKUP PODACI OBRADA —

—>  ANALIZA ZAKLJUCIVANJE PLANIRANJE

Slika 4. Koraci u statistickom radu
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Potpuni obuhvat

Statisticko posmatranje (mjerenje) jedinica skupa je najvaznija faza rada.
Ako su prikupljeni podaci nepotpuni ili netacni svaki statisticki metod dace
pogreSan rezultat. Potpuni (totalni) premjer podrazumijeva obuhvat svih
jedinica skupa. U Sumi gdje su jedinice stabla, a ¢iji je broj prakti¢no beskonacan,
potpuni premjer nije mogu¢ (osim u rijetkim slucajevima). Takav premjer bi
pratile teSkoce, kao Sto je nemogu¢nost kontrole radova. S obzirom da su kod
ovog nacina rada obuhvacene sve jedinice skupa statisticki rad prakti¢no se
zavrsava sa deskriptivnom statistikom (Slika 5). Tada su sviizracunati parametri,

Kkoji opisuju pojavu, tacni (pravi, stvarni).

OPIS MASOVNE POJAVE POTPUNIM OBUHVATOM
(STATISTICKI SKUPOVI)

AN, PARAMETRI SKUPA

A. MJERE CENTRALNE

STVARNI TENDENCIJE
RASPORED
FREKVENCIJA B. MJERE VARIJABILITETA

C. MJERE OBLIKA

Y

OBILJEZJE (X)

Slika 5. Opis masovne pojave potpunim obuhvatom

Djelimic¢ni obuhvat

Ako je pojava (skup) velikog obima, u statistickom radu obuhvatamo
(uzimamo) samo odredeni broj jedinica. Tada govorimo o uzorcima. Za uzorke
rac¢unamo: srednje vrijednosti, mjere varijabiliteta, proporcije i na osnovu njih
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odredujemo vrijednosti istih parametara u skupu. U stvari, radi se o njihovim
procjenama, na bazi vjerovatnoce i teorijskog modela (Slika 6). Statistika pri
tome odreduje pouzdanost i preciznost takvih procjena. Metode koje na osnovu
uzorka donose zakljucke o skupu, odnosno objasnjavaju pojave u cjelini spadaju
u tzv. inferencijalnu statistiku. Ona obuhvata jo$ testiranja razli¢itih hipoteza i
regresionu analizu.

OPIS MASOVNE POJAVE DJELIMICNIM OBUHVATOM
(STATISTICKI UZORCI)

Ny PROCJENE TESTIRANJE REGRESIJA
Y
& o 2
TEORIJSKI - y=a+bxtcx
— TESTOVTI: :
RASPORED X =%X+tsy
FREKVENCIJA Dy
z, t, F, X
X - sredina skupa
X — sredina uzorka
X - SLUCAINA tsgx — greska uzorka
PROMJENLIJIVA X - NEZAVISNA
PROMJENLJIVA
(Pogl. 111.1) (Pogl. 111.2) (Pogl. 111.3) (Pogl. 111.4)

Slika 6. Opis masovne pojave djelimi¢nim obuhvatom

Plan istraZivanja

U statisticCkom radu mora da postoji plan istraZivanja (plan rada). Taj plan
u Sumarstvu Cesto je obiman pa nastaju uputstva za prikupljanje podataka
ili metodike prikupljanja podataka. Kao $to u prodavnicu ne idemo po jednu
namirnicu tako ni u Sumu ne idemo radi jednog obiljezja. Cilj nam je uvijek
prikupiti Sto viSe informacija (podataka). To je racionalan pristup.

Plan istraZivanja je zapravo spoj statistike i metodologije. On treba da
sadrzi: potpunu definiciju skupa, jasno definisane modalitete atributivnih
i numerickih obiljezja i cilj (svrhu) rada. Manual (upitnik) mora biti jasan za
mjerace/popisivace i podesan za obradu, sa podacima u vidu brojeva i Sifri,
zatim odgovora DA/NE, ima/nema, kao i odgovora na zaokruzivanje. Podaci
su ranije na terenu upisivani u manuale, a danas se ve¢ prelazi na direktan
elektronski unos podataka.

Velika prirodna varijabilnost i sloZenost bioloskih pojava (rad sa zivim
organizmima u promjenljivim staniSnim uslovima) oteZavaju zakljucivanje
(utvrdivanje zakonitosti). Osim toga, treba imati u vidu da Sumari rade sa puno
podataka, na velikom prostoru i dugim vremenskim periodima.
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3.5. Upotreba racunara

Statistika se danas Kkoristi racunarima, Sto joj daje moguénosti obrade
velike mase padataka. Za osnovne statistiCke obrade najvise se koristi EXCEL,
a dostupni su razni statisticki programi, kao Sto su: SPSS, MINITAB, SAS,
STATISTICA ili STATGRAPHICS. Bez racunara prakti¢no nije moguca primjena
novih statistickih metoda. Statistika je povezana sa metodologijom, a u novije
vrijeme sve viSe sa informacionim sistemima (GIS i drugi).

3.6. Pojam ,greske“ u statistici

U statistici se pojam greske pojavljuje u viSe razlicitih znacenja, Sto moze
da zbuni cCitaoca. Osim klasi¢nog znacenja, ,greSka“ u statistici oznacava
odstupanje vrijednosti od nekog parametra, najceS¢e od aritmeticke sredine
(tako standardnu devijaciju u nekim slucajevima nazivamo standardnom
greSkom). Sve greske u statistici moZemo svrstati u:

- tehnicke greske,
- greske u statistici i
- greske izvan statistike.

Tehnicke greske

Greske koje nastaju u radu (mjerenju) nazivaju se tehnicke greske. One
mogu biti:

- slucajne,

- sistematske i

- grube greske.

Slucajne greske su male, pozitivne ili negativne, greske koje se ponistavaju.
One se u velikom broju rasporeduju normalno. Njih nije moguce izbjeéi, pa
se jo$ nazivaju neizbjezne greSke. Variranje koje je rezultat slucajnih greSaka
smatra se statisticki slucajnim. One su dobile naziv po tome S$to se javljaju od
slucaja do slucaja.

Sistematske greske su najcesS¢e posljedica neispravnog instrumenta ili
metoda rada. One su opasne, jer ih ne vidimo, a daju sistematski vise ili nize
rezultate (nagomilavaju se). Prirodni faktori ili vjeStacki tretmani takode
izazivaju sistematsko djelovanje (djelovanje u jednom smjeru). To statistika
prepoznaje (koristi) i tim faktorima odreduje statisticki znacaj.

Grube greske nastaju uglavnom zbog nepaznje, bilo prilikom mjerenja
(brojanja) ili unosa podataka. Otklanjaju se povecanom paznjom u radu,
kontrolama (nadzorom) i naknadnim otkrivanjem medu ekstremnim
vrijednostima.
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Greske u statistici

Standardne devijacije u regresiji i uzorcima nazivaju se standardnim
greSkama (regresije, odnosno uzorka). ,GreSkom“ se nazivaju zato Sto
standardna devijacija regresije izravnava odstupanja (pogreSne vrijednosti)
od regresione jednacine, a standardna greSka uzorka odstupanja (pogresne
vrijednosti) od prave vrijednosti skupa.

Greske izvan statistike

U statistici se slucajevi Cija je vjerovatno¢a manja od 5% smatraju greSkom.
To je preneseno u svakodnevni Zivot, pa se za rijetke dogadaje kaZe da su na
nivou statisticke greske.

U radu s brojevima nailazimo i na upotrebu izraza ,ceSka greska“. Naziv
je nastao u Njemackoj. Naime, Nijemci izgovaraju brojeve obrnutim redom od
drugih. Oni 21 izgovaraju ,einundzwanzig“ (jedan i dvadeset). Vidjevsi da Cesi
rade suprotno, zamjenu brojeva nazvali su ceSkom greSkom. Na primjer: ako
umjesto 632 napiSemo 623 napravili smo ¢eSku gresku.
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DESKRIPTIVNA STATISTIKA: Uredivanje statistickih skupova

Deskriptivna statistika (opis masovnih pojava) obuhvata prikupljanje
podataka, obradu podataka i prikazivanje rezultata pomocu tabela, grafikona
i sumarnih mjera (statistickih parametara). Sva Cetiri poglavlja deskriptivne
statistike odnose se na stvarne skupove. To su poglavlja: Uredivanje statistickih
skupova, Mjere centralne tendencije, Mjere varijabiliteta i Mjere oblika rasporeda
frekvencija.

Deskriptivna statistika moZe se odnositi i na uzorke. Tada deskriptivhe mjere
(parametre uzorka) nazivamo Statistika uzorka. Kompjuterski izlazi uobicajeno koriste
izraz Deskriptivna statistika.

1. UREDBIVANJE STATISTICKIH SKUPOVA

Obradu podataka danas radimo pomocu racunara i gotovih statistickih
programa. Medutim, kako bismo razumjeli statistiku i znali izabrati odgovarajuci
statisticki metod, te tumaciti izlaze iz racunara neophodno je osnovne statisticke
operacije savladati ,ru¢no®,

1.1. Redukcija podataka

Kako u velikoj masi podataka prakti¢no vidimo samo brojeve, njih je
potrebno redukovati. Redukciju vr§imo grupisanjem elemenata. Tako lakse
dolazimo do prostih brojeva (parametara, koeficijenata), koji sluze da opiSemo
pojavu. Grupisanje predstavlja temelj statistickog rada.

Statisticki skup Cine sve njegove jedinice. Od tih jedinica pocinje statisticko
istrazivanje. Pojava se ispituje njihovim brojanjem ili mjerenjem. Mjerenje
jedinica obavljamo, u stvari, preko njihovih obiljezja. Ona mogu biti jako razlicita,
a neka od njih zahtijevaju detaljan opis. Ti opisi nazivaju se klasifikacije.

1.1.1. Klasifikacija kao pojam

Klasifikacija je Sirok pojam koji podrazumijeva razlicite vrste podjela.
Nacelno, to je dokument (papir) po kome (na osnovu kojeg) se izvodi
grupisanje podataka u razne svrhe. U Sumarstvu su posebno vazne klasifikacije
Suma, klasifikacije Zivih stabala i klasifikacije Sumskih drvnih sortimenata.
Klasifikacija, pored razrade kriterijuma kod atributivnih obiljeZja, takode
podrazumijeva formiranje klasa kod numerickih obiljeZja (po njihovoj velicini).

1.1.2. Grupisanje elemenata

Kako se vrsi grupisanje zavisi o kakvom se obiljezju radi (Slika 7). Kod
numerickih obiljezja brojcane vrijednosti razvrstavamo u odredene intervale.
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Te intervale nazivamo klase. Kod atributivnih obiljeZja elemente razvrstavamo
po modalitetima. Tako dobijamo grupe. Klase i grupe treba razlikovati. U klasi se
nalaze razli¢iti (nejednaki) elementi (npr. u debljinskoj klasi stabla su razli¢itog
precnika), dok su u grupi svi elementi isti (npr. u grupi Cetinari sva stabla su
jednako Cetinarske vrste drveca). Osim toga, klase imaju Sirinu (interval), a
grupe nemaju. U slucaju malog broja elemenata grupisanje se ne vrsi.

GRUPISANJE
KLASIFIKACIJA
FORMIRANJE DEFINISANJE
NUMERICKIH MODALITETA
KLASA
KLASE KLASE ILI GRUPE GRUPE
NUMERICKA NUMERICKA
NEPREKIDNA PREKIDNA ATOIEFL[;E%YEA
OBILJEZJA OBILJEZJA

Slika 7. Grupisanje elemenata

Ispravno bi bilo reci klasiranje numerickih obiljezja i grupisanje atributivnih
obiljeZja. Medutim, u literaturi se obi¢no govori samo o grupisanju.

Grupisanje u klase (neprekidna obiljeZja)

Grupisanje u klase (klasiranje) se uglavnom primjenjuje za numericka
neprekidna obiljezja. Na primjer, precnike stabala razvrstavamo po debljinskim
klasama, a visine po visinskim klasama. Grupisanje u klase za nas je posebno
vazno. O njemu ¢emo viSe u nastavku.

Grupisanje u klase ili grupe (prekidna obiljezja)

Grupisanje u klase izvodi se i za numericka prekidna obiljeZja, ali rijetko.
Radi se o slucajevima ako se javljaju u velikom broju oblika (razlicitih
vrijednosti). Na primjer, broj radnika u Sumskim gazdinstvima. Da bismo
ispitali strukturu gazdinstava (po broju radnika) pri uredivanju skupa bolje je
uzeti klase odredene Sirine, a ne pojedinacne vrijednosti. Tako dobijamo bolju
preglednost.
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Ako se numericka prekidna obiljeZja, pojavljuju u samo nekoliko (malom
broju) oblika nastaju grupe. Na primjer, kad posmatramo Sumska gazdinstva po
broju privrednih jedinica zadrZa¢emo pojedinacne vrijednosti, pa ¢emo imati
Sumska gazdinstva sa jednom, dvije itd privrednih jedinica. Dakle, za prekidna
numericka obiljeZja, kod veceg broja modaliteta primjenjuje se klasiranje, a
grupisanje kad je njihov broj mali.

Grupisanje u grupe (atributivna obiljezja)

Grupisanje u grupe primjenjuje se uglavnom za atributivna obiljeZja. Grupe
se prave prema modalitetima atributivnog obiljezja. Na primjer: svrstavanje
stabala u grupe vrsta drveca (Cetinari i liS¢ari), kategorizacija Suma po porijeklu
(sjemenske i izdanacke) ili rangiranje stanista po kvalitetu (boniteti od prvog do
petog). U slucaju velikog broja modaliteta nekog obiljezja (pri Cemu ne smijemo
brkati broj modaliteta sa brojem elemenata) prave se stalne Seme grupisanja
atributivnih obiljezja, kao Sto je nomenklatura proizvoda ili Kklasifikacija
Zanimanja.

1.1.3. Broj klasa/grupa

Prilikom grupisanja obiljeZja nailazimo na dva problema: koliko klasa
(grupa) formirati i kako ih razgraniciti. Kod atributivnih obiljezja, gdje su
modaliteti jasno odredeni ili prekidnih obiljeZja (kod kojih se ostaje na
pojedinacnim vrijednostima) taj problem ne postoji.

Broj klasa. Broj klasa, odnosno grupa zavisi od vise faktora. Klase (grupe)
su Cesto unaprijed odredene, bilo iskustveno (kao pravilo) ili zakonski (kao
obaveza). Serije podataka koje dobijamo grupisanjem podataka moraju biti
pregledne (Sto je manji broj klasa/grupa preglednost je bolja) i u isto vrijeme
informativne (Sto je veci veci broj klasa/grupa imamo viSe informacija). U
prakticnom radu trazi se kompromis izmedu ova dva zahtjeva.

Sirina klasa. Kad god je mogucée treba formiratiklase jednake $irineikoristiti
uobicajene (standardizovane) modalitete grupa. Razlog je jednostavan, trebaju
nam statisticke serije u kojima ¢e klase/grupe biti uporedive medusobno, ali
i sa drugim serijama. Medutim, to nece uvijek biti moguce. Jako asimetri¢na
raspodjela frekvencija ,zahtijeva“ uze klase tamo gdje su elementi viSe
skoncentrisani (Slika 8). UZe klase treba formirati tako da se mogu objedinjavati.

Otvorene granice. Kod formiranja klasa pojavljuje se joS jedan problem.
To su otvorene granice krajnjih klasa. Nekada se pojedinacni podaci toliko
rasipaju (udaljavaju od ostalih) da ih prakticno nije moguce obuhvatiti
postoje¢im klasama. U tim slucajevima krajnje klase se ostavljaju otvorenim.
Kod atributivnih obiljeZja moZzemo formirati grupu ,ostali, koja bi obuhvatala
sve rijetke slucajeve (modalitete).
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UZE KLASE SIRE KLASE

Slika 8. Nejednaka Sirina klasa kod asimetri¢nog rasporeda

Pogledajmo kakva je situacija u pogledu formiranja klasa u nasem Sumarstvu. Ve¢
smo rekli da su klasifikacije polaziSte za grupisanje, odnosno za statisti¢ki rad. Osnovne
klasifikacije, u nasem $umarstvu, propisane su odgovarajuéim pravilnicima. Sume
podlijezu dvjema Kklasifikacijama: ekolosko-proizvodnoj Kklasifikaciji (Sira kategorija
$uma - SKS, UZa kategorija $uma - UKS i Gazdinska klasa - GK) i prostornoj klasifikaciji
(Sumskoprivredno podruéje - SPP, Privredna jedinica - PJ i odjel). Klasifikacije stabala
uradene su po viSe osnova: po vrstama drveca ili grupama (Cetinari i lis¢ari), po debljini
(debljinske klase) i po kvalitetu stabala (uzgojne i tehni¢ke klase). Sumski drvni
sortimenti (SDS) propisani su standardom.

U nasoj praksi vise od 50 godina primjenjuje se ista klasifikacija stabala po debljini.
Vazeci Pravilnik, za visoke (sjemenske) Sume, predvida sljedece debljinske klase:

5-10; 10-20; 20-30; 30-50; 50-80, >80 cm.

MoZemo zapaziti da su ove klase razli¢ite Sirine. One se medusobno ne mogu
uporedivati. Kod grafickog prikazivanja za njih ne vaZi linearna razmjera, pa se mora
koristiti povrSinska razmjera. Takode, uo¢avamo postojanje jedne otvorene klase.
Ranije, u nasoj praksi, ekstremno debela stabla (100 cm i viSe) upisivana su u manual
kao prec¢nik 99 cm. Za to je postojalo viSe razloga. Izbjegavane su greSke mjerenja koje
nastaju kod jako deformisanih debala i svjesno se iSlo na smanjivanje zalihe.

1.1.4. Razgranicenje klasa/grupa

Odredivanje granica klasa (grupa) je posebno vazno pitanje. Posmatra¢emo
ga odvojeno za numericka neprekidna, numeri¢ka prekidna i atributivna
obiljezja.

Granice kod numerickih neprekidnih obiljeZja

Formiranje klasa neprekidnih obiljezja zavisi od preciznosti mjerenja i
nacCina zaokruzivanja izmjerenih vrijednosti. Kao primjer, u dvije varijante
zaokruzivanja (na niZe i na viSe) i preciznosti mjerenja (na cijeli cm i na jednu
decimalu), date su u Tabeli 1, granice za klase precnika Sirine 5 cm.
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Tabela 1. Granice debljinskih klasa (cm)

Nacin
zaokruzivanja

Radne granice
(cijeli brojevi)

Radne granice

Prave granice >
& (na decimalu)

Prave granice

1 2 3 4 5
15-19 15-20 15,0-19,9 15,0 - 20,0
Na niZe 20-24 20-25 20,0 - 24,9 20,0-25,0
25-29 25-30 25,0-299 25,0-30,0
16 -20 15-20 15,1-20,0 15,0 - 20,0
Na vise 21-25 20-25 20,1-25,0 20,0-25,0
26 - 30 25-30 25,1-30,0 25,0-30,0

Ako radimo rucno granice piSemo razlicito prije grupisanja (radne granice)
i nakon grupisanja (prave ili stvarne granice). Radne granice klasa potrebne su
nam samo kod razvrstavanja. One se pisu tako da nema preklapanja izmedu
vrijednosti susjednih klasa, da se zna kojoj klasi elementi pripadaju (kol. 2 i kol.
4). Prave granice su precizne (oStre) i one ne zavise od nacina zaokruZivanja
i preciznosti mjerenja (kol. 3 i kol. 5). One se najbolje vide na histogramu
frekvencija. ViSe u primjeru na kraju Poglavlja II. Postoje i drugi nacini
razgraniCenja klasa. Na primjer, dodavanjem decimala, koje se kasnije u obradi
zZanemaruju.

Ovdje nismo prikazali varijantu zaokruZivanja na bliZze (prema sredini).
Ona nije prakti¢na, jer se dobijaju granice klasa koje nisu cijeli brojevi.
Zaokruzivanjem na bliZe, npr. precnik od 15 cm obuhvatao bi vrijednosti od
14,5 do 15,5 cm, a prva klasa bila bi od 14,5 do 19,5 cm.

Granice kod numerickih prekidnih obiljezja

Vratimo se nasem primjeru, koji se odnosi na broj radnika u Sumskim
gazdinstvima. Napi$imo, na dva nacina, formiranje klasa Sirine 50 radnika:

A: 1-50;51-100,101 -150; 151 - 200.

B: 0-50;50-100; 100 - 150; 150 - 200.
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Odgovorimo na pitanja: Koji je nacin ispravan? U koju klasu ¢emo svrstati
gazdinstvo koje ima 50 radnika? Postoje li ovdje radne i prave granice?

Klase kod prekidnih obiljezja, po pravilu, piSu se tako da svaka naredna
klasa pocinje brojem veéim za jedan. Tako je uradeno u varijanti A, gdje se jasno
zna da Sumsko gazdinstvo sa 50 radnika pripada prvoj klasi, a gazdinstvo sa 51
radnikom drugoj klasi. Klase u slucaju B nisu pravilno formirane.

Osim na ovaj nacin, klase se mogu razgraniciti i koriStenjem znakova vece,
manje, jednako. Na primjer ovdje, > 0 - 50, > 50 - 100 itd. Prekidna obiljezja
imaju samo cijele brojeve, tako da nema zaokruzivanja. Dakle, kod prekidnih
obiljeZja nema potrebe za formiranjem radnih granica.

Granice kod atributivnih obiljeZja

Razgranic¢enje modaliteta kod atributivnih obiljezja vrsi se pri definisanju
statistickog skupa, opisom modaliteta ili pozivanjem na neku ve¢ postojecu
Klasifikaciju (npr. Maticevu Klasifikaciju stabala po kvalitetu). Kod nekih
atributivnih obiljeZja granice nije bas jednostavno definisati. Na primjer, kod
boje kore stabla, jer ima mnogo nijansi (prelaza). Ako se radi o prostornim
(geografskim) obiljezjima granice su odredene na terenu administrativno (npr.
opstine) ili prostornom podjelom Suma (npr. Sumskoprivredna podrucja).

1.2. Frekvencije (ucestalost)

U statistici uglavnom radimo s brojevima. Govorili smo o tome u OpsStem
dijelu (Pogl. 3). Ovdje govorimo o jednoj vrsti brojeva, koji nemaju jedinice
mjere ali imaju svoje znacenje. To su oni brojevi koji stoje uz obiljeZje, odnosno
uz vrijednosti (modalitete) obiljeZja. Nazivamo ih frekvencijama.

Frekvencije (ucestalost)

Frekvencije su brojevi koji pokazuju koliko se puta vrijednosti
(modaliteti) nekog obiljeZja ponavljaju.

1.2.1. Vrste frekvencija

Ve¢ na prvi pogled zapazi¢emo da se u skupu neki podaci javljaju vise puta.
To su njihove pojedinacne frekvencije. Nakon $to grupiSemo elemente u klase
dobijamo parcijalne frekvencije (broj elemenata po klasama). Njih mozZemo
sabirati, od najmanje do najvece klase i obrnuto. Tako nastaju kumulativne
frekvencije (kumulanta ispod i kumulanta iznad).
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Kod atributivnih obiljeZja postoje samo frekvencije grupa (broj elemenata
odredenog modaliteta). Ne postoje parcijalne i kumulativne frekvencije, jer
ova obiljeZja ne podlijeZu matematickim operacijama. Frekvencije se mogu
iskazivati na dva nacina, apsolutno i relativno. Vrste frekvencija prikazane su
na Slici 9.

FREKVENCIJE
(APSOLUTNE I RELATIVNE)

/ \

NUMERICKA OBILJEZJA ATRIBUTIVNA OBILJEZJA
POJEDNACNE PARCIJALNE KUMULATIVNE GRUPNE
X" KLASE ISPOD / IZNAD PO MODALITETIMA

Slika 9. Vrste frekvencija

Apsolutne frekvencije

Broj koji pokazuje koliko se puta neka vrijednost (modalitet) obiljezja
pojavljuje (ponavlja) u skupu nazivamo apsolutna frekvencija. Apsolutna
frekvencija je uvijek cijeli broj, jer se dobija brojanjem. Ona daje teZinu
(znacaj) vrijednostima (kod numerickih obiljezja), odnosno modalitetima (kod
atributivnih obiljezja). lako se frekvencija obi¢no oznacava sa ,f“ ili f“ mi u
prakticnom radu Cesto koristimo oznaku ,en“ (veliko ,N“ u skupu, a malo ,n“u
uzorku).

Relativne frekvencije

Dijeljenjem apsolutne frekvencije klase (grupe) sa ukupnim brojem
elemenata dobija se relativna frekvencija. Ona u nekim slucajevima predstavlja
vjerovatnocu klase (grupe), pa joj dajemo oznaku ,p“ Relativna frekvencija se
iskazuje kao decimalni broj ili u procentima (decimalni brojevi pomnoZeni sa
100). Zbir za sve klase (grupe) u prvom slucaju iznosi jedan, a u drugom 100%.

1.2.2. Statisticke serije

Sve frekvencije u jednom skupu Cine niz ili statisticku seriju frekvencija.
Zavisno od toga o kakvom se obiljezju radi, postoje razlicite serije (Slika 10).
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STATISTICKE SERIJE
[ ‘ |
SERIJE STRUKTURE VREMENSKE SERIJE
I I
[ | [ |
NUMERICKE ‘ ’ ATRIBUTIVNE ‘ ’ MOMENTNE ‘ ’ INTERVALNE

Slika 10. Vrste statistickih serija

Serije strukture

Statickim metodama utvrdujemo stanje pojave, odnosno njenu strukturu.
Zato te serije nazivamo serije strukture. One mogu biti numericke i atributivne.

Numericke serije. Za numericke serije obi¢no koristimo naziv raspored
(distribucija, razdioba) frekvencija. Rasporedi frekvencija mogu se predstaviti
empirijskom funkcijom, gdje je obiljeZje (x) nezavisna, a frekvencija (y) zavisna
promjenljiva.

Rasporedi frekvencija, bilo apsolutnih bilo relativnih, obi¢no se prikazuju
tabelarno i graficki. Rasporedi otkrivaju karakteristike skupa, kao Sto su
koncentracija elemenata, njihov varijabilitet i oblik rasporeda. Struktura
skupa se i ovdje bolje uocava na osnovu relativnih frekvencija, posebno kad
su apsolutni brojevi veliki. Zato se niz frekvencija iskazan u procentima Cesto
naziva ,struktura“. Strukture su pogodne za razna poredenja.

Raspored frekvencija

Raspored frekvencija je serija (niz) svih frekvencija
nekog numerickog obiljezja.

Atributivne serije. Raspodjela mase (struktura skupa) po atributivnom
obiljezju sastoji se od niza modaliteta i njihovih frekvencija. Najjednostavnije
su dihotomne serije sa samo dva modaliteta. Na primjer, stanovnistvo po polu
(pol je atributivno obiljezje, a muski i Zenski pol su modaliteti), stabla grupisana
po vrstama drveca (Cetinari i liS¢ari) ili stabla po porijeklu (sjemensko i
vegetativno). Atributivne serije su sloZenije Sto je broj modaliteta veci. Na
primjer, broj vrsta drveca je veliki: jela, smrca, bukva itd. U Sumarstvu postoji
opsta ekolo$ko-proizvodna klasifikacija $uma (SKS, UKS, GK). Takode, veliki broj
modaliteta postoji u proizvodnji Sumskih drvnih sortimenata (trupci, ogrev).
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Kada se na mjestu atributa nalaze teritorijalne jedinice govorimo o
geografskoj (prostornoj) raspodjeli statisticke mase, tzv. geografskim serijama.
U Sumarstvu je iz organizacionih i ekonomskih razloga posebno vazna prostorna
podjela $uma (SPP, PJ, odjeli). Atributivne serije ne mogu se matematicki
obradivati, zbog ¢ega se mnogo veci znacaj daje numerickim serijama.

Vremenske serije

Dinamicka analiza pojava ima za cilj da ispita promjenu pojave tokom
vremena. Tada se napusta posmatranje frekvencija po obiljezjima, jer vise nije
cilj struktura. Ove serije se nazivaju vremenske serije. One pokazuju veli¢inu
pojave u nekim momentima (momentne serije) ili u nekim periodima (intervalne
serije). U redovnom gazdovanju Sumama, svakih 10 godina, utvrdujemo zalihu
i prirast Suma. Zalihu moZzemo posmatrati kao momentnu seriju, dok prirast
u nekom vremenu moze biti intervalna serija. Kod momentne serije podaci
se ne mogu sabirati (jer zbir nema smisla), dok kod intervalne mogu (zbir tri
desetogodiSnja prirasta predstavlja prirast za 30 godina).

Kod vremenskih serija radi se o dvodimenzionalnim skupovima. Pored
kalendarskog vremena na x-osi (formalno uzetom kao nezavisna promjenljiva)
imamo i drugu pojavu, c¢ija se veli¢ina prikazuje na y-osi. Ova veza moZe se
izraziti funkcijom, koja u duzem vremenskom periodu pokazuje razvojnu
tendenciju, odnosno trend pojave.

1.2.3. Oblici rasporeda frekvencija

Stvarni (empirijski) rasporedi nastaju uredivanjem konkretnih skupova.
S obzirom na to da na skupove (masovne pojave) uti¢u brojni faktori to e i
rasporedi frekvencija imati razli¢ite oblike (Slika 11). NajcCeS¢i (tipican) oblik
rasporeda je zvonolik raspored, kome odgovara teorijski model normalnog
rasporeda. Vec¢ina prirodnih i druStvenih pojava ima ovakav oblik. U Sumarstvu
vaZna karakteristika Sume je raspodjela njenih stabala po debljini. Zvonolik
oblik te raspodjele karakteristian je za Sume u kojima su stabla iste starosti
(jednodobne sastojine), dok je u prirodnim (prebornim) Sumama raspored kosi
opadajuéi (naziva se ,L“ - el raspored). Ovo su dva osnovna oblika debljinske
strukture Suma.

Ako u Sumi postoje dva sprata drveca (gornja i donja etaza) raspodjela ima
dva vrha (bimodalni oblik). Po kosom rastu¢em, tzv. jot (,,/*) rasporedu povecava
se smrtnost (broj uginulih) insekata u zavisnosti od jacine insekticida. U prirodi
postoje i drugi, nepravilni (netipic¢ni, prelazni) oblici.
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ZVONOLIK OBLIK KOSI OPADAJUCI OBLIK
("L" - RASPORED)

BIMODALNI OBLIK KOSI RASTUCI OBLIK
("]" - RASPORED)

Slika 11. Razliciti oblici rasporeda frekvencija

1.3. Tabelarni prikaz rasporeda frekvencija

StatistiCke serije se obi¢no prikazuju u tabelama, gdje se nastavlja njihova
kvantitativna analiza. Po namjeni treba razlikovati tri vrste tabela: radne tabele
(koristimo ih dok radimo statistiku), analiticke tabele (sluZe za prikaz statisticke
dokumentacije) i izvjestajne tabele (Koriste se uglavnom u publikacijama). Po
sadrzaju mogu biti proste, sloZzene i kombinovane. Tabele predstavljaju koristan
alat. Pri njihovoj upotrebi treba se drzati metodoloskih pravila.
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1.4. Nacini grafickog prikazivanja rasporeda frekvencija

Graficki nacin prikazivanja rasporeda frekvencija omogucuje brz i
jednostavan uvid u nivo (veli¢inu) pojave, njenu strukturu (koncentraciju i
varijabilnost elemenata, oblik rasporeda) ili promjene u vremenu. Takode,
grafikoni omogucavaju razlic¢ita poredenja. Mogu se prikazivati u koordinatnom
sistemu i izvan njega. Po geometrijskom obliku grafikoni (dijagrami) mogu
biti: tackasti (korelacioni), linijski (poligonalna linija) i povrsinski (stubicasti,
histogram, kruzni). Primjena raCunara i statistickih programa omogucava
graficko prikazivanje rasporeda u mnostvu razlic¢itih oblika i figura. Na primjer,
Cesti oblici su tzv. ,pite”, koje nastaju uvodenjem debljine krugovima kao trece
dimenzije (3D efekat).

Numeric¢ka neprekidna obiljeZja uglavnom se prikazuju u pravouglom
koordinatnom sistemu. Na apscisu se nanose vrijednosti obiljezja, a na ordinatu
frekvencije. Najces$¢i oblici njihovog grafickog prikaza su: histogram frekvencija
i poligon frekvencija (Slika 12). Graficki se jo$ prikazuju kriva frekvencija i
kumulante.

Histogramfrekvencija. Ukoordinatnomsistemuprikazujusepravougaonici
Cija je osnova na x-osi jednaka Sirini klasa, a visina odgovara frekvenciji. Ukupna
povrsina predstavlja cijelu masu, a pravougaonici frekvencije klasa.

Poligon frekvencija. Poligon se predstavlja izlomljenom linijom, koja spaja
taCke nanesene na sredinama klasa. PovrSina ispod krive linije nije u potpunosti
srazmjerna frekvencijama Kklasa. Zatvoreni poligon predstavlja ukupnu
frekvenciju. Kod njega krajnje tacke treba spojiti sa sredinama susjednih klasa,
Cija je frekvencija jednaka nuli. To vrijedi samo za zvonolike oblike.

Kriva frekvencija. Izravnanjem poligonalne linije dobija se kriva
frekvencija, kojom nastojimo pribliZiti se opStoj pravilnosti. To je, u sustini,
teorijska linija. Cesto nam podaci ne dozvoljavaju crtanje ove krive, pa se
deSava, ako to izravnanje prepustimo racunaru, da dobijemo neodgovarajuce
pa i besmislene krive.
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HISTOGRAM POLIGON

FREKVENCILJE
FREKVENCIJE

OBILJEZJE X OBILJEZJE X

Slika 12. Histogram i poligon frekvencija (neprekidno obiljezje)

Serije sa prekidnim numerickim obiljezjem prikazuju se tackama,
ordinatama tacaka, Stapicastim dijagramom ili linijskim dijagramom, a za
atributivna obiljezja koriste se najc¢es¢e povrsinski dijagrami u obliku stubova,
pravougaonika ili krugova (Slika 13).

N ORDINATE N STUBICASTI
TACAKA DIJAGRAM
1 2 3 4 5 6 X A B C D X

Slika 13. Ordinate tacaka (prekidno obiljezje) i stubicasti prikaz
(atributivno obiljezje)
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Pojavu smo upoznali i analizirali nakon formiranja niza, tako da
smo najprije upoznali kvantitativni izraZaj pojave s pomocu apsolutnih
frekvencija a potom smo grafickim prikazom povecali preglednost
pojave. Relativnim frekvencijama mogu se vrsiti usporedbe raznorodnih
distribucija i utvrditi odnosi medu njima. U svim navedenim postupcima
trebalo je uzimatiu obzir ¢itavu razdiobu, no brojcanije oblik numerickog
obiljeZja vrlo prikladan i za daljnju primjenu statisticke metode. Daljom
primjenom statisticke metode mogu se izracunati i brojéano odrediti
neke karakteristike distribucije frekvencija koje sluZe za usporedivanje.
Nekoliko karakteristika, od kojih je svaka izraZena jednim brojem, u vrlo
sazetom obliku prikazuje ¢itavu distribuciju. S pomocu tih karakteristika
upoznajemo pojavu sa svega nekoliko brojeva, pa nije potrebno uzimati
u obzir sve frekvencije distribucije. (10, str. 61)

2. MJERE CENTRALNE TENDENCIJE
(SREDNJE VRIJEDNOSTI)

U prethodnom poglavlju govorili smo o uredivanju statistickih skupova.
Krajnji rezultat tog postupka kod numerickih obiljezja bio je raspored
frekvencija. On ¢e biti predmet naSeg interesovanja u nastavku. Rasporedi
frekvencija omogucavaju da upoznamo strukturu posmatrane masovne pojave,
ali nam ne daju mogu¢nosti racunanja i poredenja. Ako se raspored frekvencija
prikaZze pomocu brojeva (parametara) opis pojave je mnogo efektniji. Te
brojeve (parametre) nazivamo deskriptivne statisticke mjere. Tu spadaju: mjere
centralne tendencije, mjere varijabiliteta i mjere oblika rasporeda. Prilikom
opisa pojava sluzimo se i nekim drugim relativnim brojevima.

Srednje vrijednosti

Srednje vrijednosti jednim brojem sintetizovano (sumarno)
opisuju cijelu pojavu.

Deskriptivne mjere objasni¢emo na statistickim skupovima. Na razlike
izmedu skupa i uzorka ukazac¢emo manjim fontom. Sada kazimo samo da se
deskriptivne mjere skupa obi¢no nazivaju parametri skupa (prave vrijednosti),
a uzorka parametri uzorka ili ,statistika uzorka“ Sotveri koriste izraz
,deskriptivna statistika“. Treba imati na umu da statistika uglavnom radi sa
uzorcima.
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Opste karakteristike rasporeda frekvencija

Pogledajmo dva krajnja (teorijska) slucaja rasporedivanja frekvencija i
oblik koji se najcesce javlja (Slika 14). Na slici (a) svi podaci mjerenja su jednaki
(visina ordinate pokazuje broj mjerenja). Ovdje je dosla do potpunog izrazaja
teZnja (tendencija) elemenata skupa da se grupiSu oko jedne vrijednosti
(centra). Kao primjer mozemo navesti skup cigli. U slucaju (b) sve vrijednosti
obiljezja su razlicite (frekvencija svakog podatka jednaka je jedan). Ovo je slucaj
jedne druge, suprotne teznje (tendencije) koja se javlja u prirodnim pojavama.
To je teznja rasipanja (udaljavanja) od centra. Kod svih izmjerenih stabala
precnik je razlicit.

N N N

a) b) )
Slika 14. Tendencije rasporedivanja elemenata

Ove dvije tendencije javljaju se istovremeno. Rezultat njihovog djelovanja
je raspored frekvencija koji obi¢no ima oblik zvona (slucaj c). U teoriji je ovaj
oblik poznat pod nazivom normalni raspored. To je najvazniji teorijski raspored
u statistici. O njemu Ce biti govora u poglavlju , Teorijski rasporedi

Nastojanje jedinica skupa da se grupiSu oko jedne vrijednosti (centra) naziva
se centralna tendencija. Centralnu tendenciju opisujemo sa viSe parametara.
To su, u stvari, njene mjere, koje jo§ nazivamo srednje vrijednosti (sredine).
Svrstavamo ih u dvije grupe. Prvu grupu ¢ine racunske sredine (aritmeticka,
harmonijska, geometrijska i kvadratna), a drugu pozicione sredine (medijana
i mod).

Prirodno (imanentno) svojstvo jedinica koje ¢ine masovne pojave je da se
medusobno razlikuju. To nazivamo varijabiltet. | varijabilitet ima svoje mjere.
To su: raspon varijacije, interkvartilna razlika, srednje apsolutno odstupanje,
varijansa i standardna devijacija, kao apsolutne mjere i koeficijent varijacije,
kao relativna mjera.

Za opis rasporeda stvarnih frekvencija potrebne su joS mjere za oblik
rasporeda, tj. mjere odstupanja od normalnog oblika. Odstupanje se javlja u vidu
asimetrije (mjera je koeficijent alfa 3) i izduZenosti (mjera je koeficijent alfa 4).
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[z prakti¢nih razloga dalje u statisti¢koj analizi umjesto cijelih rasporeda
koristimo statisticke parametre. To se odnosi samo na rasporede frekvencija
(numericka obiljeZja), jer se ostale serije ne mogu matematicki obradivati.

Prvo ¢emo obraditi srednje vrijednosti, koje se dijele u dvije grupe:
Racunske srednje vrijednosti:

- Aritmeticka sredina,
Harmonijska sredina,
Geometrijska sredina i
Kvadratna sredina.

Pozicione srednje vrijednosti:

- Medijanai
- Mod.

2.1. Racunske srednje vrijednosti

S obzirom da se vrijednosti mjerenja najviSe grupisSu oko sredine sve
mjere centralne tendencije dobile su naziv srednje vrijednosti ili sredine. One
koje racunamo iz svih vrijednosti skupa nazivaju se racunske (matematicke,
izracunate) srednje vrijednosti. Medu njima najpoznatija i najvise upotrebljavana
je aritmeticka sredina. To je zbog njene jednostavnosti i matematickih svojstava.
U specifi¢nim slucajevima koriste se harmonijska, geometrijska i kvadratna
sredina.

2.1.1. Aritmeticka sredina (X)

Prosta aritmeticka sredina

Aritmeticka sredina predstavlja prosjecnu (srednju) vrijednost svih
podataka u skupu. Poznata je kao ,prosjek”. To je jedan broj (konstanta), koja
predstavlja (zamjenjuje, reprezentuje) sve vrijednosti u skupu. Formula za
racunanje proste aritmeticke sredine glasi:

% -2Xs
N

gdje je:

X - aritmeticka sredina

X - obiljeZje

Indeks ,i“ - redni broj elemenata
N - ukupan broj elemenata

(2 - sigma, znaci zbir/sumu)
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Ova formula se koristi samo u slucajevima kad sredinu ratunamo iz
pojedinacnih (individualnih, negrupisanih) vrijednosti obiljezja. Dakle, prosta
aritmeticka sredina dobija se tako Sto se zbir svih vrijednosti podijeli s njihovim
brojem. Naziv aritmeticka dobila je po pridjevu aritmeticki, Sto znaci racunski
(Aritmetika je grana matematike, koja proucava racunske operacije s brojevima).

Aritmeticka sredina

Aritmeticka sredina je prosjecna (srednja) vrijednost svih podataka
(mjerenja) u skupu.

SloZena aritmeticka sredina

Numericka obiljezja masovnih pojava imaju mnogo vrijednosti. Zato takve
skupove uredujemo, odnosno redukujemo broj podataka. U tim slucajevima
za aritmeticku sredinu koristimo prilagodenu formulu, u kojoj se pojavljuju
frekvencije (Ni), tj. broj elemenata po klasama (indeksi , i“ oznacavaju redni broj
klase). Radi se o sloZenoj aritmetickoj sredini. Formula je:

Y N.X,
N

X =

Klase imaju svoju Sirinu (interval) i s njima kao takvim ne moZemo dalje
matematicki raditi. Sta onda da uzmemo za X u brojniku? Logi¢no je da se
uzme neka srednja vrijednost koja ¢e predstavljati klasu. PoSto nije prakti¢no
izracunavati aritmeticke sredine klasa iz njihovih podataka, uzima se centar,
koji se racuna kao sredina izmedu donje (X,) i gornje [Xg) granice klase:

X, +X,
2

Pretpostavka za ovu formulu je normalna raspodjela podataka u klasi. Taj
uslov obi¢no nije ispunjen pa tom prilikom ¢inimo greSku. Medutim, iskustvo
je pokazalo da ona nema prakti¢nog znacaja. Napomena: Redukcijom podataka
(formiranjem klasa) trajno gubimo informacije o pojedina¢nim vrijednostima.

Ako aritmeticku sredinu racunamo za uzorak Koristimo mala slova u istim

formulama:
2 X, —_ 2NX,

n n

X =

Vazno je ovdje istaknuti da se u literaturi koriste razliciti simboli (oznake). Mi smo
kod aritmeti¢ke sredine odabrali oznaku X (¢ita se iks nadvuéeno ili iks srednje). Cesta
oznaka za aritmeticku sredinu skupa je p (malo grcko slovo mi). Koristi se joS oznaka
M (od engl. Mean). Nju koriste uglavnom softveri. JoS se moze naci oznaka AS, kao
skracenica od ,aritmeticka sredina“ Pregled simbola dat je na kraju Poglavlja II.
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U Formuli za sloZenu aritmeticku sredinu, kao i kod proste sredine, u ra¢unu
ucestvuju svi podaci. Oni ovdje na rezultat uticu indirektno preko frekvencije
klasa, dajuci razliitu ,teZinu“ svakoj klasi u racunu. Tako se podaci na neki
nacin vagaju, pa se ova aritmeticka sredina naziva jo$ vagana sredina. Ona ima
znacenje slicno kao teZiSte vage u mehanickom sistemu. Frekvencije sluze kao
ponderi (lat. pondus = teg), pa otuda Cest naziv ponderisana sredina. Naravno
da nije ista ,tezina“ klase ako se u njoj nalazi jedan ili pet elemenata. U drugom
slucaju taj podatak (sredina klase) se mnoZi sa pet. Mi ¢emo uglavnom koristiti
termin ponderisana sredina. Osim apsolutnih frekvencija, kao ponderi mogu se
koristiti i neki drugi elementi. O tome viSe u nastavku.

Kad se koriste ponderi?

Ponderi se koriste u sljede¢im slucajevima:

Prvi slucaj. Uvijek kad su podaci grupisani, tj. ako imamo uredene skupove
(rasporede frekvencija). Ponderi su frekvencije (broj elemenata po klasama).

Drugi slucaj. Ako treba izraCunati zajednicku aritmeti¢ku sredinu iz vise
podskupova. Ponderi su broj elemenata podskupova. Primjer u knjizi; 3, str. 39.

Treci slucaj. Ako ra¢unamo aritmeticku sredinu relativnih brojeva. Razlog je
vrlo jednostavan. Svaki relativni broj ima svoju bazu, na osnovu koje je izracunat.
Te baze se koriste kao ponderi. Neka je, na primjer, procentualno ucesce jele u
tri mjeSovite Sume 10%, 15% i 20%. Da li je prosjecno ucesce jele u ove tri Sume
15%7? Naravno da nije! Osim u jednom slucaju. Kom? Pogledajte u knjizi (3, str.
40).

Ponderi u Sumarstvu

NajceS¢i raspored frekvencija u Sumarstvu je raspored stabala po
debljinskim klasama, koji nazivamo debljinska struktura. Kakav oblik ovog
rasporeda ocekujemo u prirodnim Sumama? U njima najviSe ima tankih stabala,
srednje debelih manje, a debelih najmanje. Dakle, oblik raspodjele stabala po
debljini je kosi opadajuci (Slika 15a). Ako bismo racunali aritmeti¢ku sredinu
kao pondere trebali bismo uzeti broj stabala po debljinskim klasama. Medutim,
ova srednja vrijednost ne bi mogla predstavljati sva stabla u Sumi, jer ne postoji
centralna tendencija. Za takvu Sumu treba nam neka druga srednja vrijednost,
koja ce je predstavljati. Pogledajmo kako su Sumari u BiH rijesili ovaj problem.

41



DESKRIPTIVNA STATISTIKA: Mjere centralne tendencije (srednje vrijednosti)

N/ha V/ha

d(cm) ds d(cm)
a) b)

ale

Slika 15. Broj stabala (a) i drvna masa (b) po debljinskim klasama
(u prirodnim Sumama)

Kao proizvod u Sumarstvu posmatramo drvnu masu (zapreminu) stabala, a
ne njihov broj. Ako se uzme u obzir zapremina stabalainjihov broj po debljinskim
klasama dolazimo do debljinske strukture zapremine. Ona ima zvonolik
(normalni) oblik (Slika 15b). Ovdje vidimo da postoji centralna tendencija.
Izracunacemo srednji prec¢nik po zapremini, koji ¢e dobro predstavljati strukturu
zapremine. Koristi se sljedeca formula:

Vd.
ds — Z 171
\'%
u kojoj su:
d, - srednji precnik po zapremini
V. - zapremine po debljinskim klasama
d, - sredine debljinskih klasa
V - ukupna zapremina (V=2V))

Ovo je, u stvari, formula za ponderisanu aritmeticku sredinu. Kao ponderi
uzete su apsolutne vrijednosti zapremine po klasama. Prilikom izrade tablica za
nasSe Sume jele, smrce i bukve u BiH, iz prakti¢nih razloga, uzimane su relativne
vrijednosti zapremina po klasama, tj. u procentima. Ta formula glasi:

ds — zPidi
100

gdje p, oznacava procentualno uceS¢e zapremine po klasama. Rezultat
je naravno isti. Umjesto zapremina mogu se kao ponderi uzeti temeljnice po
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debljinskim klasama. Ovaj srednji precnik, koji je vezan za temeljnicu, moZe se
dobiti i preko kvadratne sredine. O tome viSe kasnije.

Matematicke osobine aritmeticke sredine

Iz formule za racunanje aritmeticke sredine proizlazi da svi ¢lanovi skupa
ucCestvuju u njenom racunanju i drugo, zbir svih vrijednosti jednak je proizvodu
aritmeticke sredine i ukupnog broja elemenata skupa.

U statistici suposebno vazne sljedece dvije matematic¢ke osobine aritmeticke
sredine (dokazi za njih dati su u knjizi; 3, str. 40).

1. Suma odstupanja svih vrijednosti od aritmeticke sredine jednaka je nuli.

(X, - X)=0

2. Suma kvadrata odstupanja od aritmeti¢ke sredine je minimalna. Sta to
znaci? To znaci ako umjesto aritmeticke sredine uzmemo bilo koji drugi broj
suma Ce biti veca.

¥(X, - X) = MIN

Ovaj princip nazvan je Metod najmanjih kvadrata. Otkrio ga je Gaus (1795.
godine), ispitujuci rasporedivanje slucajnih greSaka mjerenja. On je to ovako
formulisao: ,Suma kvadrata gresaka mora biti minimalna (ako pod greskom
podrazumijevamo odstupanje vrijednosti od aritmeticke sredine)‘. Metod
najmanjih kvadrata u statistici ima veliku vaZnost, posebno u regresionoj analizi.

Nedostaci aritmeticke sredine

Aritmeticka sredina je najceS¢a mjera centralne tendencije, iako za njenu
primjenu treba biti ispunjeno vise uslova. OpiSimo ih u nastavku.

1. Aritmeticka sredina zahtijeva normalan oblik rasporeda frekvencija.
Za kose rasporede nije pogodna kao mjera, jer u tim rasporedima ne postoji
centralna ve¢ neka druga tendencija. Ra¢unanje sredine u takvim slucajevima
ima formalni karakter.

2. Drugi uslov je homogenost skupa. Sto je variranje podataka vece, to ée
aritmeticka sredina slabije reprezentovati skup. Smatra se da je za koeficijente
varijacije vece od 30% aritmeticka sredina slaba (nepouzdana) mjera. Takvi
skupovi su heterogeni.

3. Na aritmeticku sredinu uticu svi podaci. To je njena dobra osobina.
Medutim, ako se u skupu nadu ekstremne vrijednosti one znacajnije mogu

seut

»povuci“ prosjek u svoju stranu. Onda takva sredina daje pogreSnu sliku o skupu.
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4. MoZe se desiti da na jednom kraju rasporeda ima viSe podataka, tj. da je
raspored asimetrican. To takode utiCe na reprezentativnost aritmeticke sredine.
Grani¢na vrijednost koeficijenta asimetrije je orijentaciono 0,5 (umjerena
asimetrija). Sa povecanjem asimetrije aritmeticka sredina je sve loSija srednja
vrijednost.

5. RaCunanje aritmeticke sredine je ,otezano“ ako u rasporedu postoje
otvorene klase. Da bismo uopste mogli izracunati sredinu, te klase moramo
stru¢nom procjenom zatvoriti (odrediti im granicu).

6. U posebnim sluc¢ajevima umjesto aritmeticke sredine Kkoriste se
harmonijska, geometrijska i kvadratna sredina.

7. Ako radimo sa skupovima aritmeticka sredina je tacna bez obzira na veli¢inu
(broj elemenata) skupa. Medutim, kad radimo sa uzorcima, aritmeticka sredina iz
malog broja podataka je nesigurna. Kao Sto se slucajne greske mjerenja rasporeduju
normalno samo u velikom broju mjerenja tako se i prirodni varijabilitet elemenata
(slucajne razlike) rasporeduje normalno samo u velikom broju slucajeva (elemenata).
Smatra se da je aritmeticka sredina stabilna ako je n > 30.

2.1.2. Harmonijska sredina (X,)

Harmonijska sredina (X)) koristi se kada pojava i obiljeZje nisu u skladu
(harmoniji). Vjerovatno i naziv ove sredine potice otuda. Neki autori pak
kazu da je naziv vezan za muziku (harmoniju tonova). Nama je najvaznije da
prepoznamo situacije kad se ova sredina koristi. Pogledajmo jedan primjer.

Ako sadimo sadnice na nekoj Sumskoj povrSini tada obi¢no govorimo
o ucinku sadnje. U ovom slucaju kao pojavu posmatramo ucinak. Do njega
mozemo doci na dva nacina. Preko pravih vrijednosti, tj. broja zasadenih sadnica
(u jedinici vremena) i preko reciproc¢nih vrijednosti, tj. utroSenog vremena za
sadnju (po jednoj sadnici). U ovom drugom slucaju, kada se pojava (ucinak)
smanjuje s povecanjem vrijednosti obiljeZja (utroSenog vremena), ispravno je
racunati sredinu tih (recipro¢nih) vrijednosti. A to je harmonijska sredina.

Harmonijska sredina

Harmonijska sredina se upotrebljava onda kad se pojava smanjuje sa
povecanjem obiljeZja.

AKko se, u nasem primjeru, utroSeno vrijeme odnosi na pojedinacne radnike
racunamo prostu sredinu, a ako su podaci grupisani, tj. ako se odnose na vise
radnika, onda racunamo ponderisanu sredinu. Evo njihovih formula:
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N N
Xa=7 Xemy
2 >

X. X

i i

Uzmimo da su Cetiri radnika imali razli¢ite utroske vremena (za sadnju po
jednoj sadnici), odnosno razli€it broj zasadenih sadnica (za jedan dan, tj. 8 sati
= 480 minuta). Prosje¢no utroSeno vrijeme po formuli za prostu harmonijsku
sredinu je 5,58 minuta.

Radnik: A B C D
Vrijeme (minuta): 10 6 5 4
Broj sadnica: 48 80 96 120
4 .
Xy = N = =5,58 min.
1 I 1 1 1
22— —+—t—+—
X, 10 6 5 4

i

Ako 480 minuta podijelimo s prosje¢nim utroSenim vremenom dobi¢emo po
harmonijskoj sredini 86 sadnica. Da zaista u prosjeku ova Cetiri radnika zasade 86
sadnica dnevno potvrduje prosta aritmetic¢ka sredina broja zasadenih sadnica. Da smo
izracunali aritmetic¢ku sredinu utrosenog vremena rezultat bi bio 6,25 minuta, a prosjek
zasadenih sadnica po radniku 77 (detaljnije u knjizi 3, str. 42).

2.1.3. Geometrijska sredina (X )

Ako imamo pred sobom niz podataka, koji pokazuju priblizno geometrijsku
progresiju ratunacemo geometrijsku sredinu (X ) . Kod geometrijske progresije
svaki naredni ¢lan u nizu dobijen je tako Sto se prethodni mnozi sa fiksnim
brojem. Te odnose izmedu brojeva izravnava geometrijska sredina. Najvaznije
je prepoznati takve situacije. Formule za prostu i ponderisanu geometrijsku

sredinu, gdje oznaka IT - pi znaci proizvod niza brojeva, glase:

X, =¥TIIX, X, =\Tx™

Uzmimo opet primjer iz struke. Pretpostavimo proizvodnju trupaca u
jednom kratkom periodu od Sest godina:

Godina: prva druga treca Cetvrta peta  Sesta

Proizvedeno trupaca

(u hiljadama m®): 11,3 14,6 17,5 21,4 29,7 36,2
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Ovdje vidimo jedan niz brojeva koji se povecava iz godine u godinu. Njemu
odgovara geometrijska sredina. Primijenimo 1i prostu formulu geometrijska
sredina iznosi¢e 20.120 m?3. Rast proizvodnje moze se prikazati i preko indeksa
rasta. Njihov prosjek racuna se takode preko geometrijske sredine (viSe u knjizi
3, str. 46). Ova sredina izravnava odnose, a ne originalne vrijednosti.

Geometrijska sredina

Ako racunamo sredinu niza brojeva koji odgovara geometrijskoj
progresiji ispravno je primijeniti geometrijsku sredinu.

U ispravnost primjene geometrijske sredine mozZemo se uvjeriti na jednom
prostom hipotetickom primjeru. Neka smo neki proizvod u jednom periodu
prodavali u pola cijene (relativni iznos 0,5). Nakon toga cijenu smo podigli dva
puta (relativni iznos 2,0). Pitanje: da li se cijena naseg proizvoda promijenila?
Aritmeticka sredina ovih odnosa (0,5 i 2,0) bila bi 1,25. To bi znacilo da se cijena
povecala za 25%. Medutim, to nije ta¢no. Cijena je ostala ista, tj. nepromijenjena.
Tacan rezultat daje nam geometrijska sredina. Drugi korijen iz 0,5 x 2,0 jednak
je jedan.

2.1.4. Kvadratna sredina (X,)

Kvadratnasredina (X,), kako i sam naziv kaZe, predstavlja sredinuizracunatu
iz kvadriranih vrijednosti obiljeZja (racuna se kao drugi korijen). Koristi se u
slucajevima kada je pojava povezana sa kvadratima obiljezja. Kvadratna sredina
daje veci znacaj (tezinu) vec¢im vrijednostima. Formule glase:

2 2
X, - [TX, X, - [ENX,
N N

OvasredinazanasSumareje posebnovazna.Mikao pojavu cesto posmatramo
temeljnicu Sume, a precnike njenih stabala kao obiljezje. Temeljnicu jednog
stabla (povrsinu poprecnog presjeka oblika kruga, na 1,30 m visine) dobijamo
racunski preko kvadrata precnika:

T
YT
874

Temeljnica petstabala ¢iji su precnici 20,25,30,35i40 cmiznosi G=0,37287
m?2. Ako treba izracunati srednju vrijednost Cija ¢e temeljnica pomnoZena sa pet
dati ovu temeljnicu racunamo kvadratnu sredinu:
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2 2 2 2 2 2
XK:\/Z;?i :\/20 +25° +30° 4357 +40° 000

5

Temeljnica prec¢nika 30,82 cm? iznosi 0,074575 m? Ona pomnoZena sa pet
dace ukupnu temeljnicu. Da smo racunali aritmeticku sredinu ne bismo dobili
ovaj rezultat.

Kvadratna sredina

Kad je pojava vezana sa kvadratima obiljeZja, a ne s originalnim
(pravim) vrijednostima, racuna se kvadratna sredina.

Ako temeljnicu Sume (G) podijelimo s brojem stabala u Sumi (N) dobi¢emo
prosjec¢nu temeljnicu svih stabala u Sumi (g). Srednji precnik koji odgovara ovoj
temeljnici nazivamo srednji pre¢nik po temeljnici [dg). Ovaj precnik koriséen
je prilikom izrade tablica za nase borove i hrastove Sume. Veza izgleda ovako:

2.1.5. Veza izmedu rac¢unskih sredina

[zmedu racunskih sredina uvijek postoji stalan odnos, ako se rac¢unaju iz
istog niza brojeva. Najmanja je harmonijska, a slijede geometrijska i aritmeticka
sredina. Najveca je uvijek kvadratna sredina.

XH<XG<X<XK

[zraCunajmo ove sredine iz niza od Ccetiri broja: 2, 4, 8 i 16 i izaberimo
sredinu koja bi najbolje odgovarala ovom nizu brojeva.

X:Z§122+4+8+16:7,50 XG:\/HXi:(‘/2x4x8xl6:5,66
X,=—N -t 4
1 I 1 1 1
2— —t—t—+—
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2 2 2 2 2
XK:\/ZXi :\/2 [ AT
N 4

XuaXa X Xg

2 4 8 16

Harmonijska sredina izravnava recipro¢ne vrijednosti. ZasSto je ona
najmanja? Zato Sto su recipro¢ne vrijednosti malih brojeva veée (npr. 1/2 je
veca vrijednost od 1/16). One ,vuku“ prosjek na nize.

Geometrijska sredina izravnava odnose (proporcionalne promjene). U
ovom nizu postoji takav odnos po kome je svaki naredni broj dva puta veci od
prethodnog (4 je dva puta veéi broj od 2, 8 od 4, a 16 od 8). Na ovu sredinu ne
utice veli¢ina brojeva i zato se ona nalazi u pravoj sredini geometrijskog niza. Za
ovaj niz odgovara geometrijska sredina, kao najbolja srednja vrijednost.

Aritmeti¢ka sredina izravnava prave vrijednosti (apsolutne razlike). Ovdje
broj 16 ,vuce” prosjek na vise, pa je aritmeticka sredina ve¢a od geometrijske.
On djeluje kao ekstremna vrijednost.

Kvadratna sredina izravnava kvadrate. Kad se brojevi kvadriraju razlika
izmedu velikih i malih brojeva se povecava, npr. izmedu 16% i 2, tj. 256 prema
4 . To joS jace povlaci kvadratnu sredinu na viSe. Zato je ona najveca od svih
sredina.

2.2. Pozicione srednje vrijednosti
2.2.1. Medijana (X )

Medijana (X ) je centralna vrijednost u skupu. To je vrijednost obiljeZja koje
se nalazi na takvom mjestu da skup dijeli na dva jednaka dijela (jedna polovina
elemenata ima manje, a druga vece vrijednosti od medijane). Iskazuje se u
jedinicama obiljezja, kao i sve druge srednje vrijednosti. MoZe se racunati samo
ako su podaci poredani po veli¢ini, odnosno ako je skup ureden.

Medijana je pogodna u slucajevima kad nisu ispunjeni uslovi za primjenu
aritmeticke sredine. To su situacije: kada je asimetrija velika, kada u skupu ima
ekstremnih vrijednosti i kod otvorenih klasa, posebno kad su u njima velike
frekvencije. Medutim, medijana nije podesna za daljnju statisticku obradu.
Osim toga, ona ne zavisi od promjene vrijednosti obiljezja, ve¢ samo od njihovog
broja.
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Medijana

Medijana je centralna vrijednost obiljezja, koja dijeli skup na dva
jednaka dijela.

Mjesto, odnosno redni broj elementa na kome se nalazi centralna vrijednost
dace nam jednostavna formula

N+1
2

Ako se radi o negrupisanim, po veli¢ini poredanim, podacima imaé¢emo
dva slucaja: sa neparnim brojem podataka (jedan element ¢e biti u sredini) i sa
parnim brojem (medijana ¢e biti sredina izmedu dva elementa). Na primjer, ako
imamo niz od pet podataka (precnika stabala): 20, 25, 30, 35 i 40 cm, medijana
je 30 cm (tre¢i podatak po redu). Ako dodamo tom nizu prec¢nik od 40 cm
medijana ¢e biti 32,5 cm (sredina izmedu treceg i ¢etvrtog elementa). Ispod i
iznad te vrijednosti nalaze se po tri elementa. Ona je u centru.

U praksi obi¢no radimo sa grupisanim podacima. Prvo, u kumulativhom
nizu pronademo klasu u kojoj se nalazi dobijeni broj po gornjoj formuli. Ta
klasa naziva se medijalna klasa. Priblizno, za medijanu se uzima njena sredina.
Medutim, nekad se traZi njeno preciznije izrac¢unavanje. U tom slucaju koriste se
formule, koje sustinski predstavljaju interpolaciju sa susjednim klasama. Tada
se pretpostavlja pravougaona raspodjela elemenata unutar klasa. Te formule
pogledajte u knjizi (3, str. 53). U naSoj praksi one se rijetko koriste.

Medijanu moZemo odrediti i graficki. Ako na bilo kojoj kumulanti povu¢emo
paralelu sa X-osom iz N/2 i spustimo okomicu dobi¢emo vrijednost obiljezja
koje predstavlja medijanu. Ili, ako na istom grafikonu imamo obje kumulante
njihovo presijeciste, spusteno na X-osu je medijana.

Da bismo razumjeli sustinsko znacenje medijane posluZimo se jednostavnim
primjerima. U Sumarstvu organizujemo proizvodnju tako da posjeCenu drvnhu masu
dovozimo na jedno stovariste. To stovariSte treba da zauzme centralno mjesto nekog
regiona, kako bi troskovi prevoza bili najmanji. Zato se ono i naziva centralno stovariste.
To odgovara znaCenju medijane.

Ili primjer iz obi¢nog Zivota. Ako u nekom preduzecu iskazemo prosjecnu platu
svih radnika to ne mora biti realna slika (uspjeha) poslovanja. MozZe se desiti da veliki
broj radnika prima veoma malu platu, a da taj prosjek zapravo ,podiZe“ manja grupa sa
ekstremno velikim platama. Zato bi ovdje medijana bila bolja mjera, jer bi ukazala na tu

pojavu.
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2.2.2. Mod (X,)

Mod (X,,) je dominantna vrijednost obiljezja u skupu. To je obiljezje koje
se najcesce javlja, tj. koje ima najvecu frekvenciju. Na grafikonu je to najveca
ordinata. Ako pogledamo precnike pet stabala: 20, 25, 30, 35 i 40 cm, koja je
njihova modalna vrijednost (mod)? Svaki od tih podataka ima frekvenciju jedan
(pojavljuje se samo jednom). U ovom slucaju mod ne postoji. Ako prethodnom
nizu dodamo precnik od 40 cm, ova vrijednost ¢e se pojaviti dva puta. Znaci,
mod ¢e biti 40 cm.

Mod

Mod je obiljeZje s najvecom frekvencijom.

U uredenim skupovima ako je obiljezje prekidno, a nije grupisano u klase,
onda je mod vrijednost obiljezja s najvecom frekvencijom. Na primjer, ako
najvise ima porodica sa dvoje djece mod je dva. Kod neprekidnih obiljezja, prvo
se pronade klasa s najvecom frekvencijom. Ona se naziva modalna klasa, a njena
sredina Ce priblizno predstavljati mod. I ovdje, kao kod medijane, mod se moze
izracunati preciznije po nekoj od formula (vidi 3, str. 55). Napomena: Precizno
izracunata vrijednost moda je samo teorijska vrijednost, jer moZe se desiti da ni
jedna vrijednost obiljezja u skupu ne bude tolika.

Mod se priblizno moZe odrediti na histogramu frekvencija. Spajanjem
gornje granice modalne klase s gornjom granicom prethodne klase i donje
granice modalne klase s donjom granicom naredne klase nastaje presijeciste,
Cijim spustanjem na apscisu dobijamo mod.

U Sumarstvu nema puno smisla traZiti mod tako precizno. Dovoljno je
odrediti modalnu klasu. Na primjer, kaZzemo da je debljinska klasa 30-35 cm
najzastupljenija. Zapravo kod neprekidnih obiljeZja mod gubi smisao tipi¢ne
(najcesce) vrijednosti. Zato je najbolje ostati kod modalne klase.

Mod je dobra mjera za jako asimetri¢cne rasporede. Kao i medijana nije
osjetljivna promjene vrijednosti obiljezja. Mod ostaje isti sve dok se ne promijeni
klasa s najvecom frekvencijom. On zavisi od Sirine klasa, a ako nije izrazen
kazemo da je mod neizvjestan. Ponekad konstatujemo postojanje dva vrha na
grafickom prikazu rasporeda frekvencija. Tada kazemo da se radi o bimodalnom
skupu. Takav skup je nehomogen. Primjer su dvoetaZne (dvospratne) sastojine.

Mod se moZe odredivati i za atributivne serije. Njime se istice modalitet
koji je dominantan. Na primjer, moZemo konstatovati da je u nekoj Sumi ucesce
stabala prve klase kvaliteta dominantno. Ili, ako najvise ima studenata s ocjenom
osam onda ¢e mod biti osam.
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Srednja vrijednost karakteristika je svih vrijednosti numerickog
obiljeZja koje variraju od jedinice do jedinice u jednoj masi. Srednjom
vrijednosti zamjenjuje se svaka individualna vrijednost obiljeZja, pa, prema
tome, srednja vrijednost predstavlja svaku individualnu vrijednost obiljeZja
i skup svih vrijednosti obiljeZja. Srednja ¢e vrijednost to uspjesnije zamijeniti
neku individualnu vrijednost obiljeZja ili je predstavljati Sto se vise ta
individualna vrijednost priblizava vrijednosti sredine, ili, drugim rijecima,
Sto manje ta individualna vrijednost odstupa od srednje vrijednosti. Ako se
uzmu sumarno sve individualne vrijednosti obiljeZja, srednja ¢e ih vrijednost
to bolje predstavljati sto se te vrijednosti manje razlikuju od srednje
vrijednosti, sto se one vise gomilaju oko srednje vrijednosti. (10, str. 93)

3. M]JERE VARIJABILITETA

Mjere centralne tendencije (srednje vrijednosti) nisu dovoljne da opisu
statisti¢ki skup. Zato se uz njih uvijek daju mjere varijabiliteta (rasprsSenosti,
disperzije). Postoji viSe mjera varijabiliteta. Svrstavamo ih u dvije grupe:
apsolutne mjere i relativne mjere.

Apsolutne mjere varijabiliteta su:

- Raspon varijacije,

- Interkvartilni raspon,

- Srednje apsolutno odstupanje,

- Varijansa i standardna devijacija.

Relativne mjere varijabiliteta su:

- Koeficijent varijacije i
- Standardizovano odstupanje

Pogledajmo skupove A, B i C. To su hipoteticki podaci, gdje je obiljezje (X)
precnik stabala u cm. Ova tri skupa, iako istih aritmetickih sredina, ve¢ na prvi
pogled razlikuju se po varijabilitetu. Ovaj primjer ¢emo koristiti da pokazemo
racunanje navedenih mjera varijabiliteta.

Skup A: 35, 36, 39, 40, 42, 43, 45 (X =40 cm)
SkupB: 1, 5, 10, 40, 70, 75, 79 (X =40 cm)
Skup C: 1, 38, 39, 40, 41, 42, 79 (X =40 cm)
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3.1. Apsolutne mjere varijabiliteta

3.1.1. Raspon varijacije (RV)

Raspon varijacije (interval varijacije) predstavlja razliku najvece (X
najmanje (X ) vrijednosti obiljezja u nizu.

MAX) i
MIN

RV = Xyax = X
[zracunajmo raspon varijacije, za tri slucaja (4, B, C), u nasem primjeru:
RV (A)=45-35=10cm; RV (B)=79-1=78cm; RV (C)=79-1=78cm

Najmanji raspon varijacije ima skup A. Skupovi B i C imaju isti raspon
varijacije, ali oCigledno je variranje elemenata u njima razli¢ito. Raspon
varijacije je vrlo gruba mjera varijabiliteta, koja uzima u obzir samo krajnje dvije
vrijednosti. One ¢esto mogu biti ekstremne, pa dobijamo previsoke vrijednosti
raspona varijacije. Dobar primjer za to je skup C, gdje se na oba kraja nalaze
ekstremne vrijednosti (to su vrijednosti 1 i 79, koje se jako puno razlikuju od
drugih vrijednosti).

Raspon varijacije

Raspon varijacije predstavlja razliku najvece i najmanje vrijednosti
u skupu.

Kako u uredenom skupu izra¢unavamo raspon varijacije? Logika nam
nalaze da za X,,,, uzmemo gornju granicu najviSe klase, a za X, . donju granicu
najnize klase. Tada smo sigurni da ne¢emo ispustiti neku od vrijednosti, $to bi se
moglo desiti ako bismo uzeli sredine krajnjih klasa. Nedostaci raspona varijacije

su subjektivnost u slu¢ajevima otvorenih klasa, kao i zavisnost od Sirine klasa.

Raspon varijacije gotovo redovno nalazimo u statistickim izlazima, zajedno
sa drugim mjerama varijabiliteta. Uz njega, kao korisne informacije, daju se X,
X

X

3.1.2. Interkvartilni raspon (IQR)

Interkvartilni raspon (IQR) je zamisljen kao mjera varijabiliteta koja ce
eliminisati one nedostatke raspona varijacije, koji se odnose na ekstremne
vrijednosti i otvorene klase. IQR se racuna pomocu kvartila. Kvartili dijele skup
na Cetiri jednaka dijela. Ima ih ukupno tri. Prvi (donji) kvartil (Q,) je vrijednost
obiljezja ispod koje se nalazi 25%, a iznad 75% elemenata. Treéi (gornji)
kvartil (Q,) ima obrnute procente (ispod 75%, a iznad 25%). Drugi (centralni)
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kvartil je zapravo jednak medijani (ispod i iznad se nalazi po 50% elemenata).
Interkvartilni raspon se dobije kao razlika izmedu treceg i prvog kvartila.

IQR=Q,-Q,

Interkvartilni raspon se moZe odrediti na dva vrlo prakti¢na nacina: preko
medijane i graficki. Kad se odreduje preko medijane, prvo se nade medijana
cijelog skupa, a zatim medijane iz nastalih polovina. One predstavljaju kvartile.
Graficki se IQR moZe odrediti iz kumulanti. Povla¢enjem paralela iz N/4 i 3N /4
i spuStanjem okomica na apscisu dobiju se Q, i Q,.

Interkvartilni raspon

Interkvartilni raspon je razlika izmedu treceg i prvog kvartila.

Interkvartilni raspon se kao mjeravarijabiliteta obi¢no daje uz medijanu. IQR
obuhvata 50% elemenata oko centralne vrijednosti (medijane). Manja njegova
vrijednost upuduje na vecCe grupisanje elemenata, tj. manje variranje. Neki autori
umjesto interkvartilnog raspona preporucuju upotrebu poluinterkvartilnog
raspona, koji obuhvata 25% elemenata oko centralne vrijednosti. Medutim,
kod ovih mjera i dalje ostaje kao glavni nedostatak to $to ne uzimaju u obzir
vrijednosti svih elemenata skupa.

3.1.3. Srednje apsolutno odstupanje (D)

Prvi pokusaj da se nade mjera varijabiliteta koja ¢e uzeti u obzir sve
vrijednosti u skupu bio je da se izracunaju odstupanja elemenata od aritmeticke
sredine. S obzirom da je njihov zbir uvijek jednak nuli, uzeta su odstupanja u
apsolutnom iznosu, bez predznaka. Medutim, ova suma zavisi od broja podataka.
Sto ima vise vrijednosti suma je vec¢a. Da bi se otklonio taj nedostatak suma
svih odstupanja se dijeli s brojem podataka. Tako se dobije srednje apsolutno
odstupanje. Formule za negrupisane i grupisane podatke glase:

z\xi —)‘(\ _ YN, ‘Xi —)‘(\
Zrtr 1 p=—11"=T* "1
N N

D=

Srednje apsolutno odstupanje za na$ skup A pokazuje da precnici stabala
odstupaju od aritmeticke sredine u prosjeku 2,86 cm:

— [35-40[+--- +[45-40|
D=

=2,86 cm
7
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Srednje apsolutno odstupanje

Srednje apsolutno odstupanje predstavlja prosje¢no odstupanje
elemenata od aritmeticke sredine, ne uzimajuci u obzir
njihov predznak.

Postupak izracunavanja srednjeg apsolutnog odstupanja algebarski nije
ispravan, tako da se ne moZe dalje racunski koristiti. Zbog toga ova mjera nije
nasla primjenu u praksi. Ipak, ostaje Cinjenica da upravo srednje apsolutno
odstupanje predstavlja aritmeticku sredinu (pravi prosjek) odstupanja
elemenata od aritmeticke sredine.

3.1.4. Varijansa (%) i Standardna devijacija (S)

Ako se umjesto apsolutnih odstupanja uzmu kvadrati odstupanja dolazi se
do novih mjera varijabiliteta. To su standardna devijacija i varijansa. Standardnu
devijaciju formulisao je Pirson 1893. godine. Ona se i danas koristi kao osnovna
apsolutna mjera varijabiliteta. Pojam varijanse Fiser je uveo kasnije, 1918.
godine. Ona se pokazala kao pogodna (neophodna) za statisticku teoriju.

Varijansa

Akoodstupanjaelemenataodaritmeticke sredinekvadriramosve vrijednosti
Ce biti pozitivne. Posto i ova suma zavisiti od broja podataka (bice veca Sto ima
viSe podataka, dodatno i zbog kvadriranja) ona se dijeli brojem podataka. Tako
dobijamo prosjecno kvadratno odstupanje. Ova mjera varijabiliteta nazvana je
varijansa (S*). Ona se moze racunati iz negrupisanih ili grupisanih podataka.

Formule, po definiciji, glase:
—\2 —\2

522M SzzzNi(Xi_X)
N N

[zrac¢unajmo varijansu po definiciji za skup A:

—\2 P
X, -X _40) 4+ (45—

SZZZ( —X)" _(35-40)+---+(45-40) 80 i
N 7 7

Varijansa nije klasi¢na mjera varijabiliteta. Njen znacaj je vise teorijski. Ako
pogledamo formulu za ra¢unanje varijanse zapazi¢emo da se rezultat dobija u
jedinicama obiljezja dignutim na kvadrat. Ona ovdje iznosi 11,42 cm?. Posto to
nema smisla, najceSce izraCunatu varijansu ostavljamo kao neimenovan broj.
Drugi njen nedostatak za prakti¢nu upotrebu su suviSe visoke vrijednosti.
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Varijansa

Varijansa je prosjek kvadriranih odstupanja elemenata od
aritmeticke sredine skupa.

Iz prethodnih formula za varijansu mogu se matematicki izvesti radne
formule. One su pogodne kad se radi rucno, jer ne zahtijevaju raCunanje
odstupanja. Evo jedne takve formule za racunanje varijanse, iz negrupisanih i
grupisanih podataka:

:ZXiz_)_(z SZZZN—iXi2
N N

s? -X?

Standardna devijacija

Ako vratimo prosjecno kvadratno odstupanje na prvi stepen dobi¢emo
standardnu mjeru za varijabilitet (devijaciju). Po tome je ona i dobila naziv
standardna devijacija (S). Standardna devijacija se iskazuje u originalnim
jedinicama obiljezja, tj. predstavlja apsolutnu mjeru varijabiliteta. Racuna se
samo uz aritmetic¢ku sredinu, $to se vidi iz njenih formula po definiciji:

(X -X) S:\/ZNi();i_X)z

Varijansa i standarna devijacija su matematicki povezane. Ako je poznata
jedna, druga se lako izracuna. Veza je:

2
S=+S
Za skup A, za koji imamo izracunatu varijansu standardna devijacija iznosi

3,38 cm. Standardna devijacija je, u stvari kvadratna sredina. Zato je veéa od
srednjeg apsolutnog odstupanja, koje je iznosilo 2,86 cm.

S=+/S? = /11,42 =3,38 cm

Standardna devijacija

Standardna devijacija je prosje¢no (linearno) odstupanje elemenata
od aritmeticke sredine skupa, racunato kao kvadratna sredina.

Standardnu devijaciju mozemo grubo procijeniti ve¢ nakon prikupljanja
podataka. Prema normalnom rasporedu, prakticno svi podaci obuhvaceni su
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intervalom od Sest standardnih devijacija. Dakle, ako razliku izmedu najveceg
i najmanjeg podatka, tj. raspon varijacije podijelimo sa Sest dobi¢emo pribliZno
standardnu devijaciju. Neki autori predlaZzu da se RV dijeli sa Cetiri.

Statistiku uglavnom radimo na bazi uzorka. Tada se formule neSto razlikuju.
Umjesto sa ,N“ suma kvadrata se dijeli sa ,n-1“ O tome Ce biti viSe govora kasnije. Sada
recimo samo da standardna devijacija izraCunata iz uzorka bude nesto manja od one iz
skupa. S obzirom da nju koristimo kao procjenu standardne devijacije u skupu uvedena
je ova korekcija, za njihovo priblizavanje. Ako se radi o velikim uzorcima ona nema
uticaja na rezultat.

3.2. Relativne mjere varijabiliteta

3.2.1. Koeficijent varijacije (KV)

Pogledajmo sljedeca trislucaja. Radi se o tri Sume koje imaju istu standardnu
devijaciju precnika, ali razli¢ite aritmeticke sredine. Trebamo uporediti
varijabilitet.

><i

2¢3

wn >
wn

X, =20cm X, =40 cm X, =100 cm X #
S,=10cm S,=10cm S.,=10 cm S,=5,=5,

Poredenjem standardnih devijacija zakljucili bismo da nema razlike
u varijabilitetu precnika u ove tri Sume. To je pogresno. U prvom slucaju
aritmeticka sredina je mala, tako da standardna devijacija iznosi 50% od njene
vrijednosti. U drugom slucaju iznosi 25%, a u tre¢em svega 10%. Sa povecanjem
sredine apsolutno variranje od 10 cm postaje relativno sve manje. U ovakvim
slucajevima, kada su apsolutne razlike velike, poredenje varijabiliteta se vrsi
preko koeficijenta varijacije. Mi smo ga ve¢ prakti¢no izrac¢unali.

KV,=50%  KV,=25%  KV,=10% KV, > KV,>KV,

Najmanje variranje stabala po precniku je u tre¢oj Sumi, koja ima srednji
precnik 100 cm. Koeficijent varijacije iznosi 10%. Koeficijent varijacije je
relativna mjera koja pokazuje koliko je variranje u odnosu na aritmeticku
sredinu. Koeficijent varijacije (KV) iskazuje se u procentima, zbog lakSeg
tumacenja. Jedan procenat varijacije ima uvijek isto znacenje (tezinu), pa se ovi
koeficijenti mogu porediti u svim situacijama. Formula za koeficijent varijacije
glasi:

KV = EXIOO
X
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Za nas$ skup A, u ranijem primjeru gdje je s = 3,38 cm, a sredina 40 cm,
koeficijent varijacije iznosi 8,45%.

Koeficijent varijacije
Koeficijent varijacije predstavlja prosje¢no odstupanje elemenata od
aritmeticke sredine, iskazano relativno, tj. u procentima.

Za poredenje varijabiliteta koristimo koeficijent varijacije i kada se radi
o razlic¢itim obiljezjima. Na primjer, ako nas zanima da li stabla viSe variraju
po precniku ili po prirastu drvne mase. Na osnovu standardne devijacije u
centimetrima i kubnim metrima to nije moguce zakljuciti.

Na $ta ukazuje koeficijent varijacije? Sto je KV manji grupisanje (zbijenost)
elemenata oko sredine je vece. A to znaci vecu homogenost. Nacelno, ako je
koeficijent varijacije manji od 30% skupove smatramo homogenim, dok za
skupove sa vec¢im koeficijentom varijacije od 30% kaZemo da su heterogeni.
Koeficijent varijacije preko 50% ukazuje na odstupanje od normalnog
rasporeda, dok koeficijent varijacije manji od 5% moZze sugerisati na upitnu
istinitost podataka.

Ve¢ smo rekli da aritmeticka sredina, sa povecanjem varijabilnosti
(smanjenjem homogenosti), gubi na reprezentativnosti. U statistici je pojam
homogenosti skupa posebno vazan. Cesto se za primjenu nekog metoda u
statistici kao uslov postavlja homogenost skupova.

3.2.2. Standardizovano odstupanje (z)

Standardizovano odstupanje (z) je relativna mjera varijabiliteta koja se
Koristi za ocjenjivanje varijabiliteta individualnih (pojedinac¢nih) podataka
u skupu. Dobija se kad odstupanje nekog podatka od aritmeticke sredine
podijelimo sa standardnom devijacijom. Formula je:

X, -X
S

z

Na primjer, zanima nas podatak 45 cm, u skupu A. Ova vrijednost je udaljena
od aritmeticke sredine 1,48 standardnih devijacija. Kao neimenovan broj Z
je uporediv s drugim podacima. Ako je podatak udaljen od svoje aritmeticke
sredine viSe od tri standardne devijacije moZe se smatrati ekstremnim podatkom
ili grubom greSkom. Takvi su npr. podaci 11 79, u skupu C.
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4. MJERE OBLIKA RASPOREDA FREKVENCIJA

Ako smo izracunali srednju vrijednost, koja reprezentuje sve podatke u
skupu i odredili mjeru varijabiliteta (kvalitet srednje vrijednosti), joS uvijek
nismo u potpunosti opisali pojavu. Naime, raspored frekvencija neke pojave
moZe da ima razlic¢it oblik, $to se ogleda u asimetriji i izduzenosti rasporeda. Za
ove karakteristike rasporeda takode postoje mjere. One se odreduju u odnosu na
normalni raspored, kao najces¢i opsti oblik (model) rasporedivanja frekvencija.

Centralni momenti

Kod odredivanja mjera oblika statistika racuna prosjecna odstupanja
podataka od aritmeticke sredine. Ta odstupanja racunaju se sukcesivno, dignuta
nar-ti stepen (r=0, 1, 2, ...). To su statisticki momenti. S obzirom da se racunaju
u odnosu na aritmeticku sredinu (centar) nazivaju se centralni momenti. Tako
postoje momenti: nultog, prvog, drugog itd reda (stepena). Opsta formula za
njihovo racunanje glasi:

M _ZN, (X, -X)
N

Centralni momenat nultog reda (M) uvijek je jedan, a prvog reda (M, ) nula.
Oni su konstante, pa nisu Kkorisni za dalju upotrebu. Po formuli za momenat
drugog reda (M,) racunali smo kvadrate odstupanja podataka od sredine. To
je bila varijansa. Dolazimo do momenta treceg reda (M,). On sluzi za mjerenje
asimetrije. To je prosjek odstupanja podataka od sredine dignutih na treéi
stepen. Odstupanja dignuta na Cetvrti stepen (centralni momenat Cetvrtog reda,
M,) sluzi za mjerenje izduZenosti rasporeda. Centralne momente nazivamo jos$
prvi momenat, drugi momenat, tre¢i momenat itd. Naziv ,momenat“ uzet je iz
mehanike, gdje pokazuje opadanje sile sa udaljavanjem od njenog centra.

Statisticki centralni momenti nisu pogodni za direktno mjerenje oblika
rasporeda frekvencija. Razlog su jedinice mjere (dignute na trecu i Cetvrtu),
zavisnost od broja podataka i visoke vrijednosti. Zato ih je potrebno relatizovati
(standardizovati, transformisati). Tako dobijamo relativne mjere, koje nazivamo
koeficijenti alfa 3 i alfa 4.

4.1. Mjera asimetrije (a,)

Asimetricnost rasporeda frekvencija posmatramo u odnosu na osu
simetrije, koju podiZemo iz aritmeticke sredine normalnog rasporeda. Kod
normalnog (teorijskog) rasporeda negativna odstupanja (s lijeve strane) i
pozitivna odstupanja (s desne strane) u odnosu na osu simetrije bice jednaka. U
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svakom drugom slucaju, tj. kod stvarnih rasporeda javice se razlika. Ona ¢e biti
u minusu ili plusu. Ova odstupanja dignuta na treéi stepen u zbiru predstavljaju
tre¢ci momenat (M,). Kada njegovu vrijednost podijelimo sa standardnom
devijacijom dignutom na tre¢i stepen eliminiSemo jedinice mjere. Dobijena
relativna mjera naziva se koeficijent asimetrije a, (alfa tri). Pogledajmo formule
i kako izgleda asimetrija graficki (Slika 16).

M, WL (X, -X)’

BT N

a) Simetri¢an raspored (a3 = 0)

¢) Desna asimetrija (s > 0)

\
[
\
[
|

\

! \

\ \

[ \
\

\

T \
Xp < X < X
Slika 16. Asimetri¢nost rasporeda

Koeficijent asimetrije (a,) pokazuje jacinu i smjer asimetrije. On je u stvari
relativna vrijednost treceg centralnog momenta. Predznak koeficijenta o, govori
o smjeru asimetrije, negativna (lijeva) ili pozitivna (desna), a njegova vrijednost
o0 jacini asimetrije. Obi¢no se smatra umjerenom (srednjom) asimetrijom ako je
alfa tri izmedu -0,5 i +0,5.

Koeficijent asimetrije

Koeficijent asimetrije (a,) pokazuje kakva je asimetrija u odnosu na
normalni raspored.
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Veza izmedu aritmeticke sredine, medijane i moda

Odnos izmedu ovih srednjih vrijednosti moZe se iskorititi za grubu ocjenu
asimetrije. Kod potpune simetrije (teorijskog oblika rasporeda) aritmeticka
sredina, medijana i mod su jednaki (Slika 16a). Drugim rije¢ima, prosjecna
vrijednost svih podataka zauzima centralno mjesto i ujedno ima najvecu
ordinatu.

X=X =X
m M
Sta ¢e se desiti ako prethodnom rasporedu dodajemo male vrijednosti?
Kriva ¢e se razvudi u lijevu stranu (Slika 16b). Mod ¢e ostati isti, medijana Ce
se malo smanjiti (ako bismo dodali dva podatka ona bi se pomjerila samo za
jedno mjesto), a aritmeticka sredina ¢e se smanjiti viSe (male vrijednosti ,vuku“

prosjek naniZe). Medijana se uvijek nalazi izmedu sredine i moda. Dobi¢emo
njihov sljedeci odnos:

X<X <X
m M
Dodavanjem elemenata s desne strane situacija ¢e biti drugacija, medijana
se pomjera malo, a aritmeticka sredina viSe (velike vrijednosti ,vuku“ prosjek

navise). Nastaje desna (pozitivna) asimetrija (Slika 16c). Odnos ovih srednjih
vrijednosti je:

X, <X <X

4.2. Mjera izduzenosti (a,)

Ovu mjeru, kao i kod asimetrije, odredujemo u odnosu na normalni
raspored. Koristimo centralni momenat ¢etvrtog reda. Formula je:

CIN(XX)
o N

S obzirom da je eksponent paran broj dobi¢emo uvijek pozitivan zbir. I on
je vezan za jedinicu mjere obiljeZja. Takode, bi¢e veci $to ima viSe podataka u
skupu. Zato ga standardizujemo na sli¢an nacin, tj. dijelimo sa standardnom
devijacijom dignutom na Cetvrti stepen. Tako dobijamo koeficijent izduZenosti a,
(alfa Cetiri). On prakti¢no pokazuje visinu rasporeda u odnosu na normalni, $to
se vidi kao zaobljenost oko moda. Zato se ovaj koeficijent naziva jo$ koeficijent

spljostenosti ili zaobljenosti. Formula glasi:
M
0(.4 = S—44
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Kod normalnog rasporeda alfa cetiri iznosi tri. Ako je vedi od tri to znaci
da je konkretni raspored izduZen (visi), a ako je manji od tri onda je spljoSten
(niZi), u odnosu na normalni. Pogledajmo to na Slici 17. U novije vrijeme softveri
u navedenoj formuli oduzimaju tri, kako bi se ovaj koeficijent mogao porediti s
nulom. Ovo je vaZna napomena, jer zakljuc¢ak iz kompjuterskog izlaza moZe biti

pogresan.
Koeficijent izduzenosti

Koeficijent izduZenosti («, ) pokazuje kolika je visina rasporeda u
odnosu na normalni raspored.

IzduZen oo

raspored (oq >3) | 77—+ |

, \ Normalna
: \ izduzenost (ay = 3)

Spljosten
raspored (ay < 3)

Slika 17. Izduzenost (visina) rasporeda
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5. PREGLED DESKRIPTIVNIH MJERA

U opisivanju (deskripciji) pojava, kao Sto smo vidjeli, koristimo tri vrste
statistickih mjera. Sematski smo ih prikazali na Slici 18. Posto smo na kraju
poglavlja Deskriptivna statistika osvrnu¢emo se na najvaznije simbole,
skracenice i sinonime.

I DESKRIPTIVNE STATISTICKE MJERE

'

|7

MJERE CENTRALNE MJERE OBLIKA
TENDENCIE MJERE VARIJABILITETA ORI
RACUNSKE POZICIONE MJERE MJERE
r _ SREDNJE SREDNJE M AP;?]EEENE RE]\],}ﬁgTé‘éNE ASIMETRIJE | | IZDUZENOSTI
VRIJEDNOSTI | | VRIJEDNOSTI
- KOEFICIJENT | | KOEFICIJENT
| ARITMETICKA | | ygpjana RASPON KOEFICIJENT ASIMETRIE | | 1ZDUZENOSTI
SREDINA VARIJACIJE VARIJACIJE
INTER- STANDARDI-
H HARNOTUSKA MOD H{ KVARTILNI ZOVANO
RASPON ODSTUPANJE
GEOMETRIJSKA SREDNJE
H REDINA L APSOLUTNO
ODSTUPANJE
|| KVADRATNA STANDARDNA
SREDINA DEVIJACIJA
L VARIJANSA

Slika 18. Deskriptivne statisticke mjere

Izbor deskriptivnih mjera

U praksi se nikada ne koriste sve deskriptivnhe mjere istovremeno. U
zavisnosti od karaktera podataka i oblika rasporeda frekvencija biraju se samo
one najbolje. U poletku uvijek treba dobro pregledati statisticki materijal i
provjeriti ima li ekstremnih vrijednosti. Nacelno, onaj podatak koji je udaljen od
aritmeticke sredine za viSe od tri standardne devijacije, tj. Cije je standardizovano
odstupanje ,z“ vec¢e od tri moZe se smatrati ekstremnim. Zasto? Zato S$to je
vjerovatnoca pojavljivanja takvog odstupanja (greske) zanemarljivo mala. Takvi
podaci zahtijevaju provjeru i eventualno odstranjivanje iz skupa podataka, ako
se ispostavi da je u pitanju gruba greska.

Za izbor deskriptivnih mjera presudna je simetricnost rasporeda,
pa je na pocetku potrebno izraCunati Koeficijent asimetrije (umjerenom
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asimetrijom smatra se ako je -0,5 < «, < 0,5). Za srednju vrijednost najCeSce
biramo aritmeticku sredinu. Nju uvijek prati standardna devijacija, kao mjera
reprezentativnosti (preciznosti). Ukoliko je kao srednja vrijednost izabrana
medijana, kao mjera varijabiliteta, racuna se interkvartilni raspon.

Ako statisticku obradu radimo pomocu racunara, vecina softvera nudi
nam grafikon kutiju, tj. boxplot (Slika 19), koji opisuje raspored sa svega pet
brojeva: X, , X,,,» Q,, Q,1 X . Osim toga, on identifikuje ekstremne vrijednosti.
Priblizavanje medijane jednom od krajeva kutije ukazuje nam na odstupanje od
normalnog rasporeda. Grafikon kutija se koristi na pocetku statisticke obrade.

-7 < Xmax

— Q3

Slika 19. Boxplot

Oznake (simboli), skracenice i sinonimi

RazliCite oznake, za statisticke parametre (deskriptivne mjere), koje se
koriste u literaturi ¢esto nam otezavaju koriStenje (ucenje) statistike. Mi smo
se odlucili da, umjesto grckih slova p (mi) za aritmeticku sredinu i o (sigma) za
standardnu devijaciju, koristimo ,na$e“ uobicajene oznake X i S (velika slova
za skup, a mala za uzorak). Softverske oznake su M (engl. Mean) i SD (engl.
Standard deviation). Sve srednje vrijednosti ,povezali“ smo oznakom ,X* jer
nam je to oznaka za obiljezje. Pored aritmeticke sredine, ostale oznake su: X, -
harmonijska, X . - geometrijska, X, - kvadratna sredina, X -medijanaiX,-mod.
Koriste se joS oznake od pocetnih slova: AS - aritmeticka, HS — harmonijska, GS
- geometrijska, KS - kvadratna sredina, medijana M_i mod M.
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Oznake

Aritmeticka sredina: X, p, M, AS; Standardna devijacija: S, o, SD

Uobicajene skracenice pojmova koje koristimo u tekstu mogu biti korisne.
Takve su: MNK = metod najmanjih kvadrata, CGT = centralna grani¢na teorema,
ZVB = zakon veliki brojeva, VRA = viSestruka regresiona analiza, ANOVA =
analiza varijanse.

Treba imati u vidu i KoriStenje sinonima kao $to su: statisticki skup =
osnovni skup, skup, populacija; obiljezje = promjenljiva, varijabla; matematicka
vjerovatno¢a = a priori, unaprijed, teorijska, klasi¢na, logicka; statisticka
vjerovatnoca = a posteriori, unazad, empirijska; objektivnost = nepristrasnost;
devijacija = odstupanje; raspored = distribucija; metod uzorka = reprezentativni
metod.

ﬁ,o FDe

Raspored frekvencija je rezultat dvije tendencije:
grupisanja oko centra i udaljavanja od centra
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6. PRIMJER

DESKRIPTIVNA STATISTIKA (1)

Uredivanje statistickog skupa

Primjer se odnosi na podatke premjera prec¢nika stabala hrasta u jednom
Sumskom odjelu (3, str. 9). Deskriptivnu statistiku po¢ec¢emo sa uredivanjem skupa,
a nastavi¢emo sa raunanjem srednjih vrijednosti, mjera varijabiliteta i mjera oblika
rasporeda frekvencija.

Polazni podaci (pre¢nik u cm) su:
Neureden skup
63, 46, 37, 42, 28, 34, 26, 50, 29, 48, 46, 38, 32, 42, 41, 43, 46, 39, 42, 48, 53, 60, 52,
39, 38, 42, 40, 39, 45, 37, 38, 48, 44, 46, 46, 51, 38, 34, 32, 58, 37, 40, 43, 41, 24, 27,
39, 33, 42, 41, 40, 31, 26, 42, 33, 39, 53, 47, 39, 38, 34, 44, 37, 39, 17, 23, 39, 50, 51,
49, 37, 49, 59.

Ovo je neureden statistiCki skup, koga €ine 73 stabla. Svakom od tih stabala
(stabla su ovdje elementi skupa) izmjeren je pre¢nik (pre¢nik je ovdje obiljezje).

Precnik je, kao neprekidno obiljeZje, iskazan cijelim brojevima. Kako smo ovdje
dosli do cijelih brojeva? Jednostavno, izmjerene vrijednosti pre€nika smo zaokruzili.
Zaokruzivanje moze biti: na nize, na viSe i na blize (prema sredini). Pogledajmo
sada prvi podatak, koji iznosi 63 cm. Pri premjeru, ovaj pre¢nik ako je zaokruZen ,ha
nize“ obuhvata sve vrijednosti od 63,00 do 64,00 cm (mogli smo uzeti i neki drugi
broj decimala, jer to ovdje nista ne znaci). Zaokruzivanjem ,na vise“ ovaj pre¢nik bi
obuhvatao sve vrijednosti od 62,00 do 63,00 cm, dok bi zaokruZivanjem ,na blize*
bili obuhvaceni prec¢nici od 62,50 do 63,50 cm.

U naSem primjeru precnici su zaokruzivani na nize. To je pravilo koje je nasa
Sumarska struka uvela davno, zele¢i tako doprinijeti oCuvanju Suma. Naime, na
osnovu nizih precnika, prilikom utvrdivanja stanja Suma, dobijamo manju zalihu, koja
za sobom povladi maniji obim sjeca.

Precnik je, Cesto to naglaS8avamo, osnovni taksacioni element, tj. glavna
karakteristika (obiljeZje) stabala. On nije vaZzan samo za odredivanje debljinske
strukture Sume (,krvne slike* Sume), vec i za raCunanje veli€ine zalihe, debljinske
strukture drvne mase i prirasta drvne mase. Precnici iskazani na cijele centimetre
predstavljaju najnize (najmanje, jediniCne) broj¢ane vrijednosti obiljezja, pa ih
mozemo smatrati debljinskim stepenima. Objedinjavanjem debljinskih stepena
nastaju debljinske klase.
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StatistiCki rad nastavliamo korak po korak (kompjuter ove korake obi¢no
preskace). Sredivanje podataka mozemo zapoceti tako da ih poredamo po veli¢ini
(njihovim vrijednostima).

Serija strukture
17, 23, 24, 26, 26, 27, 28, 29, 31, 32, 32, 33, 33, 34, 34, 34, 37, 37, 37, 37, 37, 38,
38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 39, 39, 40, 40, 40, 41,41, 41,42, 42, 42,42, 42, 42,
43,43, 44, 44, 45, 46, 46, 46, 46, 46, 47, 48, 48, 48, 49, 49, 50, 50, 51, 51, 52, 53, 53, 58,
59, 60, 63.

Dobili smo jedan niz brojeva (statistiCki niz) ili seriju (statistiCku seriju).
Kod staticke analize ovakve serije se nazivaju serije strukture, jer pokazuju prve
karakteristike unutradnjosti (strukture, sadrzaja) skupa. Tako ovdje vidimo najnizu
vrijednost (pre¢nik 17 cm, kao najtanje stablo) i najviSu vrijednost (pre¢nik 63 cm,
kao najdeblje stablo). Jo§ mozemo zapaziti da viSe ima stabala oko sredine nego
onih blize krajevima serije. Nastavljamo uredivanje skupa tako $to ¢emo uz svaki
pre¢nik napisati broj njegovog ponavljanja. To nazivamo ucestalost ili frekvencija.

Raspored frekvencija pojedinacnih vrijednosti

Xi(em): 17 23 24 26 27 28 29 31 32 33 34 37 38 39 40 41

Ni: Tt 1+t 1+t 2 1 1 1 1 1 2 2 3 5 5 3 3

42 43 44 45 46 47 48 49 50 51 52 53 58 59 60 63
6 2 2 1 5656 1 3 2 2 2 1 2 1 1 1 1

Posto ova statistiCka serija sadrzi sve frekvencije mozemo je nazvati rasporedom
(distribucijom) frekvencija. 1z nje jo$ bolje uo¢avamo strukturu skupa. Na primjer,
vidimo da se precnik od 42 cm pojavljuje Sest puta (najviSe), a krajnji pre€nici 17 i
63 cm samo jednom. Ove frekvencije, iskazane brojevima, nazivaju se apsolutne
frekvencije.

Ovaj raspored frekvencija ne daje konacnu (potpunu) sliku skupa. Nasa serija
jo$ uvijek nije pregledna, jer sadrzi puno (pojedinacnih) vrijednosti obiljezja. Njih
obi¢noima viSe nego u nasem primjeru. Zato pristupamo formiranju klasa (klasifikaciji
numerickog neprekidnog obiljezja). Ovo je vazan korak uredivanja skupova,
jer od njega zavisi konacan rezultat. Nakon formiranja klasa slijedi grupisanje
(razvrstavanije, klasiranje) elemenata. Uradili smo dvije varijante: klase sa Sirinom 5
cm (prva varijanta) i klase od 10 cm (druga varijanta).
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Prva varijanta Raspored frekvencija
Xi (cm) Frekvencije Ni
15-19 / 1
20-24 1 2
25-29 1 5
30-34 - 8
35-39 M e 18
40 - 44 M-y 16
45 -49 i 12
50 - 54 - 7
55 -59 I 2
60 — 64 I 2

Suma 73

Druga varijanta Raspored frekvencija
Xi (cm) Frekvencije Ni
15-24 1 3
25-34 i 13
35-44 HHE- i e i e i 34
45 - 54 i i 19
55 - 64 1 4

Suma 73

Frekvencije smo dobili ruénim razvrstavanjem, gdje je svaki podatak predstavljen
kosom crtom. Postavlja se sada logi¢no pitanje: koja je varijanta bolja? Vidimo da
druga varijanta ima svega pet klasa. U klasi 35-44 cm nalaze se ¢ak 34 elementa,
za koje ne znamo kako su rasporedeni unutar klase. Izgubili smo taj dio informacije.
Zato ¢emo ovu varijantu odbaciti. Prihvatiéemo prvu varijantu, koja ima 10 klasa
Sirine 5 cm. Tu smo malo viSe izgubili na preglednosti, ali zato imamo viSe informacija
(bolju sliku strukture). Da smo uzeli klase uze od 5 cm samo bismo dodatno izgubili
na preglednosti. Sire klase od 10 cm nikako ne dolaze u obzir.

Obratimo jo$ paznju na granice klasa. One su napisane (razgrani¢ene) tako da
se tacno zna kojoj klasi svaki od elemenata pripada. Na primjer, precnik 19 cm bez
dileme pripada prvoj klasi, a pre¢nik 20 cm drugoj. Dalje, precnici 21, 22, 23 i 24 cm
pripadaju drugoj, a naredni (25 cm) tre¢oj klasi. Vazno je imati na umu da su ovo
radne granice klasa, koje koristimo samo prilikom razvrstavanja. Vec u sljedec¢em
koraku, u tabelarnom prikazu uredenog skupa, prelazimo na prave (tacne) granice
klasa.

Da vidimo sada koje su to taéne granice klasa? Prva klasa, 15-19 cm, obuhvata
pet brojeva. To su zapravo debljinski stepeni: 15, 16, 17, 18 i 19 cm. Svaki od njih
ima Sirinu jedan centimetar. Na primjer, broj 15 ima Sirinu od 15,00 do 16,00, dok broj
19 obuhvata sve vrijednosti od 19,00 do 20,00. Donja granica ove klase je 15 cm, a
gornja 20 cm. Granice naredne klase su 20 i 25 cm itd. Granice klasa su ,08tre”, a
samo naizgled se preklapaju. Najbolje se vide na histogramu frekvencija.
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Prikazimo konac¢no nas$ raspored frekvencija u tabeli, sa pravim granicama
klasa. Pored apsolutnih frekvencija (kol. 2) izracunali smo i relativne frekvencije u
procentima (kol. 3). Zapazimo da je suma apsolutnih frekvencija jednaka ukupnom
broju elemenata (3 Ni = N), a suma relativnih frekvencija je 100%. IzraCunali smo,
takode, kumulativne frekvencije ispod i iznad; u apsolutnim iznosima (kolone 4 i 6) i
procentima (kolone 5i 7).

Ureden skup

Frekvencije

Klase

Kumulanta ispod Kumulanta iznad
(cm) Ni %
Ni % Ni %

1 2 3 4 5 6 7
15-20 1 1,36 1 1,36 73 100,00
20-25 2 2,74 3 4,10 72 98,63
25-30 5 6,85 8 10,96 70 95,89
30-35 8 10,96 16 21,92 65 89,04
35-40 18 24,66 34 46,57 57 78,08
40 - 45 16 21,92 50 68,49 39 53,42
45 -50 12 16,44 62 84,93 23 31,51
50 - 55 7 9,59 69 94,52 11 15,07
55 -60 2 2,74 71 97,26 4 5,48
60 — 65 2 2,74 73 100,00 2 2,74

Suma 73 100,00 - - - -

Kumulante se dobijaju sabiranjem frekvencija do odredene vrijednosti.
Kumulanta ispod (rastu¢a kumulanta) pocinje od prve (najnize) klase, a predstavlja
sumu frekvencija ispod gornje granice klase na koju se odnosi. Na primjer za klasu
40-45 cm, ispod 45 cm ima 50 elemenata ili 68,49%. Kumulanta iznad (opadajuc¢a
kumulanta) raCuna se obrnuto, od zadnje (najviSe) klase. Tako u klasi 45-50 cm,
Citamo iznad 45 cm imaju 23 elementa ili 31,51%. U zbiru ispod i iznad 45 cm moraju
biti svi elementi (73, odnosno 100%). To znaci da svaki ¢lan kumulativhog niza
predstavlja odredenu proporciju.

Slijedi nam jo$ grafi¢ki prikaz skupa u vidu histograma frekvencija, poligona
frekvencija i kumulantiispod iiznad. Napomena: poligon se ¢esto ,zatvara“ spajanjem
sa susjednim klasama, u kojima je frekvencija nula. Sliéno vazi i za kumulante.
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Histogram frekvencija
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DESKRIPTIVNA STATISTIKA (2)

Srednje vrijednosti skupa

Ovdje nastavljamo obradu naseg primjera. Od racunskih srednjih vrijednosti
izraCunacemo aritmeticku i kvadratnu sredinu. Medijanu i mod odredi¢emo samo
priblizno. Napomena: U ru¢nom radu uvijek su nam korisne radne tabele.

Radna tabela

X Kumulanta )
(cm) N (ispod) NX, NX,

1 2 3 4 5
17,5 1 1 17,50 306,25
22,5 2 3 45,00 1.012,50
17,5 5 8 137,50 3.781,25
32,5 8 16 260,50 8.450,00
37,5 18 34 675,00 25.312,50
42,5 16 50 680,00 28.900,00
47,5 12 62 570,00 27.075,00
52,5 7 69 367,50 19.293,75
57,5 2 71 115,00 6.612,50
62,5 2 73 125,00 7.812,50
Suma 73 - 2.992,50 128.556,25

Aritmeti¢ka sredina

Za raCunanje aritmetiCke sredine koristicemo formulu za ponderisanu sredinu,
jer imamo ureden skup. Klase u racunu predstavljacée njihove sredine (kol. 1). Kao
ponderi posluzi¢e apsolutne frekvencije, tj. broj elemenata po klasama (kol. 2).

2 N.X. ~2.992,50
N 73

X = =40,99 cm

AritmetiCka sredina ovdje nije u potpunosti tacna, jer smo umjesto pojedinacnih
vrijednosti obiljezja koristili sredine klasa. Da smo izraCunali prostu aritmeti¢ku
sredinu na osnovu svih podataka (frekvencije bi tada bile jedan, uz svaki broj) dobili
bismo sredniji pre¢nik 40,86 cm. Razlika je svega 0,13 cm ili u procentima 0,32%. To
je mala greska, koja se u praksi zanemaruje.

Kvadratna sredina

2
X, - [ENX? _ [128556,25 .
N 73

Kvadratna sredina u nasem rasporedu frekvencija veca je od aritmetiCke
sredine za oko 1 cm. U Sumarstvu se za raCunanje srednjeg pre¢nika Cesto koristi
ova sredina.
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Medijana

Za odredivanje medijane posluzi¢e nam kumulanta ispod (kol. 3). Mjesto
(pozicija) medijane, tj. redni broj elementa koji se nalazi u centru, odreduje se po
formuli:

N+I  73+1
2 2

37

PotrazZicemo klasu u kojoj se nalazi 37. element po redu. U kumulanti ,ispod*
Cija je sredina 37,5 cm, a gornja granica 40,0 cm, nalaze se 34 elementa. Znaci da
se redni broj 37 nalazi u narednoj (viSoj) klasi. To je klasa od 40,0 cm do 45,0 cm. U
njoj se nalaze redni brojevi od 35 do 50. Nju uzimamo za medijalnu klasu, a njenu
sredinu (X _= 42,5 cm) kao medijanu.

Mod

Najvecu frekvenciju ima klasa 3540 cm. U njoj ima ukupno 18 elemenata
(stabala). Sredinu ove klase uzimamo kao mod (X, = 37,5 cm). Preciznije odredivanje
medijane i moda pogledajte u knijizi (3, str. 53 i 55).

AT

Aritmeticka (vagana) sredina
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Raspon varijacije

DESKRIPTIVNA STATISTIKA (3)

Mjere varijabiliteta

Najmanja vrijednost (donja granica najniZze klase) je 15 cm, a najveca (gornja
granica najviSe klase) je 65 cm. Raspon varijacije iznosi 45 cm. Svi precnici se
nalaze u ovom intervalu. U Sumi nema stabala tanjih od 15 cm, niti debljih od 65 cm.

Varijansa i standardna devijacija

RV = X, — X, = 65,0 — 15,0 = 45 cm.

Varijansu i standardnu devijaciju izracunali smo na dva nacina, po definiciji i
radnoj formuli. Precnici odstupaju od aritmeti¢ke sredine u prosjeku (izraCunato kao
kvadratna sredina) 8,98 cm.

a) po definiciji

b) po radnoj formuli

¢ IN(X -X) 588426

N

S=+/S? = /80,61 =8,98 cm

=80,61

Radna tabela

X, N, NX? N, (X, — X)?

1 2 3 4
17,5 1 306,25 551,78
22,5 2 1.012,50 683,76
17,5 5 3.781,25 909,90
32,5 8 8.450,00 576,64
37,5 18 25.312,50 219,24
42,5 16 28.900,00 36,48
47,5 12 27.075,00 508,56
52,5 7 19.293,75 927,36
57,5 2 6.612,50 545,16
62,5 2 7.812,50 925,36
Suma 73 128.556,25 5.884,26
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XNX? 52 128.556,25
N

S? —40,99%; S*=80,86

S=+/S? = /80,86 =8,99 cm

Koeficijent varijacije

Koeficijent varijacije iznosi 21,91%. Toliko u prosjeku odstupaju elementi od
svoje sredine. lzraCunati koeficijent je maniji od 30%, pa zaklju¢ujemo da je skup
homogen.

KV =§><100 = 8,98
X 40,99

x100=21,91%
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DESKRIPTIVNA STATISTIKA (4)

Mjere oblika rasporeda frekvencija

Koeficijent asimetrije

_IN(X, -X)’ _ 594,60 _

M, ~8,15
N 73
M, =81
o0, = 8D 401
S 8,98
Koeficijent izduzenosti
IN(X-X)' 1552376,53
M, = S 222 —21.265,43
N 73

M, _ 21.265,43 ~3.27

47 o4 4

S 8,98

Raspored je neznatno lijevo asimetriCan (moze se reci gotovo idealno simetric¢an)

i malo izduzen u odnosu na normalni raspored. Koeficijente asimetrije i izduzenosti
izraCunali smo po definiciji, uz pomo¢ radne tabele.

Radna tabela

X N, N, (X, — X)* N, (X, — X)*

1 2 3 4
17,5 1 -12.961,31 304.461,22
22,5 2 -12.642,72 233.763,94
17,5 5 -12.274,55 165.583,69
32,5 8 -4.895,67 41.564,27
37,5 18 765,15 2.670,37
42,5 16 55,08 83.178,05
47,5 12 3.310,73 21.552,82
52,5 7 10.673,91 122.856,75
57,5 2 9.000,59 148.599,76
62,5 2 19.904,49 428.145,66
Suma 73 -594,60 1.552.376,53
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Karl Friedrich Gauss
(1777-1855)

Opisao statisticku teorijsku distribuciju neprekidne promjenljive
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INFERENCIJALNA STATISTIKA: Teorijski rasporedi

Dirolamo Kardano

(1501-1576)

Pionir teorije vjerovatnoce

Njegovo djelo “Knjiga o igrama kockom” Stampano je 85 godina nakon
njegove smrti. Bio je svestran. Bavio se astrologijom i prorekao tacan

datum svoje smrti. Ostalo je zapisano da je izvrsio samoubistvo taj dan,
kako bi dokazao da je bio u pravu.

1. TEORIJSKI RASPOREDI

1.1. Vjerovatnoca

Da smo u stanju izmjeriti svu Sumu imali bismo podatke o svim njenim
jedinicama. To znadi da bi tada utvrdena zaliha i prirast, ali i druga obiljeZja,
odgovarali pravim (stvarnim) vrijednostima. O vjerovatno¢i (pouzdanosti)
dobijenih rezultata tada uopste ne bismo govorili.

Medutim, u praksi uglavnom radimo sa statisticCkim uzorcima, Ciji
se parametri razlikuju od pravih vrijednosti skupa. Zahvaljujué¢i racunu
vjerovatno¢e omoguceno je prenoSenje rezultata sa uzorka na cijeli skup.
Vjerovatnoca je iskorisStena za izradu teorijskih rasporeda (modela, opstih oblika
pojava), pomocu kojih je moguce opisati masovne pojave. O njima govorimo u
ovom poglavlju.

Neobicni povodi naveli su teoreticare da se poc¢nu baviti vjerovatnoc¢om.
Jedan od njih su igre kockom (otuda naziv kockanje), a drugi su greske, koje
nastaju prilikom mjerenja. U vezi s tim poznata imena iz tog vremena (prelaz
XVIII u XIX vijek) su Laplas i Gaus. Laplas je razvijao teoriju vjerovatnoce na
bazi igara kockom, dok su Gausa greske mjerenja, na koje je stalno nailazio u
geodetskim i astronomskim radovima, natjerale da ih istrazuje.

1.1.1. Pojam vjerovatnoce

Ako Sest puta bacimo kocku rijetko ¢e se desiti da svaki broj ,padne”
po jednom. Pad nekog broja deSava se od slucaja do sluaja. Zato takav
dogadaj nazivamo sluc¢ajnim dogadajem. Njegovo pojavljivanje povezano je s
vjerovatnoc¢om.

Vjerovatnoca

Vjerovatnoca je mjera za slucajnost dogadaja. Njoj je pripisan odredeni broj,
s kojim se dalje moZe rac¢unati kao i s drugim brojevima.
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Vjerovatnoc¢u oznacavamo sa p, Sto potice od latinske rijeci probabilitas
(vjerovatnoca). Ako broj povoljnih (ocekivanih, traZenih) slucajeva obiljeZimo sa
»,m" a broj ukupno mogucdih slucajeva sa ,n“ formula za racunanje vjerovatnoce
glasi:

p=—
n

Vjerovatnoca, pri bacanju kocke, da na gornjoj strani bude broj tri je:

p= 0170 17%
n 6

Ukupnavjerovatnocajednakaje jedan. Prematome, ako postoji vjerovatnoca
da ¢e se desiti neki dogadaj (npr. da ¢e pasti broj tri), u isto vrijeme postoji
vjerovatnoca da se nece desiti taj dogadaj (da nece pasti broj tri). Tu drugu
vjerovatnocu nazivamo suprotna vjerovatnoéa. Oznacavamo je sa q. Dakle,
moZzZemo napisati:

p+q=1

Slijedi da je q =1—p . Suprotna vjerovatno¢a u naSem primjeru, da nece
pasti broj tri, je q = 1 - 0,17 = 0,83 ili 83%. Nije tesko zakljuditi da se sve
vrijednosti vjerovatnoce nalaze u intervalu od nula do jedan ili od nula do 100%:

0<p<li

Za dogadaj Cija je vjerovatnoca oko 0,5 kazemo da je neizvjestan. Kad je
p = 1 dogadaj je siguran, a kad je p = 0 dogadaj je nemogué. Sto je vjerovatnoca
bliza jedinici dogadaj je sve vjerovatniji, a Sto je bliza nuli dogadaj je sve manje
vjerovatan.

1.1.1.1. Matematicka vjerovatnoca

Prethodno smo govorili o jednostavnom dogadaju, kod koga je vjerovatnoca
bila poznata unaprijed. Ona se zato naziva vjerovatnoca unaprijedili vjerovatnoca
a priori(lat. a priori- ono Sto dolazi prije). Ova vjerovatnoca se jos naziva klasicnha
ili logicka vjerovatnoca. Ipak, najces¢i naziv je matematicka vierovatnoca.

Matematicka vjerovatnoca
Matematicka vjerovatnoca (p) je koli¢nik broja povoljnih slucajeva (m) i
ukupnog broja slucajeva (n):

p=—
n

Vjerovatnoc¢a pojedinacnih brojeva na kocki je matematicka vjerovatnoca. Ako
posmatramo vjerovatnoce svih Sest brojeva istovremeno, tada ve¢ govorimo o rasporedu
vjerovatnoca. Radi se o najjednostavnijem teorijskom rasporedu.
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1.1.1.2. Statisticka vjerovatnoca

Vratimo li se prirodnim pojavama imamo problem kako da u praksi
primijenimo matematicku vjerovatnocu. U prirodi (stvarnosti) nalazimo
dogadaje, ciju vjerovatno¢u desavanja ne znamo unaprijed. Mi zapravo nju tek
treba da utvrdimo. Ovdje govorimo o jednoj drugoj vrsti vjerovatnoce, koja
se naziva vjerovatnoca unazad ili vjerovatnoca a posteriori (lat. ono Sto dolazi
poslije). Najces¢i njen naziv je statisticka vjerovatnoéa. Formula je u sustini ista
kao i za matematicku vjerovatnocu.

Statisticka vjerovatnoca

Statisticka vjerovatnoca (p) je kolicnik broja ostvarenih slucajeva
(apsolutnih frekvencija) (n,) i njihovog ukupnog broja (n):

p=—
n

Kako dolazimo do statisticke vjerovatnoce?

U statistickom radu broj povoljnih slucajeva (n) predstavlja apsolutnu
frekvenciju dogadaja, za odredeni broj ponavljanja (n). Ako stavimo u odnos
n./n dobijamo relativnu frekvenciju (oznaka f ili f ). Ona predstavlja relativnu
ulestalost dogadaja, ali se joS uvijek ne moZe uzeti kao mjera njegove slucajnosti,
odnosno vjerovatnoca pojavljivanja.

Relativna frekvencija vazi samo za n (¢ita se ,,en“) ponavljanja. S pove¢anjem
n relativna frekvencija je sve stabilnija. Ona u jednom momentu postaje
statisticka vjerovatnoca. U praksi se pravi granica izmedu malog i velikog uzorka.
U slucaju povecanja uzorka, kad n tezi u beskonacno, statisticka vjerovatnoca
postaje fiksna vrijednost, tj. postaje matematicka vjerovatnoca.

Pogledajmo na jednom hipotetickom primjeru vezu izmedu relativne
frekvencije, statistiCke vjerovatnoCe i matematicke vjerovatnoce (Tabela 2).
Uzmimo tri slucaja: kocku bacamo 10 puta (n<30), 60 puta (n>30) i jako
mnogo puta (77— ). Kod malog broja bacanja relativne frekvencije su jako
promjenljive, tj. nepouzdane. To se uocava kod brojeva 2 i 3. Svako novo bacanje
utice na njihove vrijednosti, pa ne znamo sa sigurnos¢u kakve frekvencije
mozemo ocCekivati. Nakon veceg broja bacanja, u naSem primjeru 60, relativne
frekvencije se donekle stabilizuju. Tek tada se one mogu uzeti kao ocekivane,
tj. kao statisticka vjerovatnoca. Kako vidimo ona je jo$S uvijek daleko od
matematicke vjerovatnoce, koja iznosi 0,1667 (za sve brojeve od jedan do Sest).
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Tabela 2. Primjer vjerovatnoce kod bacanja kocke

1 2 3 4 5 6 Suma Naziv
Stvarne
n, 2 3 0 2 2 1 10 frekvencije
(n=10)
n. .
f=—_ 02000 053000 0,0000 02000 02000 0,1000 1 Relativna
n frekvencija
Stvarne
n, 8 10 9 12 11 10 60 frekvencije
(n=60)
n; Statisticka
p=— 101333 0,1667 0,1500 0,2000 0,1833 10,1667 1 . ,
n vjerovatnoca
m 10 10 10 10 10 10 60 Teorijske
frekvencije
m Matematicka
pPp=— 01667 0,1667 0,1667 0,1667 0,1667 0,1667 1 . p
n vjerovatnoca

Ako bismo uporedili statisticku vjerovatnocu sa matematickom
vjerovatno¢om kod velikog broja bacanja, npr. 600 bacanja, razlika bi bila veoma
mala. Potpuno izjednacavanje ove dvije vjerovatnoce moZemo ocekivati kod jo$
vecCeg broja bacanja. Teorijski to kaZemo kad n teZi u beskonacno. Ovo je, u stvari,
osnovni zakon u teoriji vjerovatnoce, poznat kao zakon velikih brojeva. On glasi
ovako: slu¢ajnost u velikom broju slu¢ajeva (ponavljanja) postaje zakon. Sta to u
primjeru s kockom znaci? Vjerovatnoca svakog od brojeva, iako se oni svaki put
slucajno pojavljuju, kod veoma velikog broja bacanja postace fiksna i iznosice
0,1667 ili 16,67%. Zakon velikih brojeva se moZe formulisati i ovako: Razlika
izmedu statisticke i matematicke vjerovatnoce, pri poveéanju broja slucajeva,
ima tendenciju smanjivanja.

1.1.2. Vjerovatnoca sloZenih dogadaja

Do sada smo govorili o jednostavnim dogadajima. ViSe jednostavnih
dogadaja ¢ini jedan sloZeni dogadaj. SloZeni dogadaji mogu biti sastavljeni od
zavisnih (isklju¢ivih) dogadaja ili od nezavisnih dogadaja. U prvom slucaju
za raCunanje vjerovatnoce Kkoristi se teorema sabiranja, a u drugom teorema
mnoZenja.

1.1.2.1. Teorema sabiranja

Vjerovatnoc¢a sloZenih dogadaja, sastavljenih od viSe jednostavnih
medusobno zavisnih (iskljuc¢ivih) dogadaja, moZe se predstaviti matematickim
izrazom:
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P:pl+p2+"'+pn=zpi

i=1

Ovaj izraz poznat je kao teorema (pravilo) sabiranja vjerovatnoca.
Vjerovatnoca ovakvih sloZenih dogadaja naziva se totalna vjerovatnoca. Veza
izmedu dogadaja definiSe se veznicima ,ili - ili“. Na primjer, parni broj na kocki
je sloZeni dogadaj. On je sastavljen od tri jednostavna dogadaja. To su brojevi
2,41 6, koji se medusobno iskljucuju (zavisni su jedan od drugog). Ako padne
broj dva isklju¢ena je mogu¢nost da padne broj 4 ili broj 6. Totalna vjerovatnoca
parnog broja (pri jednom bacanju) kocke je:

+l + :E =0,51li 50%
6 6

|~

1
P=p,+ p, + p6:g

Teorema sabiranja

Vjerovatnoca sloZzenog dogadaja, koji se sastoji od viSe medusobno iskljucivih
dogadaja, jednaka je zbiru vjerovatnoca tih dogadaja.

1.1.2.2. Teorema mnoZzZenja

Bacanje kocke i nov¢i¢a zajedno predstavlja sloZzeni dogadaj, sastavljen
takode od dva jednostavna dogadaja. U ¢emu je razlika? Ovdje se radi o
nezavisnim dogadajima. Koji broj na kocki ¢e pasti ne zavisi od nov¢iéa i obrnuto.
Jedan dogadaj ne iskljucuje drugi. Da se ostvari neka kombinacija jednostavnih
dogadaja vjerovatnocéa je manja od pojedinacnih vjerovatnoca. Za ovu vezu
dogadaja koriste se veznici i - i*.

U ovakvim slucajevima, kada su dogadaji nezavisni, do vjerovatnoce se
dolazi primjenom teoreme (pravila) mnoZenja, ¢iji matematicki izraz glasi:

P=p-p, p =]]p
i=1

Teorema mnoZenja

Vjerovatnoca sloZenog dogadaja, koji se sastoji iz viSe medusobno
nezavisnih dogadaja, jednaka je proizvodu vjerovatnoca tih dogadaja.

Na primjer, vjerovatno¢a kombinacije P5, tj. da padne pismo i broj pet, je:
1

1o
PEps =57
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Kombinacija P5 je samo jedna od 12 kombinacija. Njena prosta vjerovatnoca
je p = m/n = 1/12. Rezultat potvrduje teoremu. Moguce kombinacije ovog
sloZenog dogadaja su:

P1, P2, P3, P4, PS5, P6, G1, G2, G3, G4, G5, G6

Jedan primjer iz Sume

0d 100 pregledanih stabala u jednoj Sumi broj registrovanih greSaka
(zakrivljenost, racva i druge) po stablu bio je sljedeci:

Broj gresaka 0 1 2 3 >4 Ukupno
Broj stabala 28 30 24 10 8 100

Odgovorimo na dva pitanja:
a) Kolika je vjerovatnoéa da neko stablo ima manje od dvije greske?

Po teoremi sabiranja (veznici ,ili-ili“) trebamo sabrati vjerovatnoce
pojavljivanja stabala bez greske i stabala s jednom greskom. Radi se o totalnoj
vjerovatnoci. Ona iznosi 58%.

P=p,+ p, =0,28+0,30=0,581li 58%

b) Kolika je vjerovatnocéa da ¢e prva dva slucajno odabrana stabla biti bez greske?

Vjerovatnoca da je prvo odabrano stablo bez greske je 28/100. Da je drugo
stablo bez greske vjerovatnoca je takode 28/100. Po teoremi mnoZenja (veznici
»i —1,) vjerovatnoca da ¢e prva dva slucajno odabrana stabla biti bez greske je
7,84%.

P=p, - p,=0,28-0,28 =0,0784 ili 7,84%

Ostali (specifi¢ni) dogadaji

MoZe se govoritiio nekim drugim vjerovatno¢ama. Na primjer, o subjektivnoj
vjerovatnoci. Ona se odnosi na specificne dogadaje i nije egzaktna. Donose je
odredena lica (eksperti) na bazi znanja, iskustva i dostupnih informacija. Na
primjer, iskusni Sumari mogu, nakon ,loSe“ zime (snjegoloma i drugog) dati
procjene (vjerovatnocu) broja oStecenih stabala. Uslovna vjerovatnoca odnosi
se na dogadaje cija realizacija zavisi od nekog drugog dogadaja. Vjerovatnoca
uzroka podrazumijeva odredivanje vjerovatnoée nekog dogadaja na bazi
poznate vjerovatnoce njegovih uzroka.
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Kakve su nam sanse na lotu 7 od 39?

Da ¢e prvi izvuceni broj biti jedan od nasih sedam vjerovatnoca je 7/39 =
17,95%, a da ¢emo imati drugi broj je 6/38 = 15,79%. Sanse da bude izvucen
prvi broj, kao i drugi broj, nisu tako male. Medutim, po teoremi mnoZenja
vjerovatno¢a da ¢emo imati oba izvucena broja (teorema “i - i”) je:

P=p,-p,=0,1795-0,1579 = 0,0284 ili 2,84%
Na kraju, vjerovatnoca da ¢emo imati svih 7 brojeva, dobijena mnoZenjem

sedam pojedinacnih vjerovatnoca, iznosi 0,000000065 ili 0,0000065%.
Pitanje za vas. Da li ¢ete i dalje igrati LOTO?

Zanimljiva (neobic¢na) pitanja o vjerovatnoci

1. Ako u igri “Covjece ne ljuti se” 20 puta zaredom ne dobijete broj $est, da
li ste ,,ubijedeni“ da naredni put konacno mora pasti Sestica? Zasto tako mislite?
(Odgovor: vjerovatnoca je uvijek ista i iznosi 1/6)

2. Dali su u pravu oni koji, nakon tri kéerke, konacno ocekuju sina? Zasto?
(Odgovor: vjerovatnoca je uvijek ista, tj. 50%)

3. Da li na lotu treba izbjegavati brojeve koji su izvuceni u proslom kolu?
Da li biste nekada zaokruZzili kombinaciju brojeva: 1, 2, 3, 4, 5, 6, 7? Zasto?
(Odgovor: svi brojevi imaju istu vjerovatnocu)

S8
o

1.1.3. Slucajna promjenljiva

Statisticki skup (populaciju) definiSemo kao skup svih jedinica, a uzorak
kao reprezentativni dio skupa. Ovdje ¢emo pokusati razjasniti vezu izmedu
uzorka i skupa, odnosno njihovih parametara. Na osnovu podataka mjerenja
dobijamo raspored frekvencija u uzorku, a njemu odgovarajuci teorijski
raspored predstavljace nam statisticki skup. Ponovimo jos$ jednom, parametri
skupa (pravi, stvarni) ostaju zauvijek nepoznati. Statistika trazi put i naucne
osnove za najbolju mogucu njihovu procjenu. O tome govorimo u nastavku.
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Vratimo se naSem primjeru s bacanjem kocke (vidi Tabelu 2). Kod bacanja
kocke n = 60 puta dobili smo raspored apsolutnih frekvencija, a iz njega
raspored relativnih frekvencija. Vazno je da znamo da dobijene frekvencije
vaZe samo za ovaj uzorak. Ako bismo uzeli neki drugi, bilo vedi ili manji uzorak,
relativne frekvencije bi bile drugacije. Kako je uvijek nas cilj skup (populacija),
postavlja se pitanje s kojom vjerovatno¢om na bazi uzorka moZemo ocekivati
pojavljivanje brojeva na kocki.

Prvo treba da vidimo Sta bi ovdje bio skup. Kocku mozZemo baciti
neogranicen broj puta, pa moZzemo zakljuciti da se radi o jednom beskona¢nom
skupu. Raspored vjerovatnoca u ovom slucaju mi ve¢ znamo. Svi brojevi imaju
jednaku (istu) vjerovatnoc¢u: p = 1/6 = 0,1667 ili 16,67%. Ovo je matematicka
vjerovatnoca, kojoj sada moZemo pripisati joS jedan naziv, a to je teorijska
vjerovatnoca (nasuprot tome statistickoj vjerovatnoc¢i odgovara naziv empirijska
vjerovatnoca). Zapravo, pred nama je jedan teorijski raspored (model), koji ima
pravougaoni (uniformni, ravnomjerni) oblik. On se ostvaruje kod beskonacno
mnogo bacanja, odnosno kad n tezi u beskonacno. Dakle, model predstavlja
rjeSenje, tj. zamjenu za skup, jer, kako vidimo, obuhvata sve slucajeve (elemente).

StatistiCari su razradili veliki broj modela, pomoc¢u kojih opisujemo
kvantitativne pojave. Modeli daju (odreduju) vjerovatnoée svim mogucim
vrijednostima pojave, pri ¢emu nije moguce unaprijed predvidjeti koja ce
vrijednost biti ostvarena u nekom konkretnom slucaju. Na primjer, kod kocke
znamo vjerovatnocu svih Sest brojeva, ali ne moZemo predvidjeti koji ¢e broj
pasti prilikom narednog bacanja. Dakle, brojevi na kocki su promjenljive
veli¢ine. One se javljaju ,od slucaja do slucaja“ Zato ,X“ viSe ne nazivamo
obiljeZje, ve¢ slucajna promjenljiva. Najpoznatiji teorijski raspored je svakako
normalni raspored.

Slucajna promjenljiva

Slucajna promjenljiva je naziv za obiljeZje u teorijskom modelu.
Njene vrijednosti odredene su matemati¢ckom vjerovatno¢om.

Slu¢ajne promjenljive mogu biti prekidne (diskontinuirane) i neprekidne
(kontinuirane), slicno kaoistatistic¢ka obiljeZja. Za njih su razradeni odgovarajuci
teorijski rasporedi u vidu prekidnih i neprekidnih funkcija. Prekidne funkcije
iskazuju vjerovatnoce pojedinacnih slucajnih promjenljivih, a neprekidne
funkcije vjerovatnoce intervala (a,b) u kojima se nalazi slu¢ajna promjenljiva.
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1.1.3.1. Prekidna slucajna promjenljiva

Vjerovatnoce (P,) slucajne promjenljive (X.) mogu se prikazati kao parovi X.p.:

X5 Xy, X3.0. X

n

Pys Pys P3Py

Ovaj niz zapravo predstavlja raspored prekidne slucajne promjenljive,
koji se moZe prikazati odgovaraju¢om prekidnom funkcijom. Tako dobijamo
teorijski model u kome je svim vrijednostima slucajne promjenljive dodijeljena
odgovarajuc¢a vjerovatnoca. Teorijski model moze da se prikaZze i pomocu
kumulativne (zbirne) funkcije, koja daje vjerovatnocu za bilo koju manju (<)
vrijednost sluCajne promjenljive. Do totalne (ukupne) vjerovatnoce, koja
je jednaka jedan, dolazi se sabiranjem vjerovatnoca pojedinacnih slucajnih
promjenljivih, tj.

Zpizl

Analogno stvarnim rasporedima frekvencija formuliSu se deskriptivne
mjere rasporeda vjerovatnoca sluCajnih promjenljivih. Znacaj se pridaje
aritmetickoj sredini i varijansi. Aritmeti¢ka sredina tada odgovara ocekivanoj
vrijednosti.

1.1.3.2. Neprekidna slucajna promjenljiva

Kod prekidne slucajne promjenljive do rasporeda vjerovatnoca dosli smo
jednostavno formiranjem liste (niza) pojedinih vrijednosti slu¢ajne promjenljive
i odgovarajucih vjerovatno¢a. Medutim, kod neprekidne sluc¢ajne promjenljive
to nije moguce, jer je broj njenih vrijednosti beskonacan, a njihove pojedinac¢ne
vjerovatnoce su jednake nuli:

o0

Zbog toga, kod neprekidne sluCajne promjenljive ima smisla odredivati
samo vjerovatno¢u da ¢e se njena vrijednost na¢i u nekom intervalu (a,b).
Graficki prikaz kod neprekidne slu¢ajne promjenljive nece biti ordinate (Stapici)
kao kod prekidne promjenljive, ve¢ glatka kriva linija (Slika 20). Ona se iskazuje
nekom neprekidnom funkcijom.
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f(x)
b
Pla<X <b) = / f(x) d(x)
X 2 b X

Slika 20. Raspored vjerovatnoce neprekidne slu¢ajne promjenljive

Umjesto znaka sigma za sabiranje ovdje se koristi znak integrala (sabiraju
se beskona¢no male vrijednosti). Ukupna vjerovatnocéa jednaka je jedan i
srazmjerna je povrsini ispod krive.

Jd =1

Treba ovdje ista¢i problem mjerenja neprekidnih obiljeZja, zbog nedovoljne
preciznosti instrumenata i nasih ¢ula. Na primjer, mi na terenu ne moZemo egzaktno
izmjeriti precnike stabala, ve¢ smo prinudeni da uzimamo njihove pribliZne vrijednosti,
obi¢no zaokruZene na cijele centimetre. Zato precnik izgleda kao prekidno obiljeZje,
iako po svojoj prirodi (sustini) to nije. Granice izmedu debljinskih klasa ispravno je
pisati na sljede¢i nacin: 5-10, 10-15, 15-20 cm.

Veza izmedu uzorka i skupa

Raspored frekvencija iz uzorka sluzi nam da dodemo do relativnih
frekvencija, tj. empirijske (statisticke) vjerovatnoce. Za statisticko procjenjivanje
parametara skupa, ali i testiranje statistickih hipoteza, koristimo osobine
izabranog modela (Slika 21). Prethodno treba da se upoznamo sa najvaznijim
teorijskim rasporedima. Za njih se kaze da predstavljaju ,kljuc” koji otvara vrata
inferencijalne statistike.

Stvarni rasporedi se odnose na uzorke. Granic¢ni slucaj rasporeda stvarnih
vjerovatnoca (relativnih frekvencija) je raspored matematickih vjerovatnoca
(po nekoj funkciji). Izjednacavanje nastupa kad n teZi beskonacnosti. Zato
teorijske rasporede (modele) smatramo populacijom (skupom).
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n UZORAK P SKUP
(MODEL)
RASPORED RASPORED
FREKVENCIJA > V]EROVATNOCA
OBILJEZJE X SLUCAJNA PROMJENLJIVA X

Slika 21. Statisticko zakljucivanje

1.2. Prekidni rasporedi

Za prekidna obiljezja utvrdeni su prekidni rasporedi, kao teorijski modeli
koji sluze za opisivanje pojava. Svaki od rasporeda (modela) ima svoju formulu
po kojoj se racunaju vjerovatnoce slucajne promjenljive. Za neke rasporede
izradene su tablice vjerovatnoc¢a (binomski, Poasonov). Teorijske frekvencije
(N, kod svih rasporeda dobijaju se mnoZenjem vjerovatnoca P(X) sa ukupnim
brojem elemenata (N):

N, =P - N

Najpoznatiji prekidni rasporedi su:
1. Binomski raspored
2. Poasonov raspored
3. Hipergeometrijski raspored

4. Uniformni raspored

1.2.1. BinomskKi raspored

Binomski raspored je razraden za prekidne slucajne promjenljive, koje
imaju samo dva ishoda. Na primjer: bacanje novci¢a (pismo i glava), proizvodi
(ispravni i neispravni) ili sadnice (primljene i uginule). Obi¢no se jedan ishod
uzima kao ,uspjeh a drugi kao ,neuspjeh” Vjerovatnoc¢a uspjeha oznacava se
sa ,p‘ a neuspjeha sa ,q"“ Pri tome je p + q = 1. Za otkri¢e binomskog rasporeda
zasluzan je Svajcarski matematicar Bernuli (Jacob Bernoulli, 1654-1705), pa se
po njemu ovaj raspored naziva jos Bernulijev raspored.
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Primjer binomskog rasporeda

Posmatrajmo tri zasijane sjemenke neke biljke. Svaka sjemenka ima dva
iskljuciva ishoda: da proklija ili da ne proklija. Prvi ishod uzmimo kao uspjeh, a
drugi kao neuspjeh. Uspjeh oznacimo sa 1, a neuspjeh sa 0. Pretpostavimo dva
slucaja klijavosti: u prvom 50%, a u drugom 80%.

U ovom primjeru moZe nas zanimati recimo kolika je vjerovatnoéa da
proklijaju sve tri sjemenke. To je jedna od osam moguc¢ih kombinacija (dva
ishoda u tri ponavljanja: 2 x 2 x 2 = 8). Sve kombinacije (kol. 1) sa njihovim
vjerovatno¢ama (kol. 2) prikazane su u Tabeli 3. MoZe se desiti da ne proklija ni
jedna sjemenka (X = 0), da proklija jedna (X = 1), dvije (X = 2) ili sve tri sjemenke
(X = 3). Prekidna slu¢ajna promjenljiva (X) je broj uspjeha (kol. 3).

Vjerovatnoce slucajne promjenljive (X = 0, 1, 2, 3) date su u opstem obliku,
kolona 4. One su dobijene mnoZenjem vjerovatnoca jednostavnih dogadaja iz
kolone 2 (po teoremi mnoZenja). Ove vjerovatnoce su, kao Sto vidimo u dnu
tabele, Clanovi razvijenog binomnog obrasca (q + p)°. Binomski koeficijenti u
ovom slucaju su: 1, 3, 3, 1. Oni pokazuju koliko ima slucajeva odredenog broja
uspjeha. Izracunali smo vjerovatnoce za klijavost sjemena 50% (kolona 5) i
80% (kol. 6). To su dva odvojena prekidna rasporeda vjerovatnoca. Jasno je ve¢
iz ovoga da, u zavisnosti od n i p, postoji ¢itava familija binomskih rasporeda.

Tabela 3. Vjerovatnoce klijanja tri sjemenke (n = 3)

Komblnacu.e Vjerovatnoée MoguFl broj Vjerovatnoéa P()_() za: P()_() za:
elementarnih Kombinaciia uspjeha uspieha p=0,5 p=08
dogadaja ) (69) b q=05 q=02
1 2 3 4 5 6
000 qqq 0 qQ? 0,125 0,008
001 qqp
010 apq 2
100 paq 1 3pq 0,375 0,096
011 qpp
101 pap 2
110 ppq 2 3p%q 0,375 0,384
111 pPpp 3 p3 0,125 0,512
- - - 1 1 1

q°+3pg*+3p’q+p*=(q+p)=1=1
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Vjerovatnoc¢a P(3), tj. da Ce sve tri sjemenke proklijati, kod klijavosti 50%,
je svega 0,125ili 12,5%. To je, kako smo ve¢ rekli, samo jedan od osam mogucih
slucajeva (p = 1/8). Isto tolika je i vjerovatnoca da nece proklijati niti jedna
sjemenka. U ovom slucaju raspored je simetrican, jer su vjerovatnoce uspjeha i
neuspjeha jednake. Kod klijavosti 80%, tri uspjeha (sve tri proklijale sjemenke)
moZemo ocCekivati sa vjerovatno¢om od 51,2%, dok je vjerovatnoca za X = 0
svega 0,8%. Ovdje je izraZena lijeva asimetrija.

Binomski raspored

Binomski raspored daje vjerovatnoce prekidne slucajne promjenljive (X),
u zavisnosti od vjerovatnoce uspjeha p u svakom elementarnom
dogadaju od n ponavljanja.

Za razlicite slucajeve prekidnih obiljezja definisana je formula koja
predstavlja binomski raspored. Ona glasi:

U formuli je:

P(X) - vjerovatnoca slucajne promjenljive X, gdjeje X=0, 1, 2, .. n

n - veli¢ina uzorka (broj elementarnih dogadaja - slucajeva, ponavljanja)
P - vjerovatnoca ,uspjeha“ u svakom elementarnom dogadaju

q - vjerovatnoca ,neuspjeha“;p+q=1

n
( j - binomski koeficijenti
x

IzraCunavanje vjerovatnoce

Binomski koeficijenti mogu se odrediti po formuli ili ocitati iz Paskalovog
trougla (pogledajte u knjizi 3, str. 86). Napomena: Vjerovatnoca P(X) se moZe
direktno ocitati iz tablica binomske raspodjele vjerovatnoc¢a. Ulazi u tablice
sunip (1, str. 429). Izracunajmo, sada po formuli, vjerovatnoce broja uspjeha
(slu¢ajne promjenljive X) u naSem primjeru, gdjejen=3ip=0,5.

P(X) - (zj o g

3
P(0)= [0]0,50 0,5°=1.1.0,125=0,125
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3
P(1)= [ Jo,s‘ 0,5"=3-0,5-0,5" =0,375

—_—

3
P(2)= @0,52 0,572 =3-0,5*-0,5=0,375

3
P(3)= [3}0,53 0,57 =1.0,125-1=0,125

Teorijske frekvencije

Nakon odredivanja vjerovatnoce, laksi dio posla je izracunavanje teorijskih
frekvencija. Veza (formula) je ista kod svih drugih rasporeda. Izracunate
teorijske vjerovatnoce se jednostavno mnoze sa ukupnom frekvencijom. Ako
smo unasSem primjeru imali 40 posudica, sa tri sjemenke u svakoj, onda mozemo
ocekivati pet posudica u kojima nema proklijalih sjemenki, 15 sa jednom, 15 sa
dvije i pet sa sve tri proklijale sjemenke.

N, = P(0)-N=0,125-40=5

N, = P(1)-N=0,375-40 =15
N, = P(2):N=0,375-40=15

N3

P(3)-N=0,125-40=5

Uslovi binomskog rasporeda

Aritmeticka sredina (oCekivanavrijednost)ivarijansa binomskograsporeda
racunaju se po formulama:

X=np

s’ =npq

Iz navedenih formula proisticu uslovi koji se postavljaju, kada se ispituje
saglasnost empirijskih frekvencija sa modelom binomskog rasporeda (viSe u
knjizi pod 3, str. 91). OpSte karakteristike binomskog rasporeda su:

1. Radi se o prekidnom obiljeZju, u ¢ijem nizu posmatranja elementarni dogadaji
(ponavljanja) imaju dva iskljuciva ishoda (uspjeh i neuspjeh).

2. Vjerovatnoca uspjeha u svakom elementarnom dogadaju je konstantna.
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3. Elementarni dogadaji nastaju na slu¢ajan nacin i medusobno ne zavise jedan
od drugog.

4. Vjerovatnoca uspjeha (p) treba da bude veca od 5%, a velicina uzorka (n)
manja od 20, tj.
p>5%, n<20

Oblik binomskog rasporeda

Ako je vjerovatnoca uspjeha (p) jednaka vjerovatnoéi neuspjeha (q)
binomski raspored ¢e biti simetrican, bez obzira na veli¢inu uzorka n. Ako je p
< 0,5 raspored Ce biti desno asimetrican, dok ¢e u slucaju p > 0,5 asimetrija biti
negativna (Slika 22a).

P(X)
P(X) n=5 p=03
p=0.2 n=10 p=08
n=10
p=05 n=20
01 2 3 4 5 6 7 8 9 10 x 0 1 2 3 4 5 6 7 8 9 10 11 12 X
a) u zavisnosti od p b) u zavisnosti od n

Slika 22. Oblik binomskog rasporeda

Asimetrija je izraZenija Sto je broj sluc¢ajeva (n) manji. Ako se vjerovatnoca
uspjeha (p) ne razlikuje puno od 0,5, sa malim povecanjem uzorka binomski
raspored dobija normalan oblik. Uglavnom, sa povecanjem n, svaki binomski
raspored ¢e biti sve manje asimetri¢an. Kad je n veliki broj, ovaj raspored se
priblizava normalnom rasporedu (Slika 22b). Normalni raspored je grani¢ni
slucaj binomskog rasporeda, koji kad n teZi u beskonacno prakti¢no postaje
neprekidan raspored.

1.2.2. Poasonov raspored

Binomskim rasporedom, ¢iji su uslovi: p > 0,05 i n < 20, nisu obuhvaceni
dogadaji sa jako malom vjerovatno¢om. Takvi rijetki dogadaji zahtijevaju da
u uzorku bude veliki broj elemenata, jer u malom uzorku mogu potpuno da
izostanu. Za racunanje njihove vjerovatnoce koristi se Poasonov raspored, kojeg
je opisao francuski matematicar Poason 1837. godine. Dakle, ako su ispunjeni
uslovi:

p<0,05 n> 20
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umjesto binomskog moZe se primijeniti Poasonov raspored. Takode,
Poasonovim rasporedom mogu se opisivati rijetke pojave u prostoru i vremenu,
kao Sto su broj kvarova na nekoj masini (traktoru, Zic¢ari), broj povreda Sumskih
radnika u radu s motornom pilom i druge.

Odredivanje vjerovatnoce

Vjerovatnoce se mogu racunati na tri nac¢ina: direktno po formuli, pomocu
radne formule i ocitavanjem iz tablica vjerovatnoce Poasonovog rasporeda.
Ovaj raspored odreden je jednim parametrom m. Uzima se da je to aritmeticka
sredina. Prema tome, u zavisnosti od ovog parametra postoji ¢itava familija
ovog rasporeda.

Formula Poasonovog rasporeda glasi:

X

m
=—e
X!

P(X) "

U formuli je:

P(X) - vjerovatnoca slucajne promjenljive, X =0, 1, 2, ...
m - aritmeti¢ka sredina

e — baza prirodnih logaritama (e = 2,7182)

Oblik rasporeda

Graficki izgled Poasonovog rasporeda u zavisnosti od m dat je na Slici
23. Poasonov raspored je desno asimetrican. Sa povecanjem parametra m
asimetrija se smanjuje, a oblik se priblizava normalnom rasporedu. Aritmeticka
sredina i varijansa su pribliZzno jednake, Sto se uzima kao uslov za primjenu
ovog rasporeda u prakticnom radu (primjer u knjizi 3, str. 96).
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P(X)

0,30 -

0,20

0,10+

0,00 ) ) ) ) } } ) } | ; >

Slika 23. Poasonov raspored u zavisnosti od m

1.2.3. Hipergeometrijski raspored

Hipergeometrijski raspored se primjenjuje umjesto binomskog rasporeda
u slucajevima kad nije ispunjen uslov nepromjenljivosti vjerovatnoce uspjeha.
To se desava kad su uzorci relativno veliki, tj. kad je stopa izbora vec¢a od 5%.
Pomoc¢u ovog rasporeda mogu se takode utvrdivati vjerovatnoce neke odabrane
karakteristike pojava klasifikovanih u dvije grupe elemenata, npr. ispravni i
neispravni proizvodi ili zaposleni i nezaposleni.

U vezi s ovim rasporedom preuzeli smo iz knjige s Ekonomskog fakulteta
sljededi citat.

JVidjeli smo da binomski model zahtijeva da vjerovatnoéa uspjeha p mora ostati
konstantna iz opita u opit, odnosno opiti moraju biti medusobno nezavisni. Strogo uzevsi,
elementi uzorka bi¢e medusobno nezavisni (tj. vjerovatnoca p bice konstantna) samo u
slu¢ajevima kada uzorak velicine n uzimamo iz beskonacnog osnovnog skupa ili ako iz
konacnog skupa uzimamo uzorak sa ponavljanjem. U ovom drugom slucaju svaki element
uzorka nakon ispitivanja vraéamo u osnovni skup i pruZamo mu moguénost da ponovo
ude u uzorak. Ukoliko iz konacnog skupa uzimamo uzorak bez ponavljanja uzastopna
izvlacenja bice nezavisna i vjerovatnoca p mijenjace se nakon izbora svakog novog
elementa, jer se broj i struktura preostalih elemenata mijenjaju. U praksi se najveci broj
istraZivanja sprovodi koris¢enjem uzorka bez ponavljanja, pa na prvi pogled izgleda da
ne bismo smjeli koristiti binomski raspored kada je posmatrana populacija konacna.
Medutim, ako velicina uzorka n nije suvise velika u odnosu na veli¢inu populacije N,
binomski raspored se, ipak, moZe upotrijebiti, jer predstavlja dobru apoksimaciju pravom
rasporedu rezultata uzorka. Smatra se da ¢e apsoksimacija biti zadovoljavajuca ako je
odnos n/N manji od 5%. Ali u slucaju da primjenjujemo uzorak bez ponavljanja koji sadrzi
5% ili vise elemenata konacne populacije, moramo koristiti hipergeometrijski raspored.”
(4, str. 143/144).
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1.2.4. Uniformni raspored

Uniformni (pravougaoni, ravnomjerni) raspored je najjednostavniji prekidni
raspored. Kod ovog rasporeda sve vrijednosti slucajne promjenljive imaju istu
vjerovatnoc¢u (p = 1/n). Imali smo primjer sa kockom. Ovaj raspored uglavnom
se veze za igre na srecu.

Bacanjem pravilne kocke, pri ¢emu je slucajna promjenljiva X broj tacaka na
jednoj strani kocke, dolazimo do uniformnog rasporeda vjerovatnoca. Teorijski
oblik ovog rasporeda ostvaruje se tek u jako velikom broju bacanja kocke, prema
zakonu velikih brojeva. Pogledajmo njegovu formulu i graficki izgled (Slika 24):

PX)=1/6 X=1,2,..6

P(X) 4

0,15 A

0,10

0,05 -

0,00
1 2 3 4 5 6 X

Slika 24. Uniformni raspored kod bacanja kocke

1.3. Neprekidni rasporedi

Za neprekidna obiljeZja koriste se neprekidne funkcije vjerovatnoca.
Teorijske frekvencije dobijamo uvijek na isti nacin, tako $to mnoZimo
vjerovatnoce sa ukupnim brojem elemenata. Opisatemo sljedeca Cetiri
rasporeda.

1. Normalni (z) raspored

2. Studentov (t) raspored

3. Fiserov (F) raspored

4. Hi-kvadrat (x?) raspored

1.3.1. Normalni (z) raspored

Posmatrajuci Sta se desava sa binomskim rasporedom ako se povecava broj
ponavljanja, Movr je jos 1733. godine pronasao normalni raspored. Ipak, otkrice
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normalnog rasporeda pripisuje se Gausu, njemackom geodeti i astronomu.
Proucavajuci slucajne greske mjerenja Gaus je 1809. godine dosao do funkcije
(zakona) njihovog rasporedivanja. Ta funkcija glasi:

Y =f(X)= ! e_%()s(f

SV2n

U vezi s ovim raporedom prenosimo sljedeci citat:

»Gaus je zakonitosti koje se javljaju pri mjerenju neke velicine matematski objedinio
jednom krivom linijom, koja je poznata pod nazivom Gausova kriva (vjerovatnoce).
Zakonitosti u javljanju slucajnih gresaka su takve da se mjerene vrijednosti gomilaju oko
jedne srednje vrijednosti i da ih je sve manje ukoliko se ide dalje od te srednje vrijednosti
na jednu ili drugu stranu. Zbog toga pri mjerenju ne nailazimo Cesto na vrijednosti koje
se mnogo razlikuju od srednje vrijednosti, pa je i vjerovatnoéa da ¢emo naici na velika
odstupanja od sredine vrlo mala, utoliko manja ukoliko su ta odstupanja veca“ (8, str. 13).

Dvije formule

Direktna veza izmedu biometrike i racuna vjerovatnoce je Gausova kriva,
Naime, ispitivanja mnogih skupova zivih bi¢a su pokazala da se pojedina njihova
obiljezja ponasaju na isti nacin kao Sto se ponasaju slucajne greske mjerenja:
gomilaju se oko jedne srednje vrijednosti, a sve ih je manje ukoliko se ide dalje
od sredine - bilo na jednu bilo na drugu stranu. Razlika je jedino u tome $to su
kod gresaka odstupanja vrlo mala, a kod raznih obiljezja prirodnih skupova ta
odstupanja su veca (8, str. 18).

Ako se Gausova funkcija prilagodi prirodnim pojavama, gdje se neko
obiljeZje mjeri na visSe individua, dobija se novi oblik funkcije. U njoj se raCunaju
odstupanja individualnih vrijednosti od aritmeticke sredine, a ne od nule kao
kod slucajnih gresaka. Formula sada glasi:

U formuli je:

f (X) -funkcija vjerovatnoce (ordinata za X)
S - standardna devijacija

X - slucajna promjenljiva

X - aritmeticka sredina

1 - 3,1416 (matematicka konstanta)

e - 2,7182 (matematicka konstanta)
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Kadaseradioneprekidnomrasporeduvjerovatnoce se utvrdujuzaintervale,
a ne za pojedinacne vrijednosti sluajne promjenljive. Sabiranje beskonacno
malih vrijednosti u nekom intervalu je zapravo njihovo integrisanje, pa ¢e se u
novom obliku funkcije vjerovatnoc¢e normalnog rasporeda pojaviti integral. Ta
funkcija izgleda ovako:

P(X, <X <X,)= Xj 7(ﬁj

\/—

Ova funkcija daje vjerovatno¢u da ¢e se X naéi u odredenom intervalu
(X, - X,). Geometrijski to odgovara povrsini intervala ispod normalne krive.
Integral od —co do +o0 obuhvata ukupnu povrsinu, odnosno ukupnu vjerovatnocu.
Rezultat takve funkcije jednak je jedan.

Napomena: Kako ukupna povrsina ispod krive predstavlja ukupan broj slucajeva
(elemenata) to znaci da dijelovi (intervali) predstavljaju relativne frekvencije. Zato
moZemo povrSinu ispod krive izjednaciti sa vjerovatno¢om.

Standardizacija rasporeda

Obje navedene funkcije vjerovatnoce prilagodavaju se za prakti¢nu
upotrebu na nacin da se originalna promjenljiva X standardizuje (transformise)
u promjenljivu Z. Time se eliminiSe uticaj razli¢itih mjernih jedinica. Osim
toga, izbjegava se zamorno racunanje vjerovatnoca, jer su aritmeticka sredina i
standardna devijacija u svakom konkretnom slucaju drugacije. Iz ovoga mozemo
zakljuciti da zapravo postoji citava familija normalnih (nestandardizovanih)
rasporeda. Standardizacijom dobijamo samo jedan normalni raspored, cija je
aritmeticka sredina nula, a standardna devijacija jedan. Veza je sljedeca:

X- X
S

7 =

Standardizovana slucajna promjenljiva Z pokazuje koliko je odstupanje
originalne sluc¢ajne promjenljive X od aritmeticke sredine, izraZeno u jedinicama
(broju) standardnih devijacija. To je neimenovan pozitivan ili negativan broj.

Ako u prethodnim funkcijama X zamijenimo sa Z dobijamo nove oblike
funkcije normalnog rasporeda, Cije su vrijednosti izracunate i utablic¢ene (3, str.
365/366). Prva funkcija daje ordinate standardne normalne krive (Slika 25), a
druga povrsine standardne normalne krive (Slika 26).
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f(z=1) = 0,24179

NY

0 1 2 3

Slika 25. Ordinate standardne normalne krive

A f(z)

\

N Y

0 1 2 3

Slika 26. Povrsine standardne normalne krive

S obzirom da postoje dva oblika funkcije vjerovatnoce postoje i dva
nacina (metoda) racunanja teorijskih vjerovatnoéa. To su: Metod ordinata
i Metod povrsina. Oni su detaljno opisani u knjizi (3, str. 104/106). Primjer
prakti¢ne primjene normalnog rasporeda takode moZete nadi u Knjizi (3, str.
109). Pogledajmo kako graficki izgleda povezanost nestandardizovanog i
standardizovanog normalnog rasporeda (Slika 27).
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N(0,1)

Xy X Xy X

P(Xl <K<X2) =P(Z1 <7Z< Z2)

Zy 0 Zo Z

Slika 27. Povezanost normalnog rasporeda N(X, S) i standardizovanog
normalnog rasporeda N(0,1)

Karakteristike normalnog rasporeda

Karakteristike normalnog rasporeda najbolje se vide na Slici 28. Iste

karakteristike ima i standardizovani normalni raspored.

1.

Kriva normalnog rasporeda je zvonolikog oblika, unimodalna i potpuno
simetri¢na u odnosu na ordinatu povucenu iz X. Pozitivna i negativna
odstupanja su jednaka; f(-X) = f(X), odnosno P(-X) = P(X). Mala odstupanja
su vjerovatnija od velikih.

Ukupna povrsina (vjerovatnoca) ispod Krive iznosi jedan, odnosno u
procentima 100%. U intervalu jedne, dvije i tri standardne devijacije
oko aritmeticke sredine nalazi se: 68,27%; 95,45% i 99,73% povrsSine
(vjerovatnoce). To vazi za svaki normalni raspored, bez obzira na aritmeticku
sredinu i standardnu devijaciju.

3. Aritmeti¢ka sredina, medijana i mod su jednaki (X = X =X,).

Koeficijent asimetrije a, = 0 i koeficijent izduzenosti «, = 3.

5. Normalni raspored je definisan sa aritmetickom sredinom i standardnom

devijacijom. Oznacava se sa N(X, S), a njegov standardizovani oblik sa N(0, 1).

Kriva se asimptotski priblizava X-osi, Sto znaci da raspon varijacije nije
ogranicen. Prevojne tacke na krivoj (T11iT2) udaljene su po jednu standardnu
devijaciju lijevo i desno od aritmeticke sredine. Maksimum krive nalazi se
iznad aritmeticke sredine.
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Af(x)
T1 T2
L _6827% |
C ol 9545% | 2
//k9973% ,,,,,,,, \
X-38 X-28 X-S X X+S X428 X438 X

Slika 28. Normalni raspored

Znacaj normalnog rasporeda

Veliki broj pojava u prirodi i drustvu ima pribliZno normalan raspored.

Normalni raspored predstavlja teorijsku osnovu za statisticko
(parametarsko) zakljucivanje. Smatra se najvaznijim teorijskim rasporedom.

U mnogim situacijama normalni raspored se moZe primijeniti kao
aproksimacija (pribliZznost) nekih prekidnih rasporeda, koji pod odredenim
uslovima teZe normalnom rasporedu (npr. binomski, Poasonov).

Iz normalnog rasporeda izvedeni su vazni neprekidni rasporedi, kao
Studentov, FiSerov i Hi - kvadrat raspored.

Normalni raspored uvijek ostaje teorijski oblik, kome se samo priblizavamo.
To nam dopusta da koristimo njegova svojstva.

Uslovi normalnog rasporeda

Empirijskom rasporedu odgovara normalni raspored ako su ispunjena tri

uslova:

1. Daje obiljeZje neprekidno.

2. Dasu aritmeticka sredina, medijana i mod pribliZno jednaki.

3. Daje priblizno koeficijent asimetrije «, = 0, a koeficijent izduZenosti a, = 3.
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1.3.2. Studentov (t) raspored

AKko posmatramo uzimanje viSe uzoraka, neke odredene veliCine od n
jedinica, njihove sredine (kao i drugi parametri) ¢e se grupisati oko aritmeticke
sredine skupa. Raspored ¢e biti normalan, ako uzorak ima vise od 30 jedinica, a
imace oblik t-rasporeda u slucaju manjih uzoraka. Ove rasporede (zi t) najcesce
koristimo kao modele za statisticka zakljucivanja.

Raspored malih uzoraka oko prave vrijednosti (stvarne vrijednosti u skupu)
opisao je i sacinio tablicu povrsina engleski statisticar Goset (William Gosset,
1876-1937). On je svoje radove potpisivao pod pseudonimom Student, pa se
ovaj raspored jos naziva Studentov raspored.

Karakteristike t-rasporeda

Ovaj raspored je simetri¢an u odnosu na svoju sredinu, koja je jednaka nuli.
0d standardizovanog normalnog rasporeda razlikuje se po varijabilitetu. Kod
z-rasporeda standardna devijacija je fiksna i iznosi jedan, dok je kod t-rasporeda
veca i zavisi od velic¢ine uzorka (Slika 29). Kod uzorka od 30 elemenata smatra
se da nema razlike izmedu ova dva rasporeda. Sto je uzorak manji ovaj raspored
je sve nizi (spljosteniji) u odnosu na normalni raspored. Koristi se kao osnovna
baza za testiranje razlike parametara.

f(z) f(t)
0,5+
Normalni raspored
0,4+ ) T~ /
/ \
/
0,3+ \

Studentov raspored

0,2+

0,1+

-3 -2 -1 0 1 2 3 zilit
Slika 29. Studentov (t) raspored

Tablica t-rasporeda

Tablica povrsina t-rasporeda data je u Knjizi (3, str. 368). Za razliku od
normalnog rasporeda ova tablica ima dva ulaza. To su veli¢ina uzorka (iskazana
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brojem stepena slobode n-1, u pretkoloni) i vjerovatnoca (iskazana greSkom -
kao ,vjerovatnoca za vece vrijednosti‘, u zaglavlju). Napomena: pojmove koje
pominjemo ovdje objasni¢emo kod primjene rasporeda u narednim poglavljima.

Ako je uzorak jako mali, recimo tri elementa (n-1=2 stepena slobode)
t-vrijednost je 4,30, kod n=15 vrijednost je 2,14, dok kod n=30 iznosi 2,04.
Ona se priblizava normalnom rasporedu. Teoretski, kad n teZi beskonacnoj
vrijednosti ova dva rasporeda se potpuno poklapaju, tj. z = t = 1,96. Izvan ovog

intervala nalazi se 5% povrsine, ravnomjerno rasporedene na krajevima krive
(po 2,5%).

1.3.3. FiSerov (F) raspored

Ispitujuci odnos (koli¢nik) dvije varijanse u masi slucajeva Fiser je doSao
do zakona njegovog rasporedivanja. Ipak, ovaj raspored u kona¢nom obliku
definisao je DzordZ Snedekor. U znak postovanja prema Ronaldu FiSeru nazvao
ga je Fiserov ili F-raspored. Primjenjuje se za male uzorke, naj¢es¢e kod analize
varijanse, pri izvodenju statistickih eksperimenata.

F-raspored je desno asimetrican (Slika 30). Sa poveéanjem veli¢ine uzorka
asimetrija se smanjuje i pribliZava normalnom obliku. Vrijednosti f{F) su
pozitivne, tj. kriva pocinje od nule. U Knjizi (3, str. 369/370) date su tablice za
vjerovatnocu 95% i 99%, odnosno za rizik 5% i 1%. Ulazi u tablice su stepen
slobode uzorka sa ve¢om varijansom u zaglavlju i stepen slobode uzorka sa
manjom varijansom u pretkoloni.

fr)

(3)
@ @ ®)

DF, =1 DF; =7 DF; =12
(D DFy =3 DFy=6 DFy =140

@

o 1 2 3 4 %
F3 =2,00 Fy =421 F;=10,13
Slika 30. F-raspored
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U naSem primjeru, gdje su dati stepeni slobode 7 i 6, vrijednost slucajne
promjenljive F u tablicama iznosi 4,21. PovrSina ispod krive lijevo od ove vrijed-
nosti iznosi 95%, a desno 5%. Drugim rije¢ima, samo u 5% slucajeva moZemo
ocekivati koli¢nik varijansi veci od 4,21. Takve vrijednosti smatramo statisticki
znacajnim.

Napomena: Treba zapaziti da je najmanja vrijednost u tablicama jedan. Naime, pri-
likom izrade tablica u brojniku je uvijek uzimana veca varijansa, iz prakti¢nih razloga.
Tablice F-rasporeda su izradene samo za neke slucajeve. Danas su sve statisticke tablice
sastavni dio softvera.

1.3.4. Hi-kvadrat (x?) raspored

Slucajna promjenljiva x? ima desno asimetrican raspored, koji se takode
pribliZava normalnom obliku sa pove¢anjem broja stepena slobode (Slika
31). Ovdje se stepen slobode odreduje prema broju klasa, a ne prema broju
elemenata uzorka. Najcesc¢e se koristi za testiranje razlike rasporeda stvarnih i
teorijskih frekvencija.

f(x?)
DF =2
DF =7
DF =12
0 5 10 I 15 20 25  x°
14,07

Slika 31. Hi-kvadrat raspored

Tablice ovog rasporeda nalaze se u Knjizi (3, str. 371). Pored vjerovatnoce,
ulaz u tablice je stepen slobode, u pretkoloni. Ako stepen slobode iznosi 7,
za uobicajenu vjerovatnocu od 95% (u zaglavlju piSe ,vjerovatnoce za vece
vrijednosti®, tj. za 0,05) vrijednost hi-kvadrata je 14,07. Znacenje je sli¢no kao i
kod F-rasporeda. Povrsina ispod krive lijevo od te vrijednosti iznosi 95%. Vece
vrijednosti od 14,07 se ocekuju u manje od 5% slucajeva, tj. vjerovatnoca im
je manja od 5%.. To znaci da su tako velike razlike vrlo rijetke i ne mogu se
smatrati slucajnim, ve¢ statisticki znacajnim.
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Svaki od neprekidnih teorijskih rasporeda ima svoju funkciju (krivu) vjerovatnoce.
Te funkcije su sloZene i nismo ih ovdje navodili (osim kod normalnog rasporeda).
Povrsinaispod krive svakograsporeda odgovaravjerovatnoc¢i. Ukupna povrsina, odnosno
ukupna vjerovatnoca jednaka je jedan. Normalni i t-raspored su dvostrani i potpuno
simetri¢ni, dok su F i x? desno asimetri¢ni. Standardizovane sluc¢ajne promjenljive Z, t, F
i ¥’ su neimenovani brojevi (standardizovane, tj. relativne vrijednosti). One su na x osi,
aracunamo ih po odgovaraju¢im formulama i oCitavamo iz tablica. O ovim rasporedima
viSe u narednim poglavljima, gdje ¢emo govoriti o njihovoj primjeni.

TEORIJSKI Q==

RASPOREDI

INFERENCIJALNA
STATISTIKA

]
I

Teorijski rasporedi su "kljuc” za vrata inferencijalne statistike
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Prof. dr Ostoja Stojanovié
(1926-2016)

ZasluZan za uvodenje statistike u nastavu i
sumarsku praksu BiH

2. STATISTICKI UZORCI

U poglavlju II govorili smo o statistickim skupovima. Ako je populacija mala
mjere se svi elementi, a rasporedom frekvencija i statistickim parametrima
opisujemo pojavu. Tada smo napomenuli da postoji moguénost procjene
karakteristika skupa na osnovu odredenog broja jedinica. Takav pristup u
statistici nazivamo Metod uzorka ili Reprezentativni metod.

2.1. Osnovno o uzorcima

Nacelno, statisticke skupove proucavamo:

1. Potpunim obuhvatom (potpuni premjer, popis)
2. Djelimi¢nim obuhvatom (reprezentativni uzorak, anketa)
3. Procjenom (pomocu tablica, okularno)

Potpuni obuhvat podrazumijeva ispitivanje (mjerenje) svih jedinica skupa.
To je jedini nacin na koji moZemo saznati prave (stvarne, tacne) karakteristike
skupa. Djelimi¢nim obuhvatom posmatraju (mjere) se samo odredene jedinice
skupa, tj. uzima se uzorak. Na osnovu njega procjenjuju se parametri skupa.
Grube procjene parametara skupa mogu se vrsiti pomoc¢u odgovarajucih tablica
(npr. tablice debljinskog prirasta stabala), a u izuzetnim slu¢ajevima okularno
(odoka).

Napomena: Proucavanje skupova pod 2 i 3 podrazumijeva procjene. Procjene
pomocu uzorka (pod 2) vrse se na osnovu mjerenja odredenih jedinica skupa, dok se
grubim procjenama (pod 3) ne vrSe nikakva mjerenja. U Sumarstvu je uobicajeno da
kazemo procjene na osnovu uzorka, dok se u drugoj literaturi koristi termin ocjene.
Uzorci imaju naucni karakter. Pomoc¢u njih takode testiramo razne pretpostavke u
vezi parametara skupa (statisticki testovi), te ispitujemo zavisnosti izmedu pojava
(regresiona analiza).
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2.1.1. Pojam uzorka

Uzorak ima dva znacenja. Prvo, u tehnickom smislu uzorak predstavlja
materijalni dio neCega. Na primjer, uzimamo uzorak zemlje da bismo odredili
tip zemljiSta ili komad stijene da odredimo geoloski supstrat. U statistickom
smislu uzorak predstavlja broj jedinica (elementarnih dijelova) uzetih iz neke
masovne pojave, koja je definisana kao statisticki skup. Naravno, te jedinice se
ne uzimaju ,bilo kako" Za to postoje statisticka pravila. Statisticki uzorak mora
da zadovolji dva uslova:

- dajereprezentativan i
- dase moZe utvrditi greSka uzorka.

Reprezentativnost uzorka

Elementi skupa koji Cine uzorak treba da predstavljaju (reprezentuju)
strukturu skupa, po ispitivanom obiljeZju (uzorak vazi samo za odredeno
obiljezje). Na primjer, ako su u nekoj Sumi zastupljena stabla jele, smrce i bukve,
ocekujemo u uzorku slican omjer ovih vrsta drveca ili ako izracunavamo srednji
precnik u nekoj Sumi u uzorku se trebaju naci stabla svih debljina srazmjerno
njihovom uces¢u u cijeloj Sumi. Kako je uzorak dio skupa, njegov rezultat se
uvijek razlikuje od skupa. To je greSka reprezentativnosti, koju nazivamo
jednostavno greskom uzorka. Kada bi uzorak bio 100% reprezentativan tada bi
se statisticko zakljucivanje svelo na uzorak (mjerenje, racunanje) i proglasavanje
to parametrima skupa. Reprezentativnost uzorka postiZze se objektivnim
(sluc¢ajnim) izborom jedinica.

Greska uzorka

Razlika izmedu stvarne (prave) vrijednosti parametra u skupu i vrijednosti
parametra u uzorku naziva se greska uzorka. Da bismo je mogli odrediti potrebno
je poznavati parametar skupa. Nekad je to bio jedini nacin da se ispita valjanost
uzorka. Danas se greSka uzorka utvrduje na drugi nac¢in, pomocu statistickih
formula na bazi vjerovatnoce teorijskih rasporeda. Vaznost greske je izuzetno
velika, pa joj se posvecuje posebna paznja.

Prave parametre skupa mi zapravo ne mozemo tac¢no utvrditi, ali moZemo
odrediti koliko se vrijednost iz uzorka udaljava od prave vrijednosti iz skupa.
Drugim rijeCima, moZemo dati interval u kome ¢e se nalaziti parametar skupa.
To ¢inimo s odredenom vjerovatnoc¢om, najceS¢e 95%. Nastojimo uvijek da
interval procjene bude Sto uZi, tj. da greska uzorka bude Sto manja. To ¢e zavisiti
od izbora tipa uzorka i njegove velicine. Pri tome ¢emo morati uzeti u obzir i
druge faktore, kao Sto su potrebna sredstva i vrijeme.
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2.1.2. Opravdanost primjene uzoraka

Uzorak je jedino moguce rjeSenje u slucaju beskonacnih skupova
(npr. ponavljanje nekog mjerenja ili eksperimenta) i skupova sa prakti¢no
beskonacnim brojem jedinica (npr. stabala u Sumi, neke vrste divljaci, Sumskih
mrava ili Stetnih Sumskih insekata).

Primjena uzorka je nuzna u situacijama kada dolazi do ostecenja ili unistenja
jedinica. Navedimo nekoliko slucajeva iz naSe oblasti: a) Kod utvrdivanja
starosti neke Sume broje se godovi na panjevima posjecenih stabala. Potpunim
obuhvatom morali bismo posje¢i cijelu Sumu, b) Rast stabala u toku njihovog
zivota utvrdujemo dendrometrijskom analizom, koja podrazumijeva da
posjecCena stabla trebamo prerezati na svaka dva metra. To bi znacilo ne samo
unisStenje Zivih stabala, ve¢ i unistenje posjecene drvne mase, tj. sortimenata, c)
BuSenjem stabala pomoc¢u Preslerovog svrdla mjerimo debljinski prirast. Tom
prilikom stabla se oSte¢uju. Ako bismo to radili na svim stablima u Sumi Steta
bi bila velika.

U vecini slucajeva primjena uzorka je racionalna i ekonomicna. Kod
premjera Suma (taksacije, inventure), koji podrazumijeva utvrdivanje stanja
Suma na velikom prostoru, primjena uzorka daje ¢ak bolje rezultate od potpunog
premjera (strucnija i sigurnija mjerenja). Kod potpunog premjera morao bi se
angazovati veliki broj nekvalifikovane radne snage, a radove bi bilo nemoguce
kontrolisati. Osim toga, radovi bi trajali dugo i puno bi kostali.

2.1.3. Koje karakteristike skupa procjenjujemo pomoc¢u uzorka?

Opis masovne pojave pomocu uzorka svodi se uglavnom na dva parametra.
To su aritmeticka sredina i proporcija. Vrijednosti ovih parametara u skupu
nazivaju se prave vrijednosti, a u uzorku parametri uzorka ili statistika uzorka.
Naime, da bi napravio razliku od skupa FisSer je parametre uzorka nazvao
»Statistika uzorka“, Sto zapravo i jesu statisticke a ne prave vrijednosti.

Aritmeticka sredina i agregat. Mi oCekujemo da aritmeticka sredina
uzorka bude jednaka aritmetickoj sredini skupa. Na primjer, da uzorkom
utvrdena prosjecna zapremina drvne mase po hektaru vazi za cijelu Sumu
(skup). Na osnovu takve procjene utvrdujemo zalihu drvne mase na cijeloj
povrsini Sume. Takva procjena naziva se agregat (A) ili total (T). Napomena: u
nastavku ¢emo vidjeti da se procjene uzorkom ne daju kao jedna vrijednost, ve¢
intervalno.

Proporcija i kontingent. Dok aritmeticka sredina pokazuje veli¢inu
(intenzitet) pojave, proporcija nas upoznaje sa strukturom mase. Proporcija
moZe biti po atributivnom obiljezju, npr. ucesce cetinara 60% ili numerickom
obiljezju, npr. od ukupne drvne mase 25 % otpada na stabla pre¢nika preko
50 cm. Ako znamo sa koliko drvne mase raspolazemo, tj. koliki je total, onda

109



INFERENCIJALNA STATISTIKA: Statisticki uzorci

na osnovu prethodnih proporcija moZemo saznati koliko otpada na Cetinare,
odnosno koliko je uces¢e drvne mase preko 50 cm. Takav rezultat naziva se
kontingent.

2.1.4. Veliki i mali uzorak

U statistici postoji formalna podjela uzoraka na velike i male. Kod proporcije
se postavlja i poseban uslov. Osim toga, potrebno je voditi racuna i o relativnoj
veliCini uzoraka.

Veliki uzorci. Prikupljanje Sirokih informacija o nekoj velikoj masovnoj
pojavi zahtijeva uzimanje jako velikog broja jedinica u uzorak, ponekad i vise
hiljada. Ako je apsolutna veli¢ina uzorka preko 30 jedinica uzorci se smatraju
velikim (n > 30). Tada se zakljucivanje izvodi na bazi zakona vjerovatnoce
normalnog rasporeda. Uzorci sa manje od 30 jedinica smatraju se malim
uzorcima.

Mali uzorci. Mali uzorci se obicno koriste kod eksperimentalnih
istrazivanja. Tako, pri utvrdivanju uticaja nekog faktora, npr. dubrenja na prinos
poljoprivredne ili Sumske kulture dovoljno je uzeti svega nekoliko parcela.
Procjene koje se u statistici izvode na bazi malih uzoraka (n < 30) ne zasnivaju
se na normalnom ve¢ na t-rasporedu. Ovaj raspored je simetrican i spljosten
(razvucen) u odnosu na normalni raspored. Sa povecanjem uzorka on se
pribliZava normalnom rasporedu. Ve¢ kod n = 30 gubi se razlika izmedu ova dva
rasporeda.

Podjela uzoraka po veliCini:

Veliki uzorci n > 30, mali uzorcin < 30

Uzorci kod proporcije. Za procjenu proporcije ,traze se“ veliki uzorci po
kriterijumu da su proizvodi np i nq veci od pet. Kad je p = q dovoljna veli¢ina
uzorka je n = 10. Sto je veéa razlika izmedu p i q potreban je veéi uzorak. Na
primjer, za p = 0,9 i q = 0,1 potreban uzorak je n > 50. Primjenjuje se normalni
raspored.

Uslov za velike uzorke kod proporcije:

np>5 1 ng>5

Relativno veliki uzorci. Kod konac¢nih skupova, ako se uzimaju relativno
veliki uzorci, u statistickim formulama potrebno je koristiti tzv. faktor konac¢nosti
(FK). Relativno velikim smatraju se uzorci ¢ija je stopa izbora ve¢a od 5%.
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Relativno veliki uzorci
N-n
N-1

Ako je stopa izbora veca od 5% (n/N > 0,05) koristi se faktor FK =

Faktor konacnosti (popravni faktor) ima za cilj da smanji gresku.
Priblizavanjem veli¢ine uzorka skupu ovaj faktor tezi nuli. U slucaju izjednacenja
uzorka i skupa greska potpuno nestaje. Naravno, tada viSe nema ni uzorka.

2.2. Izbor elemenata uzorka

Razlicite situacije i ciljevi namec¢u u praksi primjenu razli¢itih nac¢ina izbora
elemenata uzorka. Osnovni princip na kome je zasnovana teorija statistickih
uzoraka je princip slucajnosti. Medutim, postoje i subjektivni nacini. Oni se
obi¢no Koriste u naucnim istrazivanjima. Dakle, izbor elemenata uzorka u
principu moze se podijeliti u dvije grupe. To su:

- objektivni (slucajni) nacin izbora i
- subjektivni (namjerni) nacin izbora.

2.2.1. Objektivni nacin izbora

Uzorci svojom strukturom elemenata treba da predstavljaju strukturu
skupa po ispitivanom obiljeZju. Zapravo uzorci treba da budu umanjena ,slika“
skupa. Sam izbor elemenata zasniva se na vjerovatnoci izbora. U objektivne
izbore spadaju:

- slucajni izbori
- sistematski izbor.

2.2.1.1. Slucajni izbor

Sluc¢ajniizbor podrazumijeva dasvakajedinicauskupuimaistuvjerovatnocu
(Sansu) da bude izabrana u uzorak. Ipak, ovako definisana sluc¢ajnost izbora
vaZzi samo za jednostavne uzorke. U Sirem smislu, slucajni izbor znaci da svaka
jedinica ima unaprijed poznatu vjerovatno¢u da bude izabrana u uzorak.
Slucajni izbor se obavlja na dva nacina:

- lutrijski izbor i
- Izbor pomocu Tablice sluc¢ajnih brojeva.

Lutrijski izbor

Lutrijski izbor u pocetku je obavljan izvlacenjem iz SeSira (posude). Kasnije
je Sesir zamijenjen bubnjem, a papiri¢i lopticama. Kod ovog izbora sve jedinice
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skupa obiljeZavaju se rednim brojevima na terenu i u kancelariji. [zvlacenjem
dobijamo redne brojeve elemenata koje kasnije pronalazimo na terenu i
premjeravamo.

Primjena slucajnog izbora kod velikih skupova rijetko dolazi u obzir
Pogodan je jedino ako raspolazemo odgovaraju¢om bazom podataka. Kod nas u
Sumarstvu obiljeZavanje i pronalazenje stabala u Sumi prakti¢no je neizvodljiv
posao. Slican problem je i kad koristimo Tablicu slucajnih brojeva.

Izbor pomoc¢u Tablice slucajnih brojeva

Provodenje slucajnog izbora elemenata znatno je olakSano izumom Tablice
slucajnih brojeva (1930. godine). Tablica slucajnih brojeva je sastavljena od
brojeva koji su poredani potpuno slucajno, tako da se u velikom nizu postize
jednaka vjerovatnoca svakog od njih. Slu¢ajnost brojeva u tablicama jednako se
ispoljava u svim smjerovima: horizontalno (lijevo ili desno), vertikalno (odozgo
ili odozdo), dijagonalno, ...). Danas se ove tablice koriste u elektronskoj formi,
tako Sto brojeve generiSe (proizvodi) racunar.

Vjerovatnoca u Tablici sluc¢ajnih brojeva

Jednocifreni brojevi Dvocifreni brojevi Trocifreni brojevi
(0-9) (00-99) (000-999)
p=1/10 p=1/100 p=1/1000

Sami moZemo sastaviti Tablicu slucajnih brojeva, tako Sto izvlac¢imo
jednocifrene brojeve ,iz SeSira“ i piSemo ih jedan pored drugoga. Brojeve svaki
put vracamo u Sesir, jer je u pitanju izbor sa ponavljanjem.

Primjer upotrebe tablice. Ovdje smo uzeli jedan mali dio Tablice iz Knjige
(3, str. 367), kako bismo prikazali njenu upotrebu (Slika 32). Pretpostavimo
da skup ima 80 jedinica (N = 80) i da pomocu Tablice slucajnih brojeva treba
izabrati uzorak od osam elemenata (n = 8).

20414 73116 53396 45514 41258 59982 90259 55178 08458 71774

00086 50389 28113 93592 82332 09778 50310 78893 84070 30868

57604 62449 59431 66212 57537 33199 84221 64024 14336 69938

Slika 32. Tablica slucajnih brojeva
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Postupak je sljedeci. Ukupan broj elemenata (N) odreduje koliko cifara
gledamo, a broj elemenata uzorka (n) koliko brojeva (elemenata) uzimamo.
Ovdje pratimo dvocifrene brojeve, gdje je najveci broj 80. Biramo osam brojeva.
Prvo treba odrediti polazno mjesto na neki nepristrasan nacin. Na primjer,
uzimacemo zadnja dva broja, u grupi od pet brojeva i i¢i horizontalno udesno,
od pocetka tablice iz gornjeg lijevog ugla. Na taj nacin ¢itamo sljedece brojeve:
prvi broj je 14, a drugi 16. Broj 96 preskacemo, jer je veci od 80. Naredni broj
14 se ponavlja pa i njega preskacemo. Slijede brojevi 58, 59, 78, 74, 13 i 32.
[zvuceni brojevi su boldirani.

Napomena: Nekad, zbog ,nedostatka“ brojeva moze se oduzimati ukupan broj (N)
od ocitanog broja (npr. 16 bi uslovno bio nas tre¢i broj, 96 - 80 = 16). O primjeni ovog
postupka odlucuje se unaprijed.

Varijante slucajnog izbora

Kod slucajnog izbora elemenata u uzorak postoje dvije varijante:

- Izbor bez ponavljanja i
- Izbor sa ponavljanjem.

Izbor bez ponavljanja. U praksi se uglavnom koristi izbor bez ponavljanja,
jer nema smisla ponovo uzimati iste elemente. To znacCi da preskacemo
ponovljene brojeve u tablici, odnosno izvucene ceduljice ne vracamo u Sesir.

Vjerovatnoc¢a izbora elemenata bez ponavljanja nakon svakog izvlaenja
postaje veca. Pocetna vjerovatnoca u naSem primjeru je bila 1/80, nakog prvog
izvuCenog broja onaje 1/79, zatim 1/78 itd. Kad su u pitanju veliki uzorci, kakvi
su najces¢e u Sumarstvu, promjena vjerovatnoce nema prakti¢ni znacaj.

Izbor sa ponavljanjem. Izbor sa ponavljanjem znaci da svaki izvuceni
broj vra¢amo u Sesir, odnosno ako se pojavi u tablici uzimamo ga ponovo. Imali
smo jedan takav primjer kod sastavljanja tablice sluc¢ajnih brojeva. Izbor sa
ponavljanjem ima viSe teorijski znacaj.

2.2.1.2. Sistematski izbor

Objektivnost izbora elemenata sistematskim nacinom obezbjeduje se
po nekom sistemu, Semi ili redu, bilo da se uzima svaki n-ti element ili svaki
element na nekom odredenom rastojanju.

Izbor po sistemu ,svaki n-ti element”

Ova varijanta sistematskog izbora takode zahtijeva obrojcavanje svih
jedinica na terenu. Skup dijelimo na jednake grupe, a onda iz svake grupe
uzimamo po jedan element. U prethodnom primjeru, u kome je N = 80, n = 8§,
dobijamo osam grupa po 10 elemenata. Svaki deseti element ulazi u uzorak. To
nazivamo korak izbora.
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Broj grupa = Korak izbora

Broj grupa (korak izbora) = N = 80 =10

n 8

Element iz prve grupe izvlaci se slu¢ajno. Recimo da je ,iz SeSira“, u kome
se nalaze brojevi od 1 do 10, izvucen broj 3. Svaki sljedeci broj dobijamo
,koracanjem“: 3 + 10 = 13, zatim 13 + 10 = 23 itd. Ovakav sistem osigurava
objektivnost, a statistika se dalje izvodi kao da se radi o slu¢ajnom izboru.

Izbor po sistemu “na odredenom rastojanju”

Ovaj sistem ne zahtijeva obroj¢avanje elemenata skupa, Sto omogucuje
njegovu primjenu pri redovnim inventurama Suma. Kako taj sistem izgleda na
primjeru jednog odjela, koji je dio jedinstvene Sire mreZe krugova prikazuje
Slika 33. Krug je uobiCajeni naziv za elementarnu povrsinu (jedinicu skupa).
Krugovi se nalaze na rastojanju svakih 100 metara i tako €ine kvadratnu mreZu.
Oni se prenose sa karte na teren.

S

100 m

Slika 33. Sistematski izbor elemenata uzorka

2.2.2. Subjektivni nacin izbora

Subjektivni izbor je nacin izbora elemenata uzorka koji nije zasnovan na
vjerovatnoci. Njegova subjektivnost potic¢e od pristrasnosti svakog lica. Postoji
viSe nacina subjektivnog izbora, kao $to su strucni izbor, metod kvota, izbor
nasumice ili po nahodenju. Kod subjektivnog izbora ne postoji moguénost
odredivanja greSke uzorka.
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Ipak, u Sumarstvu, za potrebe naucnih istraZivanja struc¢ni izbor ima veliki
znacaj. Upravo je ovaj metod koristen pri obimnim istrazivanjima nasih Suma.
Ogledne plohe su tada postavljane radi utvrdivanja prirasta i drugih obiljezja
Suma u razli¢itim uslovima (uticaj razli¢itih faktora). To nije bilo mogucée uraditi
sluc¢ajnim ili sistematskim izborom. Elementi uzorka bile su razli¢ite ogledne
plohe. One su postavljanje po stru¢nim kriterijumima, prema cilju i zadacima
istrazivanja. Objektivnost izbora ploha nije mogla biti znacajnije naruSena.
Naime, moguénost sistematskog (namjernog) biranja ploha sa ve¢im ili manjim
prirastom bila je isklju¢ena, poSto se na njima javljaju razli¢ite kombinacije
faktora. Time je opravdana primjena statistike u daljem radu. VaZno je takode
napomenuti da stru¢nim uzorkom nije moguce utvrditi stanje, kao ni strukturu
Suma.

2.3. Tipovi (vrste) uzoraka

Prirodne i drustvene pojave se razlikuju po masovnosti, strukturi i mnogim
karakteristikama. Njihovo ispitivanje pomoc¢u uzorka zahtijeva razlicite
pristupe. Tako su nastale razli¢ite vrste (tipovi, planovi) uzoraka. Mozemo ih
svrstati u dvije grupe:

- jednostavni uzorci i

- sloZeni (kombinovani) uzorci.

2.3.1. Jednostavni uzorci

Jednostavni uzorci nemaju posebna ogranicenja. To podrazumijeva jednak
pristup svim jedinicama skupa, odnosno svim dijelovima skupa iz koga se
jedinice uzimaju. Govorili smo o slu¢ajnom i sistematskom nacinu izbora
elemenata u uzorak. Ako se ostane kod izbora jedinica u uzorak na jedan od ova
dva nac¢ina imamo:

- jednostavni slucajni uzorak i
- jednostavni sistematski uzorak.

2.3.1.1. Jednostavni slucajni uzorak

Jednostavni slucajni uzorak nastaje ako se jedinice biraju na slucajan
nacin. To znaci da sve jedinice skupa imaju istu (jednaku) vjerovatnocu da ce
biti izabrane u uzorak. Iz prakti¢nih (tehnickih) razloga primjena ovog uzorka
ogranicava se na male skupove. Drugi uslov za primjenu jednostavnog slucajnog
uzorka jejednoli¢nost skupa. U Sumarstvu takve skupove predstavljaju rasadnici
ili Sumske kulture, odnosno plantaze.
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2.3.1.2. Jednostavni sistematski uzorak

Jednostavni sistematski uzorak nastaje sistematskim nacCinom izbora
jedinica. U Sumarstvu se primjenjuje sistem kvadratne mreze. Ovaj nacin ne
zahtijeva obrojCavanje na terenu, pa se moZze koristiti i za vece skupove (vece
povrsine Suma). Ipak, kad se radi o velikim skupovima primjenjuje se neki drugi
tip uzorka, npr. stratifikovani (ako se radi o nejednolicnim skupovima) ili etapni
(ako se radi o jednoli¢nim skupovima).

2.3.2. SloZeni (kombinovani) uzorci

Nekad je korisno da se izbor jedinica umjesto jednostavnog slucajnog vrsi
planski, na neki nacin kontroliSuc¢i vjerovatnocu izbora. Kod svih ovih uzoraka
zadrzan je princip slucajnosti. SloZeni (kombinovani, kontrolisani, ograniceni)
uzorci su:

- stratifikovani uzorak

- etapni uzorak

- fazni uzorak

- uzorak grupai

- uzorak nejednake vjerovatnoce izbora.

2.3.2.1. Stratifikovani uzorak

Stratifikovani uzorak se primjenjuje na velike skupove u kojima se mogu
izdvojiti dijelovi koji se izmedu sebe razlikuju po strukturi (homogenosti,
ujednacenosti). Upravo zbog takvih razlika greska procjene bila bi velika ako
bi se primijenio jednostavni uzorak (povecanje standardne devijacije u skupu
dovodi do povecanja standardne greske uzorka). Ti dijelovi skupa nazivaju se
stratumi, a postupak njihovog izdvajanja naziva se stratifikacija.

Stratifikacija ima dva cilja. Prvi smo ve¢ spomenuli. To je da se dobije bolja
(preciznija) procjena skupa u cjelini, tj. manja greska. Drugi cilj je da se dobiju
podaci za stratume. Na primjer, jedno Sumskoprivredno podrudje, tj. veliki
Sumski kompleks, statisticki gledano predstavlja veliki skup. Logi¢no je da se on
sastoji od razli¢itih $uma. Te $ume, npr. kategorije $uma (KS) mogu se uzeti kao
stratumi. Tako jedan stratum mogu biti mjeSovite Sume, drugi bukove, a treéi
hrastove Sume. Stratifikacija moZe da se radi na viSe nivoa. U nasem slucaju
mogli bismo unutar ve¢ postojeceg stratuma, recimo bukovih Suma, posmatrati
pojedine tipove bukovih Suma. Njih u stru¢noj praksi nazivamo gazdinske
klase. One bi predstavljale nove stratume. Osim za $umu u cjelini (SPP -
$umskoprivredno podruéje) nama trebaju podaci i za pojedine vrste $uma (KS
- kategorije Suma i GK - gazdinske klase).
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Zavisno od cilja stratifikacije, izbor elemenata, koji se najceS¢e vrsi
sistematskim nac¢inom, moze biti:

- proporcionalan i
- neproporcionalan.
Proporcionalan izbor. Kod ovog nacina izbora broj elemenata uzorka koji
se uzima iz pojedinih stratuma je proporcionalan (srazmjeran) broju elemenata

u njima (Slika 34). Na primjer, ako je stopa izbora 3%, onda ¢e u uzorak biti
uzeto po 3% elemenata od svakog stratuma. Ovaj izbor ima najSiru primjenu.

Slika 34. Stratifikovani uzorak

Neproporcionalan izbor. Nekad moZemo imati takvu situaciju da se
stratumi medusobno razlikuju po znacaju, npr. da je Suma u nekom stratumu
vrednija od Sume u drugom stratumu. Ako nju Zelimo bolje procijeniti, uzimamo
ve¢i uzorak u tom stratumu.

Kad pored veli¢ine stratuma uzmemo u obzir i varijabilitet dobi¢emo
poseban vid neproporcionalnog izbora koji se naziva optimalan izbor.
Pogledajmo jedan primjer. Neka jedan stratum ima 1000 jedinica, a drugi
100 jedinica. Kod proporcionalnog izbora odnos broja elemenata uzorka bio
bi 10:1. Medutim, ako je standardna devijacija (u nekim jedinicama mjere) u
prvom stratumu iznosila 5, a u drugom 20, tada se odnos bitno mijenja. Kad se
pomnoze veliCina stratuma i standardna devijacija dobija se odnos 5:2. Formule
i primjer za stratifikovani uzorak moZete pronaci u Knjizi (3, str. 221).

2.3.2.2. Etapni uzorak

Etapni uzorak se primjenjuje za velike jednoli¢ne skupove. Takav primjer u
Sumarstvusu ,nepregledne”povrsine ravnic¢arskih Suma. Primjenajednostavnog
uzorka u ovakvim situacijama nije opravdana, jer bismo ocigledno trosili puno
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vremena i sredstava za premjer jednolicne mase. Pokazalo se da je efikasniji
etapni uzorak, ¢ija preciznost ne zaostaje znacajnije za slu€ajnim uzorkom.
Etapni uzorak moZe biti dvoetapni ili viSeetapni.

Kod dvoetapnog uzorka biramo dvije vrste jedinica. U prvoj etapi biraju
se tzv. primarne jedinice, a u drugoj sekundarne jedinice. Kod ovog uzorka
svaka primarna jedinica moZe podjednako dobro reprezentovati skup (one su
medusobno sli¢ne ,kao jaje jajetu”). Sto su razlike izmedu primarnih jedinica
manje dvoetapni uzorak je efikasniji. Kod stratifikovanog uzorka bilo je suprotno
(tamo je svaki stratum morao biti zastupljen u uzorku).

Pogledajmo jedan hipoteticki primjer dvoetapnog uzorka (Slika 35).
Neka se radi o ravnicarskoj Sumi hrasta, koja je ve¢ prostorno podijeljena na
16 odjela. Odjeli ovdje mogu predstavljati primarne jedinice. Pretpostavimo
da su one jednake i da svaka ima povrSinu 20 hektara. Uzmimo dalje da svaki
hektar predstavlja jednu sekundarnu jedinicu. Neka smo slu¢ajnim izborom
izvukli u prvoj etapi pet primarnih jedinica, a iz svake od njih, u drugoj etapi,
po Cetiri sekundarne jedinice. Napomena: mjerenja vrS§imo samo na izabranim
sekundarnim jedinicama. Na slici smo oznacili sve izvucene jedinice. U Knjizi
(3, str. 227) mozete vidjeti kako se pomocu dvoetapnog uzorka procjenjuju
aritmeticka sredina i proporcija.

Prva etapa Druga etapa
1 2 3 4 N=16 M =20
n=5 m=4
5 6 7 8 //\
9 10 11 12

13 14 15 16

Slika 35. Dvoetapni uzorak

Plan uzorka moze se postaviti tako da u etapama dobijamo podatke o
razli¢itim obiljeZjima, Sto predstavlja novi kvalitet informacija. Takav uzorak
dobija naziv stepeni uzorak (dvostepeni ili viSestepeni). Na nasem prethodnom
primjeru mogli smo na primarnim jedinicama premjeravati precnike stabala,
na sekundarnim jedinicama osim precnika i visine, a debljinski prirast mjeriti
na jo$ manjim povrsinama, unutar sekundarnih jedinica. To bi bio trostepeni
uzorak.
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2.3.2.3. Fazni uzorak

Ima li razlike izmedu etapa i faza? Etape se provode u isto vrijeme na
razli¢itim jedinicama, dok se faze izvode na istim jedinicama vremenski
odvojeno. Fazni uzorak se takode primjenjuje za velike skupove, s ciljem da se
smanje troskovi. Na primjer, kod inventure Suma na velikim povrSinama snime
se tacke na terenu nekom daljinskom metodom (npr. aviosnimcima). Kasnije, u
drugoj fazi, izvrsi se korekcija rezultata na terenu na svim tackama.

Takode, utvrdivanje zapremine drvne mase nekog podrucja moze se izvesti
u dvije faze. U prvoj fazi mjerimo sve precnike i visine stabala. Nakon toga, na
manjem broju stabala nekom dendrometrijskom metodom ta¢no utvrdimo
njihovu zapreminu. Rezultat toga mogu biti zapreminske tablice, koje u drugoj
fazi iskoristimo za odredivanje zapremine svih stabala. Ovaj uzorak moZe biti
dvofazni ili viSefazni.

2.3.2.4. Uzorak grupa

Uzorak grupa karakterisSe vrlo racionalan pristup. Kod njega je tipi¢no to
da se mjerenja (ispitivanja) koncentrisu na odredena mjesta, koja se nazivaju
grupe. U Sumarstvu takve grupe koriste se u drzavnim inventurama. Tako je
bilo u I i II drzavnoj inventuri Suma u BiH. Grupe u prvoj inventuri nazivane su
traktovi, a u drugoj klasteri. Princip racionalnosti ostvaruje se tako da se tacke
(mjesta) na kojima se formiraju grupe nalaze na prili¢cno velikom rastojanju
(Slika 36). Grupe najcesce Cine po Cetiri kruga, sto je ujedno dnevna norma.
Tako se znatno smanjuju troskovi.

0 200m o 200m

2 km

Slika 36. Uzorak grupa

2.3.2.5. Uzorak nejednake vjerovatnoce izbora

Ovdje govorimo o jednom specificnom uzorku, koji se vise od 50 godina
koristi u inventuri Suma u BiH. On se naziva metod koncentricnih krugova. Kako
sam naziv kaZe radi se o viSe krugova razlic¢itog radijusa sa zajednickim centrom
(Slika 37). Primjenjuje se za izbor stabala na elementarnoj povrsini (krugu).
Krugovi su ovdje sloZene elementarne jedinice.
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Kao primjer, u nasoj praksi, na krugu radijusa 2,5 m u uzorak se uzimaju
stabla pre¢nika 5-10 cm, radijusa 4,5 m stabla pre¢nika 10-20 cm, itd do
najveceg radijusa od 25 m na kome se mjere sva stabla preko 80 cm debljine.
Metod koncentri¢nih krugova detaljno se izu¢ava u dendrometriji. Metod su
opisali profesori Ostoja Stojanovic¢ i Petar Drini¢ (rad u literaturi pod brojem 14).

Slika 37. Uzorak nejednake vjerovatnoce izbora

Osim variranja obiljeZja (agregatnih taksacionih elemenata) Sume po
povrsini postoji i varijabilitet izmedu prirodnih jedinica, tj. stabala. On se
naj¢eS¢e posmatra po debljini stabala. Varijabilitet debljih stabala (viSih
debljinskih klasa) po zapremini i prirastu vedi je nego kod tankih stabala (nizih
debljinskih klasa). Zbog toga, ali i zbog vece vrijednosti drvne mase, debljim
stablima dajemo vecu Sansu (vjerovatnocu) da udu u uzorak. U prirodnim
(prebornim) Sumama najviSe ima tankih stabala, a najmanje debelih. Kod iste
veliCine uzorka (istog radijusa) u uzorku bi bila previse zastupljena tanka stabla.
Tada bi greska procjene kod debelih stabala bila velika.

2.4. Teorijska osnova uzoraka

Na osnovu aritmeticke sredine uzorka (X) procjenjujemo aritmeticku
sredinu skupa (X ). Slucajni uzorak ¢ine elementi koji se biraju slucajno, pa
je i statistika uzorka slu€ajna promjenljiva. Postavlja se klju¢no pitanje kako
uspostaviti vezu izmedu sredine uzorka, kao slu€ajne promjenljive i sredine
skupa, kao jedne konstante. Teorija uzoraka je jedno od najteZih pitanja u
statistici. Zasniva se na teoriji vjerovatnoce.
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Teorija vjerovatnoce

Procjena greSke uzorka moguca je zahvaljujudi teoriji vjerovatnoce, koja je
zasnovana na slu¢ajnom kombinovanju elemenata.
Zato se trazi izbor na principu sluc¢ajnosti.

2.4.1. SKkup sredina uzoraka

Iz nekog skupa moZemo uzeti veliki broj uzoraka veli¢ine (n). Svaki od
parametara tih uzoraka (aritmeti¢ka sredina, proporcija i drugi) formirali bi
svoj raspored. Poznavanje karakteristika tih rasporeda je od sustinske vaznosti
u teoriji uzoraka (Slika 38).

OSNOVNI
SKUP UZORAK
(parametri nepoznati) (STATISTIKA)
PRAKSA
JEDAN
UZORAK
VELICINE "n"

Slika 38. Veza sredine uzorka (X ) i sredine skupa (X )

Teorijski broj uzoraka (k)

Postavlja se pitanje koliko se teorijski moze uzeti uzoraka veliCine n iz
jednog skupa. Taj broj zavisi od toga da li se uzorci uzimaju bez ponavljanja ili
sa ponavljanjem.

Ako skup ima samo tri elementa (N = 3), a uzorak dva (n = 2) ima¢emo bez
ponavljanja ukupno tri uzorka (k = 3). To su kombinacije brojeva: 1 2,1 31 2 3.
Taj broj uzoraka dobija se po formuli:
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N N! 31 3.2:1
kz[nJ: n(N-n)l  213-2)  2:1.(1)

Ako se uzima uzorak sa ponavljanjem broj kombinacija je mnogo vec¢i. U
naSem primjeru ima devet kombinacija (k=9):12,13,23,21,31,32,11,22
i 3 3. Njihov broj dobija se po formuli:

k=N"=3"=9
Ako se poveca broj elemenata skupa ili uzorka broj k ¢e naglo rasti. Na
primjer, kod N = 100 i n = 5, broj moguc¢ih uzoraka (bez ponavljanja) bice
75 miliona (k = 75.287.520). Sa ponavljanjem taj broj je mnogo veci. To su,

naravno, samo teorijske mogucénosti. Zato naglasavamo da se radi o vjestackim
skupovima.

Karakteristike vjeStackog skupa

Vjestacki skup, kao i svaki prirodni skup, ima karakteristike, kao Sto su:

- aritmeticka sredina,
- standardna devijacija i
- oblik rasporeda.

Aritmeticka sredina. Aritmeticka sredina vjeStackog skupa (skupa sredina
uzoraka) X jednaka je sredini osnovnog skupa (X ):

X=X

Standardna devijacija. Varijabilitet vjeStackog skupa je manji od
varijabiliteta osnovnog skupa (aritmeticke sredine su manje varijabilne od
individualnih podataka). To je logi¢no, jer ekstremne pojedinacne vrijednosti
visSe dolaze do izrazaja u osnovnom skupu, nego u uzorcima gdje se kombinuju s
ostalim vrijednostima. U statistici je izvedena (dokazana) sljedeca veza izmedu
standardne devijacije vjeStackog skupa (S ) i osnovnog skupa (S):

S

Standardna devijacija vjeStackog skupa predstavlja prosje¢no odstupanje
sredina uzoraka od prave sredine. Kako ta odstupanja smatramo pogreSnim
vrijednostima, standardnu devijaciju nazivamo standardnom greskom. Ona
zavisi od standardne devijacije u osnovnom skupu (S) i veli¢ine uzorka (n).
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Oblik rasporeda. Ako se radi o velikom uzorku (n > 30) raspored sredina
bi¢e normalan (Slika 39). Normalni raspored je osnova za procjenu parametara
skupa (sredine i drugih), a kasnije ¢emo vidjeti i za statisticka testiranja
hipoteza. Kod ovog rasporeda u intervalu 1,96 standardnih gresaka lijevo i
desno od aritmeticke sredine nalazi se 95% uzoraka (njihovih sredina). To
znaci da u praksi jedan uzeti uzorak ima vjerovatno¢u 95% da se nade u tom
intervalu, odnosno 5% da bude izvan intervala.

X-1,96S; X X+1,96S;

Slika 39. Normalni raspored sredina uzoraka

Veza osnovnog skupa i skupa sredina uzoraka

Uzmimo jedan primjer (1, str. 62). Skup ima svega Sest elemenata (N =
6), a uzorak dva (n = 2). Jedinice mjere su zanemarene. Prvo ¢emo izracunati
aritmeticku sredinu i standardnu devijaciju osnovnog skupa (Tabela 4). To su
prave (stvarne) vrijednosti skupa. Njih u praksi ne raCunamo.

Tabela 4. Osnovni skup

X X-X (X -X)?
16 2 4
20 2 4
17 1 1
19 1 1
13 -5 25
23 5 25
108 0 60
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X= Z% = %:18,00
—\2
Y(X-X
szz—( ) =% 10,00
N 6

S=+8 =410=3,16
Ako izvlac¢imo uzorke veliCine n = 2, iz naSeg skupa moZe se izvué¢i ukupno
15 slucajnih uzoraka (Tabela 5). To nam daje formula:

(NJ_ N! 6! 6-5-4-3-2.1

Tal(Non) 2i(6-2)  2(a321)

n

Radi poredenja sa osnovnim skupom, izracuna¢emo aritmeticku sredinu
i standardnu devijaciju vjeStackog skupa. Elementi ovog skupa su uzorci,
koji nastaju kombinovanjem vrijednosti po dva elementa (kolona 2). Njihove
aritmeticke sredine su obiljeZje (kolona 3).

Tabela 5. Vjestacki skup

Redni broj Kombinacije vrijednosti S;‘;‘::;{Z % -X %V
uzorka ®) X - X (Xi - X)
1 2 3 4 5
1 16 20 18,0 0,0 0,00
2 16 17 16,5 -1,5 2,25
3 16 19 17,5 -0,5 0,25
4 16 13 14,5 -3,5 12,25
5 16 23 19,5 1,5 2,25
6 20 17 18,5 0,5 0,25
7 20 19 19,5 1,5 2,25
8 20 13 16,5 -1,5 2,25
9 20 23 21,5 3,5 12,25
10 17 19 18,0 0,0 0,00
11 17 13 15,0 -3,0 9,00
12 17 23 20,0 2,0 4,00
13 19 13 16,0 -2,0 4,00
14 19 23 21,0 3,0 9,00
15 13 23 18,0 0,0 0,00

Ukupno 270,0 0,0 60,00
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X = 2X 2700 e
N 15
Xi-X
Sy Z( ) =99 _ 400
N 1

Ako uporedimo izraCunate sredine i standardne devijacije uvjericemo
se u tacnost navedenih osobina vjeStackog skupa. Prvo, da je aritmeticka
sredina vjeStaCkog skupa jednaka sredini osnovnog skupa, $to potvrduje
reprezentativnost slucajnog uzorka. I drugo, standardna devijacija vjeStackog
skupa manja je od standardne devijacije osnovnog skupa (2,00 < 3,13). Nju
smo ovdje izracunali iz originalnih podataka, Sto u praksi nije moguce. Umjesto
toga primjenjuje se izvedena formula. Za racunanje standardne greske ovdje
¢emo koristiti faktor korekcije (FK), jer je stopa izbora ve¢a od 5%. Napomena:
Dobijen je isti rezultat $to potvrduje ispravnost ove formule.

_ S k=219 .0.8022.00

*n V2

FK=\/N_n =\/6_2 ~0,89
N-1 V\e6-1

S

Da je uzorak bio n = 3 ukupno bi bilo moguce uzeti 20 uzoraka. Njihova
sredina ostala bi ista, a standardna greska bila bi manjaiiznosila bi 1,41. Sredine
uzoraka sve viSe se grupiSu oko zajednicke sredine Sto je uzorak veci. To nam
govori da se povecanjem uzorka sve viSe priblizavamo pravoj vrijednosti.

2.4.2. Skup proporcija uzoraka

Proporcije svih uzoraka ¢inice vjestacki skup, koji ima sli¢ne osobine kao i
skup sredina.

Aritmetic¢ka sredina. Proporcija vjestackog skupa (F )jednaka je proporciji
osnovnog skupa (P):
P=P

Standardna devijacija. Standardna devijacija skupa koga ¢ine proporcije
uzoraka je:

S PQ

n

ol
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S obzirom da su proporcije iz uzoraka pogresne ova standardna devijacija
naziva se standardna greska proporcije. Ona pokazuje prosjeno odstupanje
proporcija uzoraka od proporcije osnovnog skupa.

Oblik rasporeda. Raspored proporcija uzoraka ima oblik binomskog
rasporeda ako se uzimaju uzorci s ponavljanjem, a hipergeometrijskog ako
su uzorci bez ponavljanja. Medutim, kod velikih uzoraka oba rasporeda teze
normalnom rasporedu. | ovdje se potvrduje vaznost normalnog rasporeda, kroz
njegovu Siroku primjenu u praksi.

2.5. Procjena parametara skupa

U ovom poglavlju govorimo o statistickim procjenama parametara skupa
na bazi jednostavnog (slucajnog ili sistematskog) uzorka. Obi¢no procjenjujemo
aritmeticku sredinu i proporciju. Parametre u skupu nazivamo prave vrijednosti,
a parametre u uzorku statistika uzorka. Procjene su zasnovane na vjerovatnoci
teorijskog modela, uz odgovaraju¢u pouzdanost. Napomena: 1z skupa Ccije
parametre Zelimo upoznati uzima se samo jedan uzorak.

Sta procjenjujemo?

1. Aritmeticku sredinu (kvantitet) i 2. Proporciju (kvalitet - strukturu)

Izracunata vrijednost parametra iz uzorka, kao sto smo vidjeli, samo je jedna
od velikog broja mogucih vrijednosti iz vjeStackog skupa. Kako se sve te sredine
smatraju pogres$nim, tako je i sredina uzetog uzorka pogres$na. Inace, takva
procjena sa jednim brojem (tackom) naziva se tackasta procjena. Taj pristup bi
ocCigledno bio pogresan. Zato umjesto toga odredujemo interval u kome se nalazi
parametar skupa. Takva procjena naziva se intervalna procjena. U literaturi se
interval procjene jos naziva interval pouzdanosti ili interval povjerenja.

Intervalna procjena

Intervalno procjenjivanje podrazumijeva formiranje intervala u kojem se
ocekuje vrijednost parametra skupa, s odredenom vjerovatno¢om.

2.5.1. Procjena aritmeticke sredine

Raspored sredina uzoraka odgovara normalnom obliku samo pod
odredenim uslovima. U stvari, raspored sredina uzoraka ima jedan poseban
oblik, koji je opisan kao t-raspored. On je slican normalnom rasporedu, ali se
od njega razlikuje kod malih uzoraka (n < 30). Sto je uzorak ve¢i t-raspored je
sve blizi normalnom rasporedu. Kod normalnog (z-rasporeda) 95% povrsine
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ispod krive obuhvaceno je intervalom 1,96 standardnih greSaka, lijevo i desno
od sredine, dok je kod t-rasporeda taj interval Siri (za uzorak n = 15 interval
je 2,14, a za n = 5 broj standardnih greSaka je 2,78). Procjene na osnovu malih
uzoraka su nesigurnije. Zato je interval Siri nego kod velikih uzoraka (Slika 40).

bod

-2,78 -2,14 -1,96 0 1,96 2,14 2,78

Slika 40. Interval procjene u zavisnosti od veli¢ine uzorka
(iskazan brojem standardnih gresaka)

Jednacina reprezentativnog metoda

Osnovna jednacina za procjenu sredine skupa na bazi uzorka glasi:

X=X+t-s

U jednacini su:
X - aritmeti¢ka sredina skupa

X - aritmeticka sredina uzorka

t - broj standardnih greSaka (iz tablice t-rasporeda, za stepen slobode
n - 1irizik a)
S¢ - standardna greska (sredine uzorka)

ts. - greSka uzorka

Stepen slobode. Ulaz u tablicu t-rasporeda je veli¢ina uzorka umanjena
za jedan (n - 1), Sto se naziva stepen slobode. Stepen slobode je ve¢ koristen
kod racunanja standardne devijacije uzorka. Sam naziv ,stepen slobode” potice
od broja slobodnih vrijednosti u uzorku. Na primjer, kod ra¢unanja aritmeticke
sredine u uzorku od tri broja samo dva su slobodna dok je tre¢i ta¢cno odreden
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(ogranicen aritmetickom sredinom). Ako su to brojevi 5 i 10, a aritmeticka
sredina 10, treéi broj nije slobodan (mora biti 15). Stepen slobode ima znacaj
samo kod malih uzoraka, jer umanjenje za jedan ne utiCe na rezultat kad je n
veliki broj.

Standardna greska. U praksi nije poznata standardna devijacija skupa (S),
a ona nam je neophodna za odredivanje intervala procjene. Kao njena logi¢na
zamjena, u formuli za racunanje standardne greske, koristi se standardna
devijacija iz uzorka (s):

S, = —
X
Jn
Iz formule vidimo da veca standardna devijacija daje vecu standardnu
greSku, kao i to da je moZemo smanjiti povecanjem uzorka. Greska uzorka je
zapravo mjera reprezentativnosti uzorka. Ova formula ima posebnu vazZnost u
inferencijalnoj statistici, na samo kod procjena ve¢ i kod statistickih testova.

Standardna devijacija uzorka. Kod ocjenjivanja standardne devijacije
mase (skupa) oCekujemo da nam standardna devijacija uzorka bude njena
zamjena. Medutim, ispitivanja odnosa ove dvije standardne devijacije pokazala
su da formula za standardnu devijaciju uzorka pristrasno daje niZe vrijednosti,
tj. manju standardnu devijaciju od standardne devijacije u skupu. Da bi se
otklonio taj nedostatak suma kvadrata odstupanja dijeli se sa stepenom slobode
n-1, umjesto sa n. Formula za racunanje standardne devijacije uzorka glasi:

Korekcija standardne greske. Ako se povecava uzorak onda je logi¢no da
se njegova greSka smanjuje i da na kraju nestane kad se uzorak izjednaci sa
skupom. Medutim, primjenom formule za racunanje greske to se ne ostvaruje.
Ovaj nedostatak otklanja se pomocu korekcionog faktora, koji se jo$S naziva
faktor konacnosti (FK). Kad je stopa izbora manja od 5% ovaj faktor je pribliZzno
jednak jedan, pa se tada izostavlja. Formula za racunanje standardne greske sa
korekcionim faktorom glasi:

S
s. =—-FK
X \/H
gdje je:
FK — N-n
N-1
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Procjena agregata (totala)

Procjena agregata, tj. ukupne (zbirne) vrijednosti svih jedinica skupa ima
smisla samo kod obiljezja koja se mogu sabirati, drugim rije¢ima cija prosjecna
vrijednost pomnoZena sa ukupnim brojem jedinica skupa daje ukupnu masu.

Kod procjene agregata (A) ili totala (T), kao i kod procjene aritmeticke
sredine, ima¢emo takode interval procjene:

A=(X*t-s;)-N

gdje je N ukupan broj elemenata. U Sumarstvu to je najceSce broj hektara
(povrsina Sume), jer je i agregatno obiljezje iskazano kao prosjec¢na vrijednost
po hektaru. Tako nam agregat daje ukupno raspoloZivu drvnu masu nekog
Sumskog prostora ili ukupno ostvarenu proizvodnju drvne mase u Sumskom
gazdinstvu.

U prvom dijelu skripte govorili smo o podjeli obiljezja (karakteristika) Sume.
Rekli smo da obiljeZja kao $to su zapremina drvne mase ili prirast drvne mase po
hektaru spadaju u tzv. agregatna obiljezja, dok npr. srednji precnik i srednja visina

sastojine predstavljaju srednje vrijednosti. Precnike ili visine svih stabala u Sumi bilo bi
besmisleno sabirati. Za takva obiljezja agregat se ne racuna.

2.5.2. Procjena proporcije

Osim procjene prave sredine (i agregata) skupa kao zadatak ¢esto imamo
i procjenu prave proporcije (i kontingenta). Dok aritmeticka sredina daje
kvantitativnu, proporcija daje kvalitativnu informaciju o skupu, tj. informaciju o
strukturi mase po nekom numerickom ili atributivnom obiljeZju.

Proporecije se u praksi svode na dvoklasnu (dihotomnu) podjelu mase, ¢cime
se uproscuje problem istrazivanja. Skup se dijeli na jedinice koje imaju neku
vrijednost kod numerickog obiljezja ili modalitet kod atributivnog obiljezja
(oznaka p) i one koje to nemaju (oznaka g). Odatle slijedidajep + q = 1.

Da bismo na osnovu proporcije dobijene u uzorku ocijenili proporciju u
skupu pozivamo se nateorijskiraspored proporcija. Obi¢no se pribjegava velikim
uzorcima koji ispunjavaju uslove np > 5inq > 5, za koje se onda moze primijeniti
normalni raspored. Kontingent se dobija mnoZzenjem granica intervala procjene
sa ukupnim brojem jedinica (N). Jednacina za procjenu proporcije glasi:

P=pxtzs,
gdje je:
P-q
S =.——
" \n-1
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gdje je:
P - proporcija skupa
p - proporcija uzorka
z - broj standardnih gresaka (prema normalnom rasporedu)
S, ~ standardna greska proporcije

2.6. Odredivanje (planiranje) velic¢ine uzorka

Planiranje uzoraka obuhvata:

1. Izbor tipa uzorka i
2. Odredivanje velic¢ine uzorka

0 tipovima uzoraka ve¢ smo govorili. Ostalo je da nesto, vise informativno,
kazemo o odredivanju velicine uzorka. Radi se o0 kompleksnoj problematici.

Odredivanje veli¢ine jednostavnog uzorka

Polazeéi od osnovne jednaline reprezentativnog metoda moZemo doc¢i do
formule za odredivanje veli¢ine uzorka za procjenu aritmeticke sredine skupa.
Dakle, ako u formuli

Kexat. S |N=n
Jn VY N-1

zanemarimo faktor konac¢nosti i prebacimo aritmeticku sredinu uzorka na
lijevu stranu dobijamo izraz
s — S
X-X==*t-—

N

Razlika izmedu aritmeticke sredine skupa ( X ) i aritmeti¢ke sredine uzorka
(X) predstavlja apsolutnu gresku uzorka (d). Jednostavnim racunom dolazimo
do formule za odredivanje veli¢ine uzorka (n):

t?.s?

d2

n=

U Sumarskoj praksi obi¢no se uzima da je t = 2, dok standardnu devijaciju
(ako nije poznata) grubo procjenjujemo. Greska uzorka, koja se moZe tolerisati,
obic¢no bude propisana. U knjizi moZete pogledati primjere (3, str. 239).
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Umjesto prethodne Cesto se koristi prakti¢nija formula sa koeficijentom
varijacije (KV%) i relativnom gresSkom uzorka (d%):

2 2
KV,

n=
2
d%

Pojmovi koje koristimo kod planiranja uzoraka

Osnovni cilj kod planiranja uzoraka je da uzorak bude Sto efikasniji, a
to podrazumijeva preciznost i ekonomicnost, uz odgovaraju¢u pouzdanost.
Potrebno je naravno da razjasnimo ove pojmove. Njima treba dodati joS ta¢nost
rezultata.

Preciznost. Preciznost procjene parametara skupa na osnovu uzorka
odredena je intervalom procjene (J_rtsi ), odnosno greSskom uzorka (tsi).
Sto je interval procjene uZi, tj. greska uzorka manja preciznost je veca. Pri
istoj pouzdanosti, osim izborom tipa uzorka na preciznost se moze uticati
povecanjem uzorka. Pri tome treba imati u vidu ekonomic¢nost uzorka.

Ekonomicnost. Uzorak je ekonomicniji ako ima manje troskove, pri istoj
preciznosti. Pitanje troSkova odnosno izvodljivosti uzorka u Sumarstvu je
posebno vazno: dali za premjer Sume na velikom prostoru moZemo obezbijediti
dovoljno stru¢ne radne snage, koliko nam treba vremena i ho¢emo li imati
dovoljno sredstava na raspolaganju?

Efikasnost. Ako se istovremeno vodi racuna o preciznosti i trosSkovima
govorimo o efikasnosti uzorka.

Efikasnost procjene

Preciznost + Ekonomic¢nost = Efikasnost

Pouzdanost. Kada govorimo o greSci uzorka uvijek moramo naglasiti na
bazi koje vjerovatnoce je odredena ili drugim rije¢ima, kolika je pouzdanost
nase procjene. U Sumarstvu se najc¢eS¢e koristi pouzdanost 95%. Ako bismo
povecali pouzdanost na 99% interval procjene bi bio Siri, odnosno procjena bi
bila manje precizna.

Pouzdanost procjene

Vjerovatnoc¢a nakon izvrSene procjene prelazi u pouzdanost.
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Tacnost rezultata

U statistickom radu polazi se od pretpostavke da su podaci uzorka tacni, tj.
da se greske nalaze u granicama slucajnih (neizbjeznih) odstupanja. Medutim,
posebno u Sumarstvu, mogu se pojaviti sistematske i grube greSke u mjerenjima
na terenu. To su greske izvan uzorka, tzv. tehnicke greske. Ove greske se otklanjaju
povecanom paznjom i kontrolama. Dakle, vazno je razlikovati pojmove tacnost i
preciznost. Statistika je ,odgovorna“ samo za preciznost. Nas interes je, naravno,
da tacnost bude zadovoljavajuca.

TaCnost procjene

GreSka uzorka + GresSka izvan uzorka = Ta¢nost procjene

Planiranje uzoraka je sloZzena problematika kako sa stanovista statistike
tako i sa stru¢nog aspekta. U Sumarstvu se Pravilnikom za uredivanje Suma
propisuje dozvoljena greSka procjene najvaznijih obiljezja (taksacionih
elemenata) Suma. To je rezultat obimnog naucnog i stru¢nog rada. Greska se
iskazuje relativno, tj. u procentima. Napomena: Treba razlikovati greSku uzorka,
koja je jednaka priblizno dvostrukoj standardnoj gresci i gresku u zakljucivanju,
koja je obi¢no odredena unaprijed i iznosi a = 0,05.

U nasoj praksi za $iru kategoriju $uma (SKS) 1000, odnosno sve njene uZe kategorije
$uma (UKS) i gazdinske klase (GK) primjenjuje se stratifikovani proporcionalni uzorak
u vidu jedinstvene mreZe krugova 100 x 100 metara. Jedan krug ,pada“ na jedan
hektar, Sto znaci da broj krugova odgovara (jednak je) broju hektara. Na ovaj nacin vece
kategorije Suma imaju viSe krugova, tj. apsolutno ve¢i uzorak. To prakti¢no znaci da je
njihova greSka procjene uvijek manja.

UZORAK SKUP

Teorija vjerovatnoce je "most” izmedu uzorka i skupa
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Uzorci u Sumarstvu

Suma posmatrana kao statisti¢ki skup je vrlo sloZena i specifi¢na. Ne ulazeéi
u sve segmente toga naveS¢emo samo tipove uzoraka, koji se kombinuju u nasoj
praksi uredivanja, pri taksacionoj procjeni Suma. Osnovu procjene glavnih
karakteristika Sume ¢ini stratifikovani sistematski uzorak sa proporcionalnim
naCinom izbora krugova. Stratume predstavljaju Sire kategorije Suma, uZe
kategorije Suma i gazdinske klase. S obzirom da postoje obi¢ni krugovi (za
procjenu zalihe drvne mase) i detaljni krugovi (za procjenu prirasta drvne mase)
uzorak ima karakter dvostepenog uzorka. Izbor stabala na krugovima vrsi se
metodom koncentri¢nih krugova, $to predstavlja uzorak nejednake vjerovatnoce
izbora elemenata. Treba imati na umu da se pri premjeru Suma prikuplja veliki
broj informacija. O tome visSe na drugim predmetima studija.
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Vilijam Goset
(1876 - 1937)
Engleski statisticar, koji je opisao t-raspored vjerovatnoce

kod malih uzoraka. Kako se potpisivao pod pseudonimom
Student, t-test je nazvan Studentov test.

3. STATISTICKI TESTOVI

3.1. Opsti dio

3.1.1. Osnovno o statistickim testovima

Statisticke procjene nabazi uzoraka su uobicajeno sredstvo nase informacije
o razli¢itim problemima u prirodi i druStvu. Ipak, svaka takva procjena ili
zakljucivanje je manje ili viSe varijabilna (nesigurna), pa zahtijeva provjeru.
Vrsedi te provjere polazimo od tvrdnji ili pretpostavki koje nazivamo statisticke
hipoteze. Na primjer: dali je jedan nacin sadnje bolji od drugog, postoji li razlika
u debljini stabala dvije Sume, odgovara li debljinskoj strukturi neke Sume
normalan raspored, da li je neki preparat u zastiti Suma bolji od drugoga itd.
U vezi s tim, na postavljena pitanja moguca su samo dva odgovora, da ili ne.
Odgovor na ta pitanja daju statisticki testovi.

Kod statistickih testova postoje samo dva odgovora:

DA ili NE.

Nulta hipoteza (H )

Uzroci prirodnog (imanentnog) varijabiliteta u statistici se nazivaju
slu¢ajnim uzrocima. Rezultati mogu varirati i do beskonacnosti, ali je uobicajeno
da se krajevi koji iznose povrsinski 5% smatraju podrucjem gdje variranje
vise nije slucajno. Na tom principu i nultoj hipotezi zasnovano je statisticko
testiranje.

Nulta hipoteza se postavlja tako da je razlika koja se testira jednaka nuli.
Ona se prihvata ili odbacuje s odredenom vjerovatno¢om. To znaci: ako nultu
hipotezu prihvatamo razlike su statisticki slucajne, a ako je odbacujemo razlike
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su statisticki znacajne. Statisticka znacajnost ne podrazumijeva i prakti¢nu
znacajnost, jer ona zavisi od veli¢ine apsolutne razlike.

Nulta hipoteza glasi:

Izmedu testiranih vrijednosti nema razlike, tj. razlika je jednaka nuli. Nultu
hipotezu prihvatamo (ne odbacujemo) ili odbacujemo, uz rizik greske a.

Nulta hipoteza (H ), moZe se napisati na dva nacina. Ako testiramo
aritmetic¢ku sredinu to bi izgledalo ovako:

Dva tipa greSke

Prilikom testiranja moZemo napraviti dvije vrste greSaka. Ako smo
odbacili H, a ona je tacna (istinita) napravili smo gresku tipa I (oznaka a), a
ako smo prihvatili H ), a ona je pogresna, u€inili smo gresku tipa Il (oznaka (). U
prakti¢cnom radu vodimo racuna samo o gresci tipa I.

Treba imati u vidu da mi zapravo nikad ne (sa)znamo da li je naSa polazna
pretpostavka (hipoteza H ) tafna. Zato se u literaturi upozorava da nije ispravno reci
»prihvatamo HO", jer se njena tacnost ne moze dokazati, ve¢ ,ne odbacujemo HO". U
¢emu je razlika? Pogledajmo na primjeru sudenja. Sud ako nema dovoljno dokaza kaZe
optuZeni ,nije kriv‘, a ne optuZeni ,je nevin“ Time se naglaSava samo da sud nije uspio
skupiti dovoljno dokaza da optuZenog proglasi krivim, ali isto tako nije ni dokazao da
je optuZeni nevin. I ovdje, na sudu, moguce su dvije vrste greSaka: moZe se desiti da
optuZeni bude osuden iako je nevin ili da bude osloboden iako je stvarno kriv. To su
statisticki gledano greske tipa I i tipa II.

Dva koncepta testiranja

Postoje dva koncepta (nacina) testiranja. To su:
1. Klasi¢ni nacin testiranja
2. Testiranje pomocu p-vrijednosti

Mi ¢emo se prvo upoznati sa klasi¢nim nacinom testiranja, a onda, na
samom kraju, sa novim konceptom testiranja pomocu p-vrijednosti.
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3.1.2. Logika i postupak testiranja

Logika testiranja

Ako testiramo razliku izmedu sredine uzorka i sredine skupa, treba
nam neki indikator koji bi mjerio tu razliku. Ako bismo za taj indikator uzeli
apsolutnu razliku, ona bi bila iskazana u mjernim jedinicama obiljeZja i mijenjala
bi vrijednost sa promjenom mjerne jedinice. To znaci da bi takav indikator bio
beskoristan. Do rjeSenja se dolazi tako Sto apsolutnu razliku podijelimo sa
standardnom greskom, u ovom slucaju standardnom greskom sredine uzorka.
Dobijamo relativnu vrijednost, koja je zapravo rezultat statistickog testa.

Logika testiranja

Ako je H, talna (istinita) izracunata vrijednost testa Ce biti mala,
dok ¢e u suprotnom biti velika.

Formule za racunanje statistike (vrijednosti) testova su definisane
(kreirane) upravo tako da njihov rezultat bude relativan broj. Te statistike imaju
karakter slucajne promjenljive, jer se razlikuju od uzorka do uzorka. One imaju
svojraspored (model), na osnovu koga miizvodimo zakljucke o veli¢ini rezultata
testa (statisticCkom znacaju razlike). Dakle, svaki test slijedi (ima) neki teorijski
raspored vjerovatnoce. Taj raspored pokazuje vjerovatnoce za Kkonkretne
vrijednosti testa. Radi se o tzv. p-vrijednosti, o kojoj ¢emo govoriti kasnije.

Logika testiranja na bazi jednog uzorka je sljedeca. Teorijski, kad se iz
jednog skupa uzmu svi slucajni uzorci i izra¢unaju statistike testa, one ¢e imati
svoj raspored kao na Slici 41. Ako je nulta hipoteza tacna te statistike e se
grupisati oko centra rasporeda, tj. oko nule.

0 Is¢ 2s% 3s%
OPSTI OBLIK TESTA:

parametar uzorka — parametar skupa

TEST =
standardna greska parametra uzorka

Slika 41. Nulti raspored statistike testa - jedan uzorak
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Drugim rije¢ima, taj raspored koji nazivamo nulti raspored ¢e imati normalni
oblik ili oblik t-rasporeda. To znaci da moZemo, polaze¢i od pouzdanosti 95%,
prihvatiti svaku nultu hipotezu ¢ija se vrijednost testa nalazi unutar 95%
povrsine.

Kao $to smo napravili vjeStacki skup od svih mogucéih razlika sredina uzoraka
od sredine skupa tako isto mozemo do¢i do vjestackog skupa razlika sredina
izmedu dva uzorka. Razlike se ponasSaju kao slucajne varijable (promjenljive),
jer su i sredine uzoraka slucajne varijable. Oblik njihovog rasporedivanja, tj.
statistike testova (gdje svaka tacka predstavlja rezultat jednog testa) slijedi
oblik t-rasporeda, pa se primjenjuje t-test (Slika 42). Ova slika, zapravo, ilustruje
nultu hipotezu. Provodimo test i izvodimo zakljucak o udaljavanju rezultata od
nule.

i§2

S(x1—%a)

© Xifij

S(x—%;)

\

0 I18(x—x;) 28(x-%) 38z —%;)
OPSTI OBLIK TESTA:

parametar prvog uzorka — parametar drugog uzorka
standardna greska razlike parametara

TEST =

Slika 42. Nulti raspored statistike testa - dva uzorka

Veca vrijednost testa (izracunata po formuli) ukazivace na vecu razliku,
odnosno dasmo bliZe odbacivanju H . Postavlja se samo pitanje koja je to granica,
koju izracunata vrijednost testa treba da prede da bi H bila odbacena. Obi¢no
se uzima a = 0,05. Tu grani¢nu (kriticnu) vrijednost nalazimo u odgovarajué¢im
tablicama (t-rasporeda ili nekog drugog rasporeda). Nju smo koristili i kod
uzoraka, gdje je predstavljala broj standardnih gresaka prilikom odredivanja
intervala procjene.

Veza izmedu testova i intervala procjene. Izmedu testiranja hipoteza i
intervala procjene postoji oCigledna povezanost. Ako se hipoteticka vrijednost
dvosmjerne hipoteze nalazi unutar intervala procjene ona prilikom testiranja
nece biti odbacena, dok ¢e svaka druga vrijednost, koja se nalazi izvan intervala,
biti odbacena.
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Berksonov paradoks. Statisticki induktivni nacin razmisljanja kaZe da
je s povecanjem uzorka ocjena parametra skupa preciznija. Medutim, kod
dvosmjernih testova povecanje uzorka dovodi do toga da i beznacajno mala
razlika moZe postati statisticki znacajna. Razlog je smanjenje standardne greske.

Postupak (etape, koraci) kod klasi¢nog testiranja

1. Na osnovu konkretnog problema definise se nulta hipoteza.

2. Odabere se nivo znacajnosti (rizik greSke a).

3. Uzima se slucajni uzorak i raCunaju njegovi parametri (statistika uzorka).
4

. Bira se test i izracunava vrijednost (statistika) testa (izracunate vrijednosti

imaju indeks nula: z, t , F ili Zg ).

5. Oc¢itava se granicna (kriticna) vrijednost iz tablica teorijskog rasporeda
2
(tablicne vrijednosti imaju indeks jedan: z , t, F, ili %1 ).

6. Uporedi se izraCunata vrijednost testa sa tablicnom.
7. Donosi odluka o prihvatanju ili odbacivanju nulte hipoteze.
8. Izvodi zakljucak.

Napomena: Pri testiranju treba imati u vidu preduslove za primjenu nekog testa i
voditi racuna o zakljuc¢ivanju (interpretaciji rezultata).

3.1.3. Vrste i podjela testova

Vrste statistickih testova

Testovi koji se koriste za testiranje razlicitih karakteristika skupova (sredine
i drugih) baziraju se na istoimenim teorijskim rasporedima. Po njima su i dobili
nazive (Slika 43). NajceSce se upotrebljavaju:
1. z-test (cet test)
2. t-test (Studentov test)
3. F-test (Fiserov test)
4. x*-test (hi-kvadrat test)
Svi testovi (z-test, t-test, F-test i x*>-test) imaju svoje formule za racunanje
testa. Ti rezultati su standardizovane vrijednosti (relativni, neimenovani
brojevi). Nalaze se na x osi. Z-test i t-test su dvostrani testovi, bazirani na

simetri¢cnom rasporedu. T-test se koristi za testiranje razlike parametara, dok
se z-test, osim kao Skolski test, koristi kao zamjena za t-test kod velikih uzoraka.
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F-test i x*-test su jednostrani testovi, a njihovi teorijski rasporedi su desno
asimetricni. F-test se koristi za testiranje varijabiliteta preko koli¢nika varijansi,
pa se naziva test koli¢nika. Primjenjuje se u eksperimentalnim istraZivanjima, a
metod je poznat pod nazivom analiza varijanse. y*-test ima Siroku upotrebu, a
najcesSce sluzi za testiranje rasporeda frekvencija.

£(Z) Z-test () F-test
7y = 1,96 DF =?
To = |§S;x\
2,5% 2,5%
0 Z, z F
f(t)
t-test x>2-test
DF =2 DF =7
_ x=X] _
25% to == 2,5% 5= L’NtNL) 5%
0 t t 0 % X

Slika 43. Teorijski rasporedi (z, t, F, x?) i statisticki testovi
(z-test, t-test, F-test i x*-test)

Zakljucke kod testiranja donosimo uobicajeno na bazi rizika od 5%, koji se
kod z i t rasporeda ravnomjerno rasporeduje na lijevoj i desnoj strani (po 2,5%),
dok je kod F i x? testa sav rizik na desnoj strani. Kod z-testa grani¢na vrijednost
je fiksna (z, = 1,96), a kod ostalih testova zavisi od stepena slobode (DF, od engl.
Degress of Freedom).

Podjela statistickih testova

Postoje dvije klasifikacije testova: na bazi oblika rasporeda skupa i prema
broju uzoraka. Prema obliku rasporeda, testovi se svrstavaju (klasifikuju) u
dvije grupe:

1. Parametarski testovi. To su klasi¢ni testovi koji zahtijevaju poznavanje
oblika rasporeda skupa (npr. z, t i F). Oni su nastali jo$ u vrijeme kada se mislilo
da prakti¢cno postoji samo jedan, tj. normalni raspored. Dakle, oni polaze od
uslova da osnovni skup iz koga se uzima uzorak ima normalni raspored.
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2. Neparametarski testovi. Ovi testovi su novijeg datuma. Oni ne zavise od
oblika rasporeda osnovnog skupa. Njih ima veliki broj, npr: hi-kvadrat, test
medijane, Fridmanov test, Kruskal-Valisov test. Mi ¢emo obraditi samo hi-
kvadrat test. Ovaj test jednim dijelom pripada klasi¢nim testovima.

Po drugoj Kklasifikaciji, prema broju uzoraka, testovi se svrstavaju u tri grupe:
1. Testovi na bazi jednog uzorka (z-test, t-test)
2. Testovi na bazi dva uzorka (z-test, t-test, F-test)
3. Testovi na bazi tri ili viSe uzoraka (F-test).

U nasoj knjizi (3) testovi su obradeni po parametrima: testiranje sredina,
testiranje proporcija, testiranje varijansi itd. U drugoj literaturi testovi se
obraduju uglavnom prema broju uzoraka koji se koriste (testovi na bazi jednog
uzorka, testovi na bazi dva uzorka itd). Mi smo testove obradili po vrstama
(tipovima) testova: z-test, t-test, F-test i x*-test. Za drugi nivo smo uzeli broj
uzoraka, a za treci parametre. MoZe se jo$ praviti razlika izmedu testova na
bazi nezavisnih i zavisnih uzoraka, kao i izmedu dvosmjernih i jednosmjernih
testova.

3.2. Z-testi t-test

0d svih Kklasi¢nih testova najviSe se upotrebljava t-test. S obzirom na to da
se Kkoristi za testiranje razlike parametara naziva se jos ,test razlike". Obicno se
testiraju aritmetic¢ka sredina i proporcija, a rjede drugi parametri, kao Sto su
standardna devijacija, koeficijent varijacije ili koeficijent korelacije. Umjesto
t-testa moze se primjeniti z-test ako su uzorci veliki i ako je poznata standardna
devijacija osnovnog skupa.

Nulta hipoteza kod ovih testova moZe se postaviti na vise nacina, zavisno od
problema koji se rjeSava. Obi¢no se postavlja kao dvosmjerna, kada se ispituje
samo apsolutna razlika, tj. kad nije vazan predznak razlike. SloZeniji oblik je
jednosmjerna hipoteza. Mi ¢emo obraditi samo dvosmjerne hipoteze. Prvo na
bazi jednog uzorka, a potom na bazi dva uzorka.

3.2.1. Testovi na bazi jednog uzorka

3.2.1.1. Testiranje aritmeticke sredine

Formule za raCunanje vrijednosti (statistike) z-testa i t-testa izvedene su iz
jednacine procjene sredine skupa na bazi uzorka, tj. jednacine reprezentativnog
metoda. Razlika izmedu ova dva testa je samo u tome $to se standardna greska
kod z-testa racuna na bazi standardne devijacije skupa, a kod t-testa na bazi
standardne devijacije iz uzorka. Oznake u narednim formulama su poznate od
ranije.
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X
Il
>
[+
N
n

- X=X=ts,
x-X x-X
Z = t=
S, S_

X

Uzmimo jedan hipoteticki primjer. Neka je, prema tablicama, temeljnica
neke Sume 42 m?/ha. Da li ona stvarno moze biti tolika provjeravamo t-testom.
Uzimamo uzorak i raCunamo njegove parametre: velicina uzorka n = 15,
aritmeticka sredina X = 40,72 m?/ha i standardna devijacija s = 11,54 m?/ha.

Nulta hipoteza (H,) glasi:
H,: x=X

Slijedi racCunanje vrijednosti testa (t)), gdje standardnu gresku
sredine (S;) ratunamo po poznatoj formuli. Potom ocitavamo tabli¢nu
vrijednost (t,) iz tablice t-rasporeda, gdje su ulazi rizik greske (a) i stepeni
slobode (DF). Uporedujemo dvije t-vrijednosti i izvodimo zakljucak (Slika 44).

_X-X 40,72 -42,00

f,= =0,43
S, 2,98

X

s, =19 s oem? ha

Jn o 15

a=0,05; DF=(n—1)=14

t,=2,14

t, <t

Posto je izraCunata vrijednost testa manja od granicne vrijednost iz tablica
t-rasporeda konstatujemo da nema statisticki znacajne razlike izmedu sredine
uzorkaiocekivane sredine skupa. Drugimrijeima, prihvatamo H i zakljucujemo
da temeljnica na terenu odgovara temeljnici prema Sumarskim tablicama.

Zakljucivanje

Ako je t, <t prihvatamo H, a ako je t, > t, odbacujemo H , uz a=0,05.
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0,025
¥
0 043 2,14 t
I

Slika 44. t-test na bazi jednog uzorka

3.2.1.2. Testiranje proporcije

Procjena proporcije na malom uzorku je nesigurna. Na primjer, ako iz
bubnja u kome se nalaze bijele i crvene loptice izvu¢emo mali uzorak ne¢emo
moci sa sigurnosc¢u zakljuciti kakav je odnos loptica u bubnju. MoZe se desiti da
od tri izvucene loptice sve tri budu bijele. Tada bismo zakljucili da se u bubnju
nalaze samo bijele loptice. Zato se kod proporcije kao uslov postavlja uzimanje
velikih uzoraka. Kako smo vec reklj, taj uslov je:

np>5ing>5

Dakle, ako Zelimo testirati proporciju (P) u nekom skupu mi ¢emo uzeti
veliki uzorak iz tog skupa i odrediti njegovu proporciju (p). Primjeni¢emo z-test
i provesti identican postupak kao kod testiranja aritmetickih sredina. Ovdje
dajemo samo formule, a primjer pogledajte u knjizi (3, str. 281).

Nulta hipoteza za test proporcije glasi:
H;: p=P

Vrijednost z-testa racuna se po formuli:

gdje je:
z, - izraCunata vrijednost testa
p - proporcija uzorka
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P - proporcija skupa

s, - standardna greska proporcije uzorka:

Pq

S, =.——
" \Nn-1
Zakljuclivanje

Ako je z, < 1,96 prihvatamo H , a ako je z, > 1,96 odbacujemo H, (a = 0,05).

3.2.1.3. Testiranje korelacije

Testiranje koeficijenta korelacije izvodi se t-testom. Testira se (utvrduje) da
li postoji korelacija u skupu (R) izmedu dva obiljezja. Uzima se uzorak i racuna
koeficijent korelacije (r). Nulta hipoteza se postavlja tako da nema razlike
izmedu koeficijenta korelacije uzorka i koeficijenta korelacije u skupu (R), koji
se izjednacava s nulom (zato Sto testiramo postojanje korelacije u skupu). Ako
se utvrdi da je izraCunato t, manje od ¢, tabli¢no prihvaticemo H, i zakljuciti da
izmedu dva obiljezja ne postoji korelacija u skupu. U suprotnom odbacujemo
H, i konstatujemo da se koeficijent korelacije (r) iz uzorka znacajno razlikuje
od nule.

Postupak racunanja testa:

1-1°
S, =

n-2
Zakljucivanje

Ako je t, < t, prihvatamo H, Sto znaci da u skupu ne postoji korelacija,
a ako je t, > t, obacujemo H; u skupu postoji korelacija.
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3.2.2. Testovi na bazi dva uzorka

3.2.2.1. Testiranje aritmetickih sredina dva uzorka

Za testiranje razlike aritmetickih sredina dva skupa potrebna su nam dva
uzorka. Za primjer ¢emo uzeti uzorak koji ve¢ imamo (pod 3.2.1.1), dok ¢emo
za drugi pretpostaviti parametre. Neka oba uzorka imaju po 15 elemenata.
Postavljamo nultu hipotezu tako da nema razlike izmedu sredina dva uzorka,
racunamo standardnu greSku razlike sredina i statistiku testa, biramo rizik (a =
0,05), oCitavamo tabli¢nu vrijednost (t,) i izvodimo zakljucak.

PRVI UZORAK DRUGI UZORAK

X, =40,72 m’; s; =133,22 X, =35,60 m*; s3 =67,90
H,: X, =X,

_Ix —§2| _[40,72-35,60] _ 5,12

t, = =1,40
o 3,66 3,66
/s1 \/133 22 67,90 . o
o=0,05
=2,04

tl
N

DF=n +n, -2=18
t, < t,
IzraCunata vrijednost testa manja je od granicne iz tablica. Prihvatamo H i

konstatujemo da nema statisticki znacajne razlike izmedu sredina dva uzorka,
odnosno izmedu temeljnica dvije Sume.

Zakljuclivanje

Ako je t, <t prihvatamo H, a ako je t, > t, odbacujemo H, uz a=0,05.

145



INFERENCIJALNA STATISTIKA: Statisticki testovi

3.2.2.2. Testiranje proporcija dva uzorka

Za testiranje proporcija dva skupa potrebna su nam dva velika uzorka.
Postupak je slican testiranju sredina. Nakon $§to uzmemo uzorke i utvrdimo
njihove proporcije postavljamo nultu hipotezu (primjer, u knjizi 3, str. 283):

Hy: p,=p,

Formula za z-test glasi:
ZO — pl _pZ
S(pl -p2)

gdje je:
z, - izraCunata vrijednost testa
p, - proporcija prvog uzorka
P, - proporcija drugog uzorka
S(p-p,) — standardna greska razlike proporcija, racuna se po formuli:

S(Pl *132) -

Zakljucivanje

Ako je z; < 1,96 prihvata se H), a ako je z, > 1,96 odbacuje se H, (a«=0,05 ).

3.2.2.3. Test na bazi dva zavisna uzorka (test parova)

Ovo je specifican t-test. Uzorci se biraju po nekom planu, pa spada u
planiranje eksperimenata. Za dva zavisna uzorka uzimaju se parovi podataka
i raCunaju razlike svakog para (otuda naziv metod parova). Ne racunaju se
sredine uzoraka, ve¢ aritmeticka sredina razlika izmedu svih parova. Testiranje
razlike te sredine od nule je nulta hipoteza kod ovog testa:

H,: d=0

Formula za racunanje testa glasi:

o

_d-0

2
S Sq
n

t

gdje je:
t, - izracunata vrijednost testa
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d - aritmeticka sredina odstupanja
s - standardna greska sredine odstupanja (srednjeg odstupanja)

Kao i kod drugih oblika t-testa izracunata vrijednost se uporeduje s
tablicnom (t,). Ulaz u tablice, pored uobicajenog ririka od 5%, je stepen slobode
DF =n - 1, gdje je n broj parova.

Zakljucivanje

Ako je t, <t prihvata se H , a ako je t, > t, odbacuje se H, («=0,05).

U Cemu je prednost ovog testa u odnosu na obic¢ni t-test pogledajmo na
primjerima. U rasadniku za proizvodnju Sumskih sadnica Cesto ispitujemo
uticaj dubrenja na njihov rast. Kako bismo to utvrdili treba da isklju¢imo uticaje
drugih faktora, npr. plodnost zemljiSta. Parcele iste plodnosti podijelicemo na
dva dijela, jedan dubrimo, a drugi ostavljamo bez tretmana. Uzimajuci parove
podataka dobijamo zavisne uzorke.

Test parova se takode primjenjuje u slucajevima kad testiramo dva
instrumenta za mjerenje visine (uporedi¢emo ih mjerenjem na istim stablima)
ili dva razli¢ita dendrometrijska metoda (provjeravamo ih na istoj Sumi).
Konkretne primjere ovog testa pogledajte u knjizi (3, str. 278).

3.3. F-test

3.3.1. F-test na bazi dva uzorka

Testiranje varijabiliteta malih uzoraka izvodi se preko njihovih varijansi.
Nulta hipoteza kod ovog testa glasi:

ce2—=q?2
Ho.s1 S,

Koristi se F-test. Izracunate vrijednosti kod ovog testa su uvijek vece od
jedan (F, > 1), jer se iz prakti¢nih razloga uzima da je u brojniku veca varijansa,
i 2 2 ie

tj. s,? > s,% Formula testa glasi: i
S
FO = —2
SZ

gdje je:

F, - izraCunata vrijednost testa

Sl2 — veca varijansa

SZ2 — manja varijansa
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Kriticnu vrijednost F, Citamo iz tablice F-rasporeda, koja se odnosi na rizik
a = 0,05. Na primjer, ako je stepen slobode vece varijanse 8 (¢ita se u zaglavlju),
a manje varijanse 14 (Cita se u predkoloni), grani¢na vrijednost je F, = 2,70
(Slika 45).

A f(F)
F-test
DF =8
DF =14

95%
podrucje
prihvatanja H,

0 F,=2.70 F

Slika 45. F-test

Nulta hipoteza je i ovdje polazna baza za rezonovanje. Ako je ona ta¢na onda
male vrijednosti F| koje se nalaze sasvim blizu nule, ukazuju na to da se te razlike
javljaju Cesto i da nastaju slucajno. Sa poveéanjem vrijednosti testa razlike su
sve rjede i manje vjerovatne. Kad neka razlika prede grani¢nu vrijednost (ovdje
F, = 2,70), njena vjerovatnoca pada ispod 5% i tada se za svako F > F, ona
smatra znacajnom.

Zakljucivanje

Ako je F <F, prihvata se H, a ako je F > F, odbacuje se H, («a=0,05).

3.3.2. F-test na bazi tri ili viSe uzoraka (analiza varijanse)

Testiranje hipoteze o jednakosti aritmetickih sredina na bazi tri ili viSe
uzoraka ne izvodi se pomocu t-testa. U tu svrhu u statistici se koristi metod koji
se naziva analiza varijanse, skra¢eno ANOVA (od engl. analysis of variance).

Analiza varijanse se primjenjuje u eksperimentalnim istraZivanjima. Da
bismo razjasnili suStinu ovog metoda uzmimo jedan primjer. Ako u Sumskom
rasadniku Zelimo da utvrdimo da li razlic¢ita koli¢ina dubriva utice na rast biljaka
postavi¢emo eksperiment (ogled) sa tri razlicite koli¢ine dubriva (tri tretmana).
Na tri povrSine, koje se u startu nece bitno razlikovati po drugim uslovima za
rast biljaka (prije svega po plodnosti zemljiSta), primjeni¢emo razlicite koli¢ine
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dubriva, npr: ploha 1 najmanja, 2 srednja i 3 najveca koli¢ina. Nakon nekog
vremena (perioda rasta) provjericemo rezultate. Uze¢emo po jedan slucajni
nezavisni uzorak sa svake plohe i izmjeriti visine biljaka. Sematski izgled
eksperimenta sa tri uzorka dat je na Slici 46.

ol

Slika 46. Analiza varijanse

Imac¢emo dakle tri uzorka (k = 3). Na svakoj od ovih ploha biljke ¢e se po
visini razlikovati od svoje aritmeticke sredine. Varijabilitet za sva tri uzorka
(plohe) zajedno izracunac¢emo kao ponderisanu sredinu, gdje kao pondere
koristimo broj elemenata svakog uzorka (n,, n,, n,). Ovdje se radi o varijabilitetu
unutar ploha pa ga nazivamo unutrasnjivarijabilitet. Iskazujemo ga unutra$njom
varijansom.

U ovom eksperimentu potrebno je jos$ izraCunati variranje izmedu ploha.
Taj varijabilitet nazivamo vanjski varijabilitet, a predstavljamo ga vanjskom
varijansom. Racunamo prvo zajedni¢ku sredinu () za tri plohe, a onda
odstupanja sredina uzoraka od te zajednicke sredine. I ovdje vodeci racina o
broju elemenata uzoraka.

Varijabilitet ratunamo preko kvadrata odstupanja, dobijaju¢i na kraju
njihove sume. Tako ovdje imamo dvije sume kvadrata, unutrasnju i vanjsku.
Njihov zbir ¢e predstavljati ukupni varijabilitet, odnosno ukupnu sumu kvadrata
(Tabela 6). Ukupni varijabilitet je odstupanje elemenata od zajednicke sredine.

UKUPNI VARIJABILITET =
VARIRANJE IZMEDU UZORAKA + VARIRANJE UNUTAR UZORAKA

Mi treba da utvrdimo da li je dubrenje uticalo na rast biljaka, tj. da li se
aritmeticke sredine nasih uzoraka medusobno razlikuju. Nulta hipoteza u ovom
slucaju glasi:

H: X =X,= X,
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Razliku izmedu sredina necemo ispitivati direktno, ve¢ indirektno preko
varijansi, uz uslov njihove homogenosti. Logika nam kaZe, ako je vanjski
varijabilitet ve¢i od unutrasnjeg to znaci da Ce se i sredine uzoraka medusobno
razlikovati. Znacaj tih razlika utvrdujemo putem F-testa, iz odnosa vanjske i
unutrasnje varijanse.

Ako je F, < F, prihvaticemo nultu hipotezu i konstatovati da ne postoje
statisticki znacajne razlike izmedu ploha. U suprotnom, ako je F, > F,
zakljucicemo da je vanjska varijansa znacajno veca od unutrasnje, tj. da postoji
uticaj dubrenja.

Zakljucivanje
Ako je F < F, nultu hipotezu usvajamo, a ako je F > F, odbacujemo,
uz a=0,05.
Tabela 6. F-test - analiza varijanse
[zvor Stepeni Suma Varijansa

o slobode 2 F F
varijacije (DF) kvadrata (S%) 0 1

lzmedu k-1 Vanjska S?

uzoraka v
F
2 2 1

S/, (tabli¢no)
Unutar o 2
uzoraka k(n-1) Unutras$nja S,
Ukupno

(total) kn-1 Ukupna - - -

Ako je F, > F, test je pokazao statisticki znacajnu razliku, ali nije dao odgovor
na pitanje izmedu kojih uzoraka (tretmana) postoji ta razlika. U tu svrhu ranije
se primjenjivao t-test, a danas postoje testovi, kao Sto je Dankanov ili Takijev
test, pomocu kojih se istovremeno testiraju sve razlike. Vise u knjizi (3, str. 307).

Planiranje eksperimenata

Postoje dva osnovna naucna pristupa istrazivanju, posmatranjem
(mjerenjem) pojava i putem eksperimenata. Mi prirodne pojave posmatramo
uglavnom izvorno, onako kako se deSavaju, bez naSeg uticaja. Izvodenje
(odvijanje) prirodne pojave pod kontrolom istrazivaca naziva se eksperiment.
To zahtijeva planski pristup. Time se bavi posebna naucna oblast, koja se naziva
planiranje eksperimenata.
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Potreba za eksperimentima u Sumarstvu javlja se zbog toga Sto postoje
razli¢iti izvori (uzroci) varijabiliteta u Zivom biljnom svijetu (prirodi). To su:

1. Varijabilitet koji je imanentan (svojstven) prirodnoj pojavi, tzv. slucajni
varijabilitet. On se ne moZe izbjeci.

2. Uslovi, tj. prirodni faktori pod kojima se deSava pojava.

3. Varijabilitet koji nastaje zbog naseg namjernog (eksperimentalnog)
djelovanja, npr. tretman dubrenjem.

Plan (projektovanje) eksperimenata podrazumijeva izbor tipa
eksperimenta, veli¢ine i broja eksperimentalnih jedinica (uzoraka). Jedan od
najjednostavnijih eksperimenata (metod parova) smo ranije opisali. Najces¢i
tipovi eksperimenata u Sumarstvu su: jednostavni sluc¢ajni eksperiment, slucajni
blok sistem i latinski kvadrat. Za viSe od jednog faktora koriste se tzv. faktorijalni
eksperimenti. Napomena: planiranje eksperimenata spada u materiju II i III
ciklusa studija.

3.4. Hi-kvadrat test

Hi-kvadrat test ima viSestruku primjenu. Njime se testiraju frekvencije
rasporeda, tj. podudarnost stvarnih i teorijskih (oCekivanih) frekvencija. Nulta
hipoteza glasi:

HO: [zmedu dva rasporeda frekvencija nema razlike
Formula za racunanje testa po definiciji glasi:

2 =z(ns_nt)

%o
nt
gdje je:
2 . v .
Xo - izracunata vrijednost testa
n_- stvarne frekvencije

n, - teorijske frekvencije

Pretpostavimo daje broj stepena slobode DF = 6.1z tablice, za a = 0,05 ¢itamo
Xlz = 12,59 (Slika 47). Svaka nasa izracunata vrijednost testa koja je manja od
grani¢ne znaci prihvatanje nulte hipoteze, dok veca znaci njeno odbacivanje.
Primjer u knjizi (3, str. 293).

ZakljucCivanje

Ako je %o < Xi prihvata se H, a ako je Lo > Xi odbacuje, uz a=0,05.
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A f(X2)
X2—test
DF =6
95%
podrucje
prihvatanja H, 5%
0 X2 = 12,59 %

Slika 47. Hi-kvadrat test

Kod primjene ovog testa treba obratiti paznju na sljedece:

Prvo, ukoliko se razlikuju sume stvarnih i teorijskih frekvencija, razliku
treba dodati krajnjim klasama.

Zbog Cinjenice da je u krajnjim klasama cesto stvarna frekvencija velika,
a teorijske frekvencije male, izraCunata vrijednost Hi-kvadrat testa bude
pristrasno velika. Zato se prije raCunanja testa sazimaju krajnje klase i to
tako da frekvencija bude najmanje 5 (po nekim autorima 10).

Grani¢nu vrijednost ocitavamo iz tablice hi-kvadrat rasporeda. Ovdje treba
obratiti paznju na stepene slobode, koji zavise od toga kako su izracunate
teorijske frekvencije. Na primjer, kod normalnog rasporeda imaju dva
dodatna ogranicenja (sredina i standardna devijacija). Broj stepena slobode
bi¢e DF = k - 2 - 1, gdje je k broj klasa nakon sazimanja. Ako se testiraju
grupe bice DF =k - 1.

3.5. Softversko testiranje (p-vrijednost)

JoS0d 1930. godine Fiser (Ronald Fisher, 1890-1962) je zagovarao testiranje

na osnovu p-vrijednosti. Pune tri decenije vodile su se rasprave izmedu njega
i grupe statisti¢ara koje su predvodili zagovornici klasi¢nog nacina testiranja
Pirson (Egon Pearson, 1895-1980) i Nimen (Jerzy Newman, 1894-1981). Nakon
smrti FiSera 1962. godine prevladao je klasi¢ni nac¢in. Medutim, ulaskom u 21.
vijek ovaj nacin poceo je da gubi na znacaju. Racunari su postali dostupni svima,
a sa njima i raCunanje tzv. p-vrijednosti. Ona je zamijenila tablice i formule
koje se koriste kod klasi¢nog testiranja, Sto je znatno pojednostavilo postupak
testiranja.
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Sta je p-vrijednost?

P-vrijednost je vjerovatnoca izracunate vrijednosti (statistike) nekog testa,
koja se dobija konvertovanjem (preracunavanjem) vrijednosti testa na skalu od
nula do jedan. Pogledajmo logiku i znacenje ovog indikatora.

Ako je zaista nulta hipoteza taCna, statistike (rezultati) testa e se
skoncentrisati oko nule (centra rasporeda), a vrijednosti udaljavanjem od
centra postaju sve rjede. Na Slici 48 predstavljena su osjenc¢enom povrsinom
dva slucaja: kada je vrijednost testa mala i kada je ona velika. Ta osjencena
povrsina je u stvari p-vrijednost.

<ty >t
p>0,05 p<0,05
0 % b t 0 g & t
0t t—> o
lep p—0

Slika 48. Statistika testa i p-vrijednost

Vidjeli smo ranije, ako se povecava apsolutna razlika izmedu testiranih
parametara vrijednost testa (relativna razlika) se povecava. Te razlike se
smatraju slu¢ajnim sve do neke granice, koja se uobicajeno uzima iz tablica za
rizik a = 0,05. U isto vrijeme, dok se vrijednost testa povecava p-vrijednost se
smanjuje. Koliko ona treba da bude mala da bi se razlika smatrala zna¢ajnom?
Logika nam govori da p-vrijednost treba izjednaciti sa a = 0,05, tj. da grani¢na
vrijednost bude 5%. Pogledajte raniju Sliku 43 na kojoj su ove grani¢ne
vrijednosti, za Cetiri klasicna testa, predstavljene zatamnjenim povrsSinama.

P-vrijednost
P-vrijednost je vjerovatnoca izraCunate vrijednosti testa,
tj. vjerovatnoca date (tolike) razlike.

Zakljucivanje na bazi p-vrijednosti u principu je isto za sve testove. Ako je
p-vrijednost vec¢a od 5% razlike se smatraju statisticki slu¢ajnim, odnosno ako
je p-vrijednost manja od 5% razlike se smatraju statisticki znac¢ajnim.

Zakljucivanje

Ako je p > 0,05 nulta hipoteza se prihvata, a ako je p < 0,05 ona se odbacuje.
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Primjer kako se raCuna p-vrijednost

Racunanje p-vrijednosti ru¢no moguce je samo kod z-testa. Kod drugih
testova moZemo doci jedino do intervala u kojima se nalazi p-vrijednost. Zato je
njena upotreba bila dugo ogranicena. Uzecemo jedan primjer (4, str. 273).

Prilikom preuzimanja poSsiljke od 4.000 kutija keksa, deklarisane teZine 1 kg,
sa dozvoljenim odstupanjem od 20 g, slucajnim nac¢inom je odabrano 60 kutija
i ustanovljeno da njihova prosje¢na tezina iznosi 0,994 kg. Treba provjeriti da
li se proizvodac pridrzava date obaveze, odnosno da li prosjecna tezina posiljke
(kutije) stvarno iznosi 1 kg. Imamo sljedece podatke:

N =4.000 kutija, n = 60 kutija;
X =1,000 kg, x=0,994 kg, S=0,020 kg

Primjer ¢emo uraditi na dva nacina: a) klasi¢nim na¢inom (z-testom) i b)
pomocu p-vrijednosti, uz zajednicki graficki prikaz (Slika 49). Postavljamo nultu
hipotezu, koja vaZi za oba nacina testiranja:

H,:x=X

0,0102

I 0 L 72
-2,32 1,96 2,32
@) ()

Slika 49. Racunanje p-vrijednosti (a = 0,05)
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a) Klasi¢ni nacin testiranja

Za Kklasi¢no testiranje biramo z-test, jer su ispunjeni uslovi za njegovu
primjenu (veliki uzorak, n > 30 i poznata standardna devijacija skupa - S).

X-X| 10,994-1,000
Z, = = =2,32
S. 0,0026
. = > 0920 0006

" Yn V6o
Z,=196 >7,>7,

Zakljucak: Izracunata vrijednost testa veca je od tablicne, tj. odbacujemo H,,
Statisticki znacajna razlika upucuje na to da proizvodac ne postuje deklarisanu
tezinu pakovanja keksa. Na stru¢noj analizi i poslovnoj politici je da utvrde da li
postoji i prakti¢no znacajna razlika.

b) Testiranje pomocu p-vrijednosti

[zracunatu vrijednost testa, z = 2,32 preves¢emo u p-vrijednost. Rekli smo
da p-vrijednost odgovara povrsini (vjerovatnoci), koja kod z-testa ostaje na
krajevima (izvan intervala izraCunate vrijednosti testa). Dakle, trebamo samo
od ukupne povrsine, koja uvijek iznosi jedan, oduzeti dvostruku povrsinu, za
izracunato z = 2,32. Nju Citamo iz tablice povrsina normalnog rasporeda.

Z=2,32 P, =0,4898

P =1-(2-0,4898)=0,0204
P=0,0204
P<0,05— H se odbacuje

Dobili smo p-vrijednost p = 0,0204 (graficki su to dvije zatamnjene povrsine,
2 x 0,0102). Vjerovatnoca da se moZe desiti ovolika razlika u teZini pakovanja
manja je od 5%, Sto nas upucuje na isti zakljucak: razlika je statistic¢ki znacajna.

Napomena: U statisticCkom zaklju¢ivanju na bazi uzorka, bez obzira da li se radi o
procjeni ili testiranju, ne moZemo izbje¢i mogucénost nastajanja greske, drugim rije¢ima,
u nase rezultate nikada nismo 100% sigurni.
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4. REGRESIONA ANALIZA

4.1. Uvod uregresionu analizu

U prethodnim poglavljima razmatrali smo jednodimenzionalne skupove.
Medutim, prirodne pojave su obi¢no medusobno povezane, pa se ne mogu
izolovano posmatrati. Na primjer, rast Sume zavisi od dubine zemljista,
klimatskih prilika, nacina sjeCe Sume itd. Statistika zajedno sa strukom otkriva
te faktore i utvrduje njihove uticaje. Metod koji tome sluzi naziva se regresiona
analiza. To je jedan od najvaznijih statistickih metoda u oblasti Sumarstva.

Dakle, u ovom poglavlju prelazimo na dvodimenzionalne skupove. To mogu
biti skupovi sa dva obiljeZja na istim elementima (npr. pre¢nik i visina stabala)
ili zdruZeni parovi podataka (prinos i vlaga) - Slika 50. Kasnije ¢emo vidjeti
slucajeve sa viSe od dvije promjenljive, tj. viSedimenzionalne skupove.

N s Nt Y - zavisna promjenljiva Y - zavisna promjenljiva
(visina stabla) (prinos)
STVARNI TEORIJSKI REGRESIJA REGRESIJA
RASPORED RASPORED
FREKVENCIJA FREKVENCIJA
OBILJEZJE SLUCAJNA PROMJENLJIVA nezavisna promjenljiva nezavisna promjenljiva
X X (pre¢nik stabla) X (vlaga) X

Slika 50. Prelaz sa jednodimenzionalnih na dvodimenzionalne skupove

Kod jednodimenzionalnih skupova, u deskriptivnoj statistici, posmatrali
smo samo jedno obiljezje (X). To obiljezje nalazilo se na x-osi, dok su na ordinati
bile frekvencije. Kad smo presli na uzorke oslanjali smo se na teorijske rasporede
frekvencija, u kojima je nase obiljezje (X) posmatrano kao slucajna promjenljiva.
Sada, kod regresije obiljezje (X) predstavljanezavisnu promjenljivu, a na ordinati
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se pojavljuje drugo obiljeZje, kao zavisna promjenljiva (¥). Na pocetku ¢emo se
upoznati s osnovnim pojmovima: matematicka i statisticka veza, korelacija i
regresija, viSestruka i neto regresija.

4.1.1. Matematicka i statisticka veza

Veza izmedu pojava moZe biti:

1. Matematicka (funkcionalna) i
2. Statisticka (stohasticka)

Matematicka veza

Matematicka (funkcionalna) veza je takva veza gdje se jedna pojava
(zavisna promjenljiva) u potpunosti moze odrediti na osnovu druge pojave
(nezavisne promjenljive). To znacCi da uvijek odredenoj vrijednosti X odgovara
tacno odredena vrijednost Y (Slika 51).

Y A 5 Y A 5
MATEMATICKA STATISTICKA
VEZA VEZA
Y1 r - ?1 -
| y=a+bX+cX? I g=a+bX+cX?
| |
| |
X, X X, X

Slika 51. Matematicka i statisticka veza

Statisticka veza

Statisticka (stohasticka) veza je takva veza u kojoj nezavisna promjenljiva
(X) ne odreduje u potpunosti zavisnu promjenljivu (Y). Za neko X ne dobija
se tatno odredeno Y, ve¢ priblizno - procijenjeno, najvjerovatnije, srednje,
izravnato. To je zato Sto na Y uticu i drugi neobuhvaceni faktori, prisustvo greSaka
mjerenja, kao i aproksimacija (nesavrsenost) funkcije. Zato se ova veza naziva
i stohasticka (stohastika grc. = ono Sto je vjerovatno). Osim toga, u literaturi
se jo$ naziva korelaciona veza. Za matematicku vezu dovoljna je funkcija, dok
statisticku vezu, pored funkcije, odreduju jo$ standardna greska i jacina veze.
[zmedu ove dvije veze razlika je u rezultatu.
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4.1.2. Korelacija i regresija

Nas prvenstveno zanimaju statisticke veze. One mogu biti:

1. Ciste statisticke veze (korelacija) i
2. Uzrocne statisticke veze (regresija).

Korelacija

Sve one veze izmedu pojava u kojima se ne moze utvrditi Sta je uzrok, a Sta
posljedica nazivamo korelacijom. Pogledajmo nekoliko primjera.

Debljina kore stabala na osojnoj (sjevernoj) i prisojnoj (juznoj) strani se
prate, ali ne mozemo reci da debljina kore na jednoj strani zavisi od debljine
kore na drugoj strani ili obrnuto. Mjerenjem prirasta na dva razli¢ita nacina
dobijamo podudarne (saglasne) rezultate. Duzina ruku i duZina nogu kod ljudi
se prati, oni koji imaju duZe ruke po pravilu imaju i duze noge. Medutim, ne
mozemo reci da duzina ruku zavisi od duzine nogu ili obrnuto.

U navedenim primjerima vidimo da izmedu pojava postoji meduzavisnost
(lat. “correlatio” = meduzavisnost). Korelacijom se utvrduje samo jacina veze
(stepen slaganja) izmedu pojava. Njome se ne objasnjavaju pojave. Uzroke
veza treba traZiti u drugim naukama (fiziologija i slicno). Korelacija se izraZava
koeficijentom korelacije (r), koji moze imati vrijednosti izmedu -1 i +1.

Nonsens korelacija. Treba imati u vidu da izmedu pojava u prirodi Cesto postoji
visok stepen slaganja (korelacije), iako one ne zavise jedna od druge. Radi se o nonsens
ili nelogicnoj korelaciji. Na primjer topljenje asvalta i rojenje pCela su pojave povezane
sa visokom temperaturom, a ne medusobno. U podrudjima gdje su intervenisali
vatrogasci obi¢no su vece Stete od pozara, nego tamo gdje nisu. Zakljuc¢ak da vatrogasci
prouzrokuju vecu Stetu bio bi besmislen. U selima gdje ima viSe roda rada se vise djece.
Zakljucak da rode donose djecu takode nema smisla.

Specifican primjer korelacije iz Sumarstva. U Sumarskoj praksi Cesto se koristi
veza izmedu visine (h) i precnika (d) stabala. Radi se o Kklasi¢noj korelaciji, jer ne
moZzemo reci Sta od Cega zavisi, visina od precnika ili obrnuto. Medutim, mi vezu ova dva
obiljezja posmatramo kao regresiju. Za zavisnu uzimamo visinu, a za nezavisnu precnik.
To ¢inimo iz prakti¢nih razloga, jer precnik lakse i sigurnije mjerimo. Osim toga, prec¢nik
sluzi kao zamjena za starost.

Regresija

Sve one veze u kojima se moze utvrditi Sta je uzrok, a Sta posljedica nazivaju
se regresione veze (lat. regressio = uzvracanje, nazadovanje). Na primjer, rast
biljaka i vlaga zemljiSta. Znamo (logi¢no je) da rast biljaka zavisi od vlage, a
ne obrnuto. Kakvog je oblika ta zavisnost odreduje se funkcijom (regresionom
jednacinom), a koliko je izabrana jednacina, dobra“ (kvalitetna) pokazuje njena
standardna greska (s,) i koeficijent determinacije (r?).
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Regresiona analiza

Regresiona analiza je metod za procjenu i predvidanje neke pojave
na osnovu jedne ili vise drugih pojava.

Prvi put pojam regresija upotrijebio je engleski nau¢nik Galton 1885. godine,
prilikom ispitivanja nasljednih osobina. Otkrio je da visina sinova prema visini oCeva
pokazuje nazadovanje (regresiju). PoCetkom XX vijeka Pirson je pocCeo primjenjivati
statisticke metode zasnovane na Galtonovoj teoriji i od tada se pojam regresije koristi
za sve metode koje ispituju zavisnost izmedu pojava (bez obzira da li se radi o progresiji
ili regresiji).

4.1.3. ViSestruka i neto regresija

Regresiona analiza (regresija) sluzi za utvrdivanje zavisnosti jedne pojave
(Y) od neke druge pojave (X) iliviSe drugih pojava (X, X, X, ...). Pojavu Y nazivamo
zavisna promjenljiva, a X, X, X, ... nezavisne promjenljive (faktori). Ako se uzima
u obzir samo jedna nezavisna promjenljiva (X) radi se o jednostavnoj regresiji,
a ako se u jednacinu regresije ukljuce dvije ili viSe nezavisnih promjenljivih
(X, X, X, ...) govorimo o viSestrukoj regresiji.

U viSestrukoj regresiji ¢esto se posmatra uticaj samo jedne (nezavisne)
promjenljive na zavisnu promjenljivu (neto uticaj). Pri tome se ostale nezavisne
promjenljive isklju€uju (izoluju), tako $to se uzimaju kao konstantne (najcescée
kao prosjecne vrijednosti iz uzorka). Taj postupak se naziva neto regresija.

4.2. Podjela statistickih veza

Statisticke veze dijelimo po viSe osnova: po matematickom obliku, po
smjeru veze i po broju nezavisnih promjenljivih. Postoje i specijalni oblici veza.
Po matematickom obliku:

- linearne (pravolinijske)
- krivolinijske (sve ostale, naj¢es¢e parabola drugog reda).

Po smjeru veze:

- rastuce (s povetanjem nezavisne promjenljive raste zavisna promjenljiva)
- opadajuce (s povecanjem nezavisne promjenljive opada zavisna promjen-
ljiva).

Po broju nezavisnih promjenljivih:

- jednostavne (Y zavisi od jedne promjenljive - X, pri cemu su ostale zane-
marene)

- viSestruke (Y zavisi od najmanje dvije promjenljive - X, X, ..., pri cemu su
ostale zanemarene).
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Specijalni oblici statistickih veza:

- kvalitativna korelacija (odnosi se na atributivna obiljezja)
- korelacija ranga (veze izmedu rangiranih, a ne mjerenih vrijednosti)
- trend (vremenske serije u kojima se posmatra pojava tokom vremena).

4.3. Dijagram rasturanja

Na osnovu strucno-logickog zakljucivanja (kvalitativne analize) i dijagrama
rasturanja (kvantitativne analize) utvrdujemo:

- dali postoji vezai
- koji se matematicki oblik funkcije moze prilagoditi toj vezi.

AKko posmatramo istovremeno dva obiljezja, bilo na istim jedinicama
(precnik i visina stabla na primjer) ili uparena obiljezja (visina biljaka i vlaga
u zemljistu) imacemo nove jedinice skupa (uzorka) u vidu parova podataka.
NanoSenjem tih parova podataka XY u koordinatni sistem dobijamo graficki
prikaz koji se naziva dijagram rasturanja.

Dijagram rasturanja

Dijagram rasturanja je prikaz svih parova podataka u koordinatnom sistemu.

Ako su tacke nepravilno razbacane ili u obliku kruga, tj. tako da se kroz
njih ne moZe povudi (interpolisati) neka funkcija, zakljucujemo da ne postoji
statistiCka veza. Ako u rasturanju tacaka pak uvidamo neku pravilnost
zakljuCujemo da izmedu promjenljivih postoji veza (Slika 52). Ona moZe biti u
obliku prave ili krive linije. U Sumarstvu se uglavnom koristi parabola drugog
reda. Radi jednostavnosti i lakSeg razumijevanja statistickih veza u nastavku
¢emo govoriti samo o linearnim vezama.

a) nema statisticke b) linearna veza c) paraboli¢na veza
Y veze Y . Y

X X X

Slika 52. Dijagram rasturanja
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4.4. Odredivanje parametara regresione jednacine

Nakon Sto smo utvrdili da postoji veza i odabrali njen oblik sljedeci korak
u regresionoj analizi je odredivanje parametara odabrane jednacine. U principu
postoje dva nacina. To su graficko-racunski nacin i analiticki (racunski) nacin
odredivanja parametara, poznat kao metod najmanjih kvadrata.

4.4.1. Graficko-racunski nacin

Graficko-rac¢unski metod uglavnom je koriSten dok nisu postojali racunari.
Metod je jednostavan i razumljiv, ali subjektivan. Naime, nakon $to nacrtamo
dijagram rasturanja liniju izravnanja povla¢imo proizvoljno (,,od oka“). Pri tome
nastojimo da odstupanja iznad i ispod linije budu $to manja i pribliZno jednaka
(Slika 53).

Y A
Y, -
¥=a+bX
Y, =a+bX;
Y,=a+bX,
Yl‘ a=?
b=?
X, X, X

Slika 53. Graficko-racunski nacin odredivanja parametara

Nakon toga slijedi jednostavan postupak odredivanja parametara. Za pravu
liniju uzimamo dvije proizvoljne vrijednosti X, i X, (obi¢no malo razmaknute)

i za njih oCitamo vrijednosti Y, i Y,. Kad uvrstimo sve te vrijednosti u dvije

jednacine sa dvije nepoznate, parametre a i b dobi¢emo rjeSenjem jednacina.

4.4.2. Metod najmanjih kvadrata (MNK)

Jednacina (linija) regresije mora da ispuni dva uslova:
(%i-Y)=0
—~ 2
(Y- V) = MiN
Ovo su poznata svojstva aritmeticke sredine, kod koje smo racunali

odstupanja pojedinacnih vrijednosti obiljeZja od jedne konstante. Ovdje se
radi o odstupanjima stvarnih vrijednosti (Y,) od viSe sredina povezanih linijom
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(?i). Po drugom uslovu, da suma kvadrata odstupanja mora biti minimalna,
ovaj nacin raCunanja parametara je dobio naziv metod najmanjih kvadrata.
Tako dobijena linija ima najmanju standardnu devijaciju, odnosno najmanju
standardnu gresku.

Metod najmanjih kvadrata

Metod najmanjih kvadrata daje parametre funkcije koja ima najmanju
standardnu gresku.

U linearnoj regresiji Y=f{X), odnosno Y=a+bX govori se o zavisnosti Y od X.
Parametar “a” pokazuje koliko iznosi zavisna promjenljiva (Y) kad je nezavisna
promjenljiva (X) jednaka nuli. Geometrijski to je tacka u kojoj linija regresije
presijeca Y osu. Parametar “b” pokazuje koliko se mijenja zavisna promjenljiva
(V) kad se nezavisna promjenljiva (X) poveca za jedinicu. Geometrijski ,b"“
predstavlja nagib prave. Ako je ovaj parametar pozitivan radi se o rastucoj, a

ako je negativan o opadajucoj regresiji.
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Primjer

U cilju ispitivanja zavisnosti vremena potrebnog za kresanje grana (Y) od
precnika stabla (X) na terenu su prikupljeni podaci za 22 stabla smrce (Tabela
8). Primjer je iz naSe knjige (3, str. 126). Isti primjer koristi¢cemo u nastavku za
racunanje standardne greske i koeficijenta determinacije.

Tabela 8. Regresija - radna tabela za racunanje parametara (MNK)

oYX XY vy (%) (vey)
(cm) (min)
25 1,13 625 28,25 1,2769 1,08 0,05 0,0025
30 1,80 900 54,00 3,2400 2,17 -0,37 0,1369
32 2,71 1024 86,72 7,3441 2,60 0,11 0,0121
40 4,26 1600 170,40 18,1476 4,35 -0,09 0,0081
44 4,35 1936 191,40 18,9225 522 -0,87 0,7569
47 5,85 2209 274,95 34,2225 5,88 -0,03 0,0009
50 6,19 2500 309,50 38,3161 6,53 -0,34 0,1156
50 6,68 2500 334,00 44,6224 6,53 0,15 0,0225
52 6,73 2704 349,96 45,2929 6,97 -0,24 0,0576
54 8,48 2916 457,92 71,9104 7,41 1,07 1,1449
56 7,17 3136 401,52 51,4089 7,84 -0,67 0,4489
58 7,56 3364 438,48 57,1536 8,28 -0,72 0,5184
60 9,11 3600 546,60 82,9921 8,71 0,40 0,1600
62 9,17 3844 568,54 84,0889 9,15 0,02 0,0004
65 10,30 4225 669,50 106,0900 9,81 0,49 0,2401
61 8,60 3721 524,60 73,9600 8,93 -0,33 0,1089
54 7,45 2916 402,30 55,5025 7,40 0,05 0,0025
35 3,65 1225 127,75 13,3225 3,26 0,39 0,1521
48 6,77 2304 324,96 45,9329 6,10 0,67 0,4489
57 8,00 3249 456,00 64,000 8,06 -0,06 0,0036
43 5,42 1849 233,06 29,3764 5,00 0,42 0,1764
70 10,80 4900 756,00 116,6400 10,90 -0,10 0,0100
1093 142,18 57247  7706,41 1063,6632 142,18 0,00 4,5282
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Na osnovu dijagrama rasturanja (Slika 54, lijevo) zakljucili smo da postoji
linearna statisticka veza, izmedu vremena kresanja grana (zavisne promjenljive)
i pre¢nika stabala (nezavisne promjenljive). OpSti oblik te veze je:

—~

Y, =a+bX,
Y A Y A
10 ) 10
¥, =-4,38 +0,2182 X,

8 | 8 i *

\'-\ L9
6 K 6
4 4 1
2 . 2

25 30 35 40 45 50 55 60 65 70 X 25 30 35 40 45 50 55 60 65 70 X

Slika 54. Dijagram rasturanja (lijevo) i regresiona jednacina (desno)

Uslov metoda najmanjih kvadrata glasi:

(¥ %) = a

>(Y, ~a-bX,) = MIN

Ovaj izraz ¢e biti u minimumu kad prvi parcijalni izvod po parametru a i prvi
parcijalni izvod po parametru b izjednac¢imo s nulom:

23(Y, —a—bX;)(-1)=0
2%(Y, —a—bX,)(-X;)=0

Sredivanjem ovih izraza dobijamo dvije normalne jednacine, gdje je n broj
parova:

na+b2X =2,
aX X, +bXX’=XX)Y,

Vrijednosti parametara izracuna¢emo uvrstavanjem dobijenih suma iz radne
tabele:

22a+1,093b = 142,18
1,093a + 52,247b = 7.706,41
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RjeSenjem ove dvije jednacine sa dvije nepoznate dolazimo do vrijednosti
parametara:

a= —4,379535; b=0,218234

Napisimo jednalinu regresije, s tim da ¢emo parametre zaokruziti na
logic¢an broj decimala:

—~

Y, = —4,38+0,2182X,

Sada moZemo ucrtati liniju regresije na na$ dijagram rasturanja (Slika 54,
desno).Dovoljno je daizraCunamo procijenjenje vrijednosti zavisne promjenljive
za dvije vrijednosti nezavisne promjenljive i te tacke spojimo pravom linijom.
Time smo napravili novi korak u postupku regresione analize. Slijedi nam
utvrdivanje kvaliteta procjene, odnosno mjera reprezentativnosti.

4.5. Standardna greska regresije (s,)

Nakon izraCunavanja parametara regresione jednacine potrebno je jos
utvrditi standardnu gresku regresije (s,) i koeficijent determinacije (r®). Ove
dvije mjere kvaliteta regresije koriste se zajedno.

Standardna greska regresije je apsolutna mjera variranja stvarnih podataka
oko linije procjene. To je zapravo standardna devijacija, definisana kao prosje¢no
odstupanje stvarnih (mjerenih, originalnih) vrijednosti Y, od procjenjenih
vrijednosti ?i. Racuna se kao kvadratna sredina. Svako pojedinacno odstupanje
od linije je u stvari pogresna vrijednost, pa se ova standardna devijacija naziva
standardna greska (Slika 55).

Yi A

\/

Slika 55. Standardna greska
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Aritmetickasredina, kao $to od ranije znamo, je jednavrijednost (konstanta).
Aritmeticka sredina naSe zavisne promjenljive, pojave koju ispitujemo, ako
je prikazemo grafi¢ki bi¢e horizontalna linija (). Udaljenost svake tatke od
linije ¥ predstavlja njeno ukupno odstupanje (ukupni varijabilitet). To vazi i
za taCku A, Cije odstupanje se sastoji iz dva dijela: odstupanja procijenjene
vrijednosti ({{i) od aritmeti¢ke sredine (Y) i odstupanja stvarne vrijednosti
(Y) od procijenjene vrijednosti ({{i). Prvi dio smatramo objaSnjenim, a drugi
neobjasnjenim varijabilitetom. To se moZe napisati ovako:

- 9)=(3 )+

Da bismo dobili mjeru preciznosti moramo uzeti u obzir sva odstupanja.
Posto je zbir linearnih odstupanja jednak nuli prvo ¢emo ih kvadrirati, a potom
sabrati. MoZe se lako dokazati da je ukupna suma kvadrata jednaka zbiru
objasnjene i neobjasnjene sume kvadrata. Ako ove sume podijelimo s ukupnim
brojem parova u skupu (N) dobijamo tri varijanse, za koje takode vazi aditivno
svojstvo:

-9 _E(E-Y)
N N N

2_ 2,2
Sy =S; *s,

2 . .
s, - varijansa ukupnog odstupanja,

2 . v .
S, - varijansa objaSnjenog odstupanja i

2 .. . v s .
S, - varijansa neobjaSnjenog odstupanja

Varijansa neobjasnjenog odstupanja (Sf) naziva se varijansa regresije, a
njen korijen standardna greska regresije (8,). Standardna greska predstavlja
prosjecno odstupanje stvarnih vrijednosti od linije regresije. Ako je ona manja
znaci da je procjena preciznija.

Standardna greska

Standardna greska je apsolutna mjera kvaliteta regresione jednacine.
Dobija se kao korijen iz varijanse neobjaSnjenog odstupanja.

Standardnu greSku moZemo izrac¢unati po definiciji ili po radnoj formuli.
Iskoristicemo nas$ prethodni primjer (Tabela 8). Napomena: Kod racunanja
varijansi u skupu se sume dijele sa N, a u uzorku s brojem stepena slobode (u
jednostavnoj regresiji sa n-2).
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a) Po definiciji

o XY Y
t n-2
) _ 4,5282

si=—y = 0.22641

s, = 0,46 min

b) Po radnoj formuli

2 = ZY12 —a2 Y, -b2 XYY,

t

n-2
sf _ 1063,6632 +4,379535-142,18—0,218234-7706,41 _ 4,5282 = 0,22641
20
s, =0,46 min

ZakljuCujemo da utroSeno vrijeme za kresanje grana u prosjeku odstupa od
linije procjene 0,46 minuta.

4.6. Koeficijent determinacije (1?)

Mjera statisticke (stohasticke) veze treba da bude neki broj, koji u nekim
granicama pokazuje stepen veze - od odsustva do potpune veze. Postoje dvije
takve mjere. To su koeficijent korelacije (r) i koeficijent determinacije (r?). U
regresiji govorimo o koeficijentu determinacije.

Prethodno smo vidjeli da se ukupni varijabilitet Si sastoji iz dva dijela:
objasnjenog S; ineobjasnjenog Sf varijabiliteta. Iskazali smo to preko varijansi.
Ako u odnos stavimo objasSnjeni prema ukupnom varijabilitetu dobi¢emo
relativni broj koji se naziva koeficijent determinacije (r?). Ovaj Koeficijent
determiniSe (pokazuje) u kojoj mjeri (procentu) je Y odredena sa X. Vrijednost
ovog koeficijenta moZe se naci u intervalu od nula do jedan, odnosno 0 - 100%
(Slika 56). Formula glasi:

[\
5]
<> N

N

w2
<
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Ako od ukupnog varijabiliteta, tj. od jedinice, oduzmemo neobjasnjeni dio
varijabiliteta dobi¢emo drugu formulu za ra¢unanje koeficijenta determinacije.
Nju ¢emo iskoristiti da izracunamo koeficijent determinacije u nasem primjeru.
Varijansu greske imamo izracunatu (ona iznosi 0,22641), a varijansu ukupnog
variranja uze¢emo iz knjige, str. 158 (ona iznosi 6,58183).

2
1o 8oy 92200y 0344 20,9656
s 658183

y

Zaklju¢ak: Zavisna promjenljiva (vrijeme za Kresanje grana) mozZe se
objasniti sa 96,56% pomocu nezavisne promjenljive (pre¢nikom stabala), dok
se ostatak od 3,44% pripisuje drugim neobuhvacenim faktorima. Zavisnost
je ovdje veoma visoka (radi se o hipotetickim podacima). U praksi se smatra
visokom stohastickom vezom ako je koeficijent determinacije iznad 50%.

Napomena: Koeficijent determinacije moze se definisati i na druge nacine. Takode,
postoje i radne formule za njegovo ru¢no racunanje (o tome u knjizi, 3).

Koeficijent determinacije

Koeficijent determinacije je relativna mjera kvaliteta regresije, koja pokazuje
stepen odredenosti (objaSnjenosti) zavisne promjenljive (ispitivane pojave).

r’=1 r’=0,8 r’=0,6 r2=0

1,0=1,0+0,0 1,0=0,8+0,2 1,0=0,6 +0,4 1,0=0,0+1,0

Slika 56. Koeficijent determinacije

Koeficijent determinacije smatra se najboljom mjerom kvaliteta regresione
jednacine, jer:
- je razumljiv za tumacenje,
- predstavlja relativnu mjeru, Sto omogucava razliita poredenja,
- na osnovu njega lako se izracunava koeficijent korelacije.
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Koeficijent korelacije (r) pokazuje stepen linearne meduzavisnosti X1iY, u odnosu
na funkcionalnuvezu. MozZeiznositiod-1do 1 (od potpune negativner=-1, preko potpune
nezavisnosti r = 0, do potpune pozitivne meduzavisnosti r = 1). Koeficijent korelacije
obuhvata sve faktore koji uticu na promjenljive X i Y, dok koeficijent determinacije
predstavlja zajednicki varijabilitet Xi Y. Kod r = 0,20 koeficijent determinacije r? iznosi
svega 0,04, odnos 4% . Koeficijent korelacije racuna se samo u slucajevima kada zelimo
utvrditi koliko se pojave slazu, tj. kolika je korelacija (meduzavisnost) izmedu njih. Tada
nam nije vazno $ta je Y, a Sta X. Na primjer, postignuti rezultati studenata na razli¢itim
predmetima.

Kako se tumaci veli¢ina koeficijenta korelacije? Tumaci se u zavisnosti od situacije.
Na primjer, ako bismo dobili r = 0,7 kod korelacije izmedu teZine studenata danas i
prije 10 dana to je jako mali koeficijent. Ocekivali bismo gotovo potpunu saglasnost
(koeficijent vrlo blizu jedan), jer je u pitanju tezina kod istih studenata.

4.7. ViSestruka regresiona analiza (VRA)

Do sada je bilo govora o jednostavnoj regresiji. Medutim, rijetko moZemo
objasniti neku pojavu na osnovu samo jednog faktora. Na primjer, na debljinski
prirast stabala utice viSe faktora. To su: precnik ili starost stabla, kvalitet
(bonitet) stanista, stepen sklopa (gustina Sume), srednji prec¢nik sastojine
(debljinska struktura) i drugi. Ako u regresionu analizu uzmemo dva ili vise
faktora govorimo o visestrukoj regresionoj analizi. Pri tome se postavlja visSe
pitanja: koliko faktora uzeti, koje faktore odabrati i kakvog je oblika njihov
pojedinacni uticaj. To se rjeSava od slucaja do slucaja, na osnovu strucnog
znanja i statistickih pokazatelja. Neko pravilo je da broj faktora, koje u regresiji
nazivamo nezavisne promjenljive (varijable), bude izmedu tri i pet (Slika 57).

Obi¢no se u pocetnoj fazi istrazivanja metodom regresione analize koristi
korelaciona matrica. Softveri omogucavaju tabelarni prikaz koeficijenta korelacije (r)
izmedu velikog broja potencijalnih varijabli (promjenljivih). Tako saznajemo koje pojave
su povezane i koliko je ta veza jaka. Treba napomenuti da postoje dva tipa regresionih
jednacdina. Ako izmedu nezavisnih promjenljivih ne postoji ili je mala korelacija, u
regresionoj jednacini njihovi uticaji se sabiraju. To je tzv. aditivni model. Medutim, ako
su nezavisne promjenljive medusobno zavisne onda one u regresionoj jednacini jedna
drugu zamjenjuju ili nadopunjuju. Tada se radi o tzv. supstitutivnom modelu.

Visestruka regresiona analiza

Ako neku pojavu statisticki objaSnjavamo sa dvije ili viSe drugih pojava taj
metod nazivamo viSestruka regresiona analiza.

Postupak kod VRA, kao i kod jednostavne regresije, sastoji se od odredivanja
parametara jednaCine, standardne greSke regresije (s,) 1 Kkoeficijenta
determinacije (r?). Glavni kriterijum kod ocjene kvaliteta regresione jednacine
je koeficijent determinacije. On pokazuje koliko zavisnu promjenljivu (Y)
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odreduju (objasnjavaju) nezavisne promjenljive (X,, X,, X, itd). Metodom
viSestruke regresije ocjenjujemo (procjenjujemo) i predvidamo zavisnu pojavu
u razlic¢itim uslovima.

SN

Y = £(Xy) Y = £(X1,Xs) Y = f(Xq, X2, X3, Xy)
JEDNOSTAVNA VISESTRUKA VISESTRUKA
REGRESIJA REGRESIJA REGRESIJA
(jedan faktor) (dva faktora) (Cetiri faktora)
ZANEMARENI FAKTORI ZANEMARENI FAKTORI ZANEMARENI FAKTORI

D.CHD.CH X3, X4y oo X5, X6y -

2 Sy~X17 Xo Sy~X1’X2’ X3y Xy
St, I 2 2
V-Xq, Xq Y- X15Xg) X3, Xy
a) b) 0)

Slika 57. ViSestruka regresiona analiza

Metod visSestruke regresione analize koristen je, kao glavni metod, u istrazivanjima
prirasta Suma u BiH. Rezultat toga su Tablice taksacionih elemenata Suma, koje su
dozivjele tri izdanja (1963, 1980. i 1990. godine). Ovdje ¢emo navesti kao primjer
regresionu funkciju za povrSinu projekcije krosnje stabala jele prec¢nika 12,5 cm (V).
Rezultat se dobija u m2.

Y = 14,6 - 0,257X% + 1,06X, - 6,00-X? + 8,37X, + 0,01380X? - 0,7914X,

gdje su: X - bonitet staniSta, X, - stepen sklopa, X, - srednji precnik sastojine.

Dobijen je r* = 0,63, $to znaci da navedene tri nezavisne promjenljive (zajedno)
objasnjavaju zavisnu promjenljivu sa 63%, dok se preostalih 37% uticaja pripisuje
drugim neobuhvacenim faktorima.
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4.8. Neto regresija

Kako smo vidjeli kod jednostavne regresije uzima se u obzir samo jedan
faktor, dok se svi ostali faktori zanemaruju, kao da ne postoje. Glavni cilj je da
se utvrdi (procjeni) vrijednost zavisne Y, Sto znaci da jednostavna regresija ima
samo jednu vrijednost za rezultat.

Koriste¢i jednacinu viSestruke regresije, kojom je iskazan bruto uticaj na
zavisnu promjenljivu, mozemo ispitati kakav je pojedinacni uticaj svakog od
obuhvacenih faktora. To se ¢ini iskljuc¢ivanjem ostalih faktora, tako Sto se oni
drze nepromijenjenim. U rac¢unu se samo mijenja onaj faktor c¢iji uticaj trazimo.
Na ovaj nac¢in omogucava se sagledavanje “Cistog” (neto) uticaja jednog faktora
na zavisnu promjenljivu. To i jeste osnovni cilj neto regresije. Dakle, kod neto

regresije ima¢emo viSe rezultata.

Neto regresija
Utvrdivanje pojedinac¢nih uticaja nezavisnih promjenljivih (faktora) na

zavisnu promjenljivu naziva se neto regresija.

Napisimo jedan hipoteticki primjer opsSteg oblika jednacine viSestruke
regresije sa tri nezavisne promjenljive i prikazimo njihove jednacine neto
uticaja:

Y = a+ bX, + b,X> + X, + dX,
Neto uticaj X :
Y=bX, +bX +k; k =a+cX,+dX,

Neto uticaj X,;:

Y =cX, + k,; k,=a+ bX, + b,X?+dX,
Neto uticaj X.:

Y =dX, + k;; k,=a+ bX, + b,X’ +cX,

Jednacina neto regresije uzima iz viSestruke regresije sumande sa faktorom
Ciji uticaj trazimo. Slobodni clan k obuhvata ostali dio jednacine, kad se za
faktore uzmu konstantne vrijednosti (najcesSce prosjecne iz uzorka).

Neto uticajseizracunavajednostavno uvrstavanjemunetojednacinulogi¢no
izabranih vrijednosti tog faktora, uz konstantnu vrijednost k. Na primjer, ako je
X, bonitet staniSta uzecemo vrijednosti boniteta od jedan do pet i uvrStavati
u prvu jednacinu. Dobi¢emo pet rezultata, tj. vrijednosti zavisne promjenljive
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na prvom, drugom, tre¢em, Cetvrtom i petom bonitetu. Naravno, uz prosjetne
vrijednosti X, i X,. To onda moZemo prikazati graficki. Za neto regresiju (neto
uticaj) koriste se jo§ izrazi djelimicna i parcijalna regresija.

4.9. Specijalni oblici statistickih veza

Spomenimo trend, korelaciju ranga i kvalitativnu korelaciju, kao neke od
specijalnih oblika statistickih veza.

Trend

Istrazivanje dinamickih pojava (vremenskih serija) je specificno po tome
Sto se posmatra ponasanje pojave tokom nekog vremenskog perioda (engl. trend
- tendencija, teznja, tok). Zavisna pojava (Y) pri tome ne zavisi od vremena, ali
se u racunu vrijeme formalno uzima kao nezavisna promjenljiva (X). Tokom
vremena mijenjaju se drugi faktori, tj. uslovi u kojima se pojava (Y) odvija, Sto
utice na nju. Graficki gledano kod trenda nema zone (dijagrama) rasturanja
taCaka. Svakoj vrijednosti X odgovara samo jedna vrijednost Y. Postupak
(analiza) kod ovakvih zavisnosti provodi se na isti na¢in kao kod jednostavne
regresije.

Procjena zavisne unutar intervala posmatranja (raspona variranja stvarnih
podataka) naziva se interpolacija, a izvan ekstrapolacija. Ekstrapolacija se
obicno koristi za predvidanje pojave u bliskom budué¢em vremenu.

U Sumarstvu imamo jos jednu specifi¢cnu vrstu veze, koja je vrlo Cesta. Radi se o
rastu stabala ili sastojina u zavisnosti od starosti. Tu postoji poznata dinamika ili tok
rasta. [ako je na x-osi vrijeme, ne radi se o trendu. Nisu u pitanju kalendarske godine,
ve¢ godine koje se odnose na starost. Zato kod pojedinacnih stabala ili sastojina nema
dijagrama rasturanja, iako se sustinski radi o regresiji (zavisnosti).

Kvalitativna korelacija

Kada su u pitanju kvalitativna (atributivna) obiljezja ispitujemo postojanje
veze izmedu njih, ne postavljajuci pitanje Sta od Cega zavisi. Radi se dakle o
korelaciji (meduzavisnosti). Takvi primjeri u Sumarstvu su: ispitivanje korelacije
izmedu boje liS¢a i boje ploda, boje lis¢a i velicine ploda, boje i debljine kore
neke vrste drveca. Mjera jacine kvalitativne korelacije naziva se koeficijent
kontingencije. U postupku analize umjesto dijagrama rasturanja koristi se
dvoulazna tabela (primjer u knjizi, str. 175).

Korelacija ranga

ObiljeZja koja se ne mogu precizno izmjeriti kvantitativno iskazuju se u
vidu ranga. Rang je jednostavno redoslijed po veli¢ini. Na primjer u Sumarstvu
takva obiljezja su: bonitet staniSta (proizvodna sposobnost, kvalitet stanista),
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kvalitet stabala, intenzitet prirasta stabala. Pri rangiranju boniteta najbolje
staniSte oznacava se sa [ (prvi bonitet), a najloSije sa V (peti bonitet). Sli¢no je
i kod Kklasifikacije stabala po kvalitetu. MoZe da nas zanima postoji li korelacija
izmedu kvaliteta staniSta i kvaliteta stabala ili u redoslijedu rasta stabala
razlicitih provenijencija nakon odredenog vremena (primjer u knjizi, str. 178).

174



LITERATURA

KORISTENA LITERATURA

1

2)
3)

4)
5)
6)

7)
8)

9)
10)
11)
12)

13)

14)

15)

Hadzivukovié, S. (1973). Statisti¢ki metodi. Univerzitet ,Radivoj Cirpanov*, Novi
Sad.

HadZivukovi¢, S. (1979). Statistika. Rad. Beograd

Koprivica, M. (2015). Sumarska statistika. Univerzitet u Banjoj Luci. Sumarski
fakultet.

Lovri¢, M., Komig, J. i Stevi¢, S. (2006). Statisticka analiza - metodi i primjena.
Ekonomski fakultet. Banja Luka.

Mic¢i¢, N. (2011). Eksperimentalna biometrika. Poljoprivredni fakultet
Univerziteta u Banjoj Luci, Nau¢no vocarsko drustvo Republike Srpske.

Obradovi¢, S. i Senti¢, M. (1967). Osnovi statisticke analize. Nauc¢na knjiga.
Beograd.

Petz, B., Kolesari¢, V.ilvanec, D. (2012). Petzova statistika. Naklada slap. Hrvatska.

Popovi¢, B. (1962). Matematsko-statisticke metode u poljoprivredi i Sumarstvu.
Univerzitet u Sarajevu.

Pranji¢, A. (1986). Sumarska biometrika. Sveuciliste u Zagrebu. Sumarski fakultet.
Serdar, V. (1966). Udzbenik statistike. Skolska knjiga. Zagreb.

Stojanovi¢, 0. (1962). Statisticke metode u nau¢noistrazivackom radu i u praksi
Sumarstva. Narodni Sumar XVI, Sarajevo.

Stojanovi¢, O. (1963). Savremena inventarizacija Suma zahteva i savremeniju
koncepciju dendrometrije. Narodni Sumar XVII, Sarajevo.

Stojanovi¢, 0. (1964). Primjena reprezentativnog metoda pri taksacionoj procjeni
Suma. Narodni Sumar XVIII, Sarajevo.

Stojanovi¢, O. i Drini¢, P. (1974): Istrazivanje velicine koncentri¢nih kruznih
povrsina za taksacionu procjenu $uma. Radovi Sumarskog fakulteta i Instituta za
Sumarstvo u Sarajevu. Sarajevo.

Stojanovi¢, O. (1985). Kontrola terenskih radova i testiranje rezultata taksacione
procjene Suma. Sumarstvo i prerada drveta. Poseban otisak. Sarajevo.

L]
£ -

NORMALDISTRIBUSAURUS

175









