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Preface  

 
It gives me great pleasure to provide this Preface to the book on Introduction 

to Geospatial Artificial Intelligence, a timely and important contribution to the 

evolving relationship between geospatial sciences and artificial intelligence. 

The book arrives at a critical moment in our shared journey toward achieving 

the 2030 Agenda for Sustainable Development. As recent assessments have 

shown, progress across many of the Sustainable Development Goals remains 

uneven, with some targets even regressing. Meeting these challenges requires 

new ways of thinking, new tools, and deeper collaboration across borders and 

disciplines. 

Geospatial information has long been recognized as indispensable for 

evidence-based decision-making, for managing natural resources, planning 

resilient cities, protecting the environment, and responding to crises. Today, 

with the rapid advances in earth observation, unmanned aerial systems, 

LiDAR, and other emerging technologies, we are able to collect data at 

unprecedented scale and detail. Yet data alone is not enough. It is the 

intelligent integration of geospatial data with innovative methods of 

processing and analysis that unlocks its true potential. Artificial intelligence 

offers precisely this: the capacity to transform raw data into decision-ready 
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knowledge, delivered with the speed and reliability needed to address 

complex global challenges. 

This book makes a valuable contribution by bridging two communities: 

geospatial professionals and AI researchers. It demonstrates in practical terms 

how their combined efforts can support governments, institutions, and 

societies. It aligns with the vision set out in the United Nations Integrated 

Geospatial Information Framework (UN-IGIF), which emphasises 

governance, standards, and above all, capacity development and education. 

Building the skills and human capital to apply geospatial AI responsibly and 

effectively is as important as building the technical infrastructure itself. 

At the General Authority for Survey and Geospatial Information in Saudi 

Arabia, we are committed to advancing national geospatial capabilities in line 

with our Vision 2030, while also contributing to the global community 

through the work of UN-GGIM and related international partnerships. We 

see in this book both a reflection of those shared ambitions and a practical 

guide for how they can be realised. 

I commend the authors for their efforts in creating a resource that will inform, 

educate, and inspire. It is my hope that this book will not only serve as an 

introduction, but also as a catalyst for further innovation, collaboration, and 

capacity building in the geospatial community. 

 

Dr. Mohammed bin Yahya Al-Sayel 

Co-Chair, UNGGIM 

President, General Authority for Survey and Geospatial Information 

(GEOSA) 

Kingdom of Saudi Arabia 
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1 INTRODUCTION TO GEOSPATIAL 

AI 

Over the years, significant advances have been made in sensing hardware in 

the area of passive optical images, such as multispectral or hyperspectral 

imaging, and active sensors, such as Lidar Detection and Ranging (LiDAR) 

and Synthetic Aperture Radar (SAR). In addition to improvements in sensors, 

the advancements in platforms have enabled higher frequency and greater 

flexibility in data acquisition, allowing for more comprehensive and timely 

analysis of geospatial phenomena. This led to the development of a large 

heterogeneous multi-scale spatiotemporal dataset that can be used in various 

applications.  

In parallel, over recent years, there has been an enormous advantage in 

computer vision and machine learning, which have significantly increased the 

capability to understand and analyze that data. Geospatial Artificial 

Intelligence (GeoAI) is an interdisciplinary field that applies Artificial 

Intelligence (AI) to studying and understanding geographic and spatial data. 

It combines the power of AI and Geospatial Information Systems (GIS) to 

solve location-based problems. The GeoAI encompasses a range of tasks, 

including object detection, image and point cloud classification, anomaly 

detection, semantic segmentation, super-resolution, and multi-resolution 

data fusion.  

AI is the field of computer science that focuses on creating systems capable of 

performing tasks that typically require some level of human intelligence. AI 

represents a general field that includes machine learning (ML) and deep 

learning (DL), but also comprises other approaches that don't involve any 

form of learning, such as rule-based systems or symbolic AI. 

AI was born in the 1950s when Alan Turing proposed the concept of machine 

intelligence in his paper „Computing Machinery and Intelligence“ [1]. Turing 

raised the question „Can machines think?” and created the Turing test as a 

way to evaluate a machine's ability to exhibit human-like intelligence. The 

term AI was introduced by John McCarthy et al. [2], proposing „that every 

aspect of learning or any other feature of intelligence can in principle be so 
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precisely described that a machine can be made to simulate it“. Symbolic AI, 

which is based on programmers manually crafting a comprehensive set of 

explicit rules for representing knowledge, was the dominant paradigm in 

artificial intelligence from the 1950s through the 1980s. Therefore, in symbolic 

AI, humans define and input a set of rules and data for the system to process, 

and then the system provides results based on those predefined rules. 

Although symbolic AI works well for tasks with well-defined rules, such as 

playing chess, for complex problems such as satellite image classification and 

object detection, creating and maintaining those rules becomes extremely 

difficult and time-consuming. These limitations in learning, scalability, and 

complex data processing led to the development of ML. 

Instead of relying on rules written by humans, ML automatically learns those 

rules by analyzing data.  

An ML system includes four main steps: data collection, model training, 

prediction, and accuracy assessment. The model is fed by a large amount of 

data. These data consist of: 

● Features – input variables or characteristics of data that the model 

uses to make predictions, such as intensity of reflected 

electromagnetic radiation in different bands, band ratios, spectral 

indices, textures, etc, and 

● Labels – correct answers or output of models, such as labels for the 

pixel ( "water," "forest," or "urban area").  

The data are usually split into two sets: a training dataset (used to train the 

model) and a testing set (used to evaluate how well the model performs on 

unseen data).  In model training, ML uses algorithms to detect patterns or 

relationships between features and labels by analyzing the provided data. The 

comparison between the algorithm prediction and the expected outcome is 

performed. This information is used as a feedback signal to adjust the way the 

algorithm works. This iterative adjustment is called learning. Once trained, the 

model makes predictions based on new unseen data. Thus, an ML system is 

trained instead of being explicitly programmed. 

The central problem in ML is learning adequate input data representations. A 

representation can be defined as a way to encode or transform data to make 
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it more useful for a specific task. The goal is to transform the input data into 

a form that makes it easier to predict output, such as classifying land cover 

types or detecting water bodies. In ML, input data are defined by the operator. 

This process, in which humans decide which attribute of the data is relevant 

for a specific task, is called feature engineering. 

For example, satellite images can be encoded in the RGB format or 

multispectral or hyperspectral format. The task is to classify pixels in an image 

into „water“ and „vegetation“. In the RGB format, the identification of those 

classes can be challenging due to similar spectral signatures in the visible part 

of the electromagnetic spectrum. Additional features, such as the Normalized 

Difference Vegetation Index (NDVI) that combines Red (R) and Near-Infrared 

(NIR) bands, emphasizing areas with high chlorophyll content; the 

Normalized Difference Water Index (NDWI) that combines NIR and Short-

wave infrared (SWIR), and emphasizes the water, band ratios, or raw bands 

can be extremely useful. ML algorithms automatically find transformations of 

input data that turn them into more useful representations and use the 

percentage of correctly classified pixels as feedback to learn an appropriate 

representation. For example, the ML model might learn that NDVI > 0.5 is a 

good indicator of vegetation, that pixels with low NIR/R ratio are likely water, 

or it can combine existing features such as NDVI and Green (G) band into a 

new representation that better captures patterns in the data.  

 

Figure 1 Artificial Intelligence, machine learning, and deep learning 

Deep learning (DL) is a subfield of ML that uses many successive layers to 

learn complex representations and patterns from data automatically (Figure 
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1). The „deep“ in the DL model is defined by the number of layers used in the 

network. Today, a DL network can consist of hundreds or thousands of 

hierarchical layers. Unlike traditional ML, DL models use layers to extract and 

learn the hierarchical representation of the data without explicit feature 

engineering. This ability enables DL models to uncover complex, hidden 

patterns that may not be immediately obvious or easily detected by humans, 

thereby creating new features for classification.   In the satellite image 

classification task, early layers learn simple features such as edges or corners, 

deeper layers combine the results of previous layers into more complex 

features like shapes, and the final layer synthesizes all these features to 

classify the image into predefined classes such as roads or buildings. The 

comparison between ML and DL is provided in Table 1. 

Table 1 Comparison between ML and DL 

Aspect ML DL 

Approach Statistical techniques Neural networks with 

multiple layers 

Feature 

engineering 

Manual (hand-crafted 

feature) 

Automatic (learns features 

from the data) 

Data dependency Small to medium 

dataset 

Large datasets 

Task complexity Low to moderate  High-dimensional and 

complex  

Computational 

need 

Low to moderate High 

Training time Less time needed Much more time needed 

Accuracy High accuracy on large 

datasets 

Good results on both small 

and large datasets 

 

1.1 ALGORITHMS 
In recent years, ML algorithms have been used in a broad spectrum of 

domains. In these applications, each instance in the dataset is represented by 

a consistent set of features/attributes. For example, in RS, a pixel can be 

characterized by its reflectance values across different spectral bands such as 

blue, green, red, and NIR. Additionally, each instance in the dataset can be 
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associated with a corresponding label, i.e., the correct output for that instance. 

Each feature can be binary, categorical, or continuous.  

ML is categorized into four categories: 

1. Unsupervised learning, 

2. Supervised learning, 

3. Semi-supervised learning, and 

4. Reinforcement learning. 

Unsupervised learning is based on systems that analyze the patterns in 

unlabeled data.  It provides a better understanding of the correlations, 

structures, and patterns present in the data. Unsupervised learning is usually 

used as the initial step before supervised classification.  

Supervised learning uses a labeled dataset to train AI algorithms to identify 

patterns and relationships between input features and outputs. In supervised 

learning, analytics manually identifies examples of interest, i.e., creates 

labeled data. Labeled data represents data points with corresponding labels 

(i.e., correct output). The supervised learning algorithm is trained on labeled 

data.  The goal is to learn to map input data to known labels. During training, 

algorithms process large datasets to understand potential correlations 

between input and output variables. Algorithms can apply what they learned 

on the training set to the unseen data and predict the output values. 

Generally, it is the most common approach, and almost all deep learning 

applications belong to this category. Supervised learning is mainly divided 

into two categories:  

● Regression – used when the target variable is continuous and the task 

is to predict a real value instead of a discrete label. For example, we 

want to predict Land Surface Temperature using satellite data from 

Landsat 8 images. The most commonly used algorithms include 

Linear Regression, Decision Trees for Regression, and Support Vector 

Regression (SVR), among others. 

● Classification – used when the target variable is discrete or categorical. 

The primary aim is to assign each input to predefined classes.  
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Traditionally, in geomatics, classification methods are categorized based on 

the smallest unit of analysis, on pixel-based classification and object-based 

image analysis (OBIA). 

Pixel-based classification observes each pixel in an image as an independent 

unit. The primary aim is to classify each pixel into one of the predefined 

classes based only on its spectral characteristics. Spatial context and 

relationships between neighboring pixels are not considered. Pixel-based 

classification is straightforward and has been commonly used in tasks such as 

land use/ land cover classification (where individual pixels are labeled as 

vegetation, water, or urban areas based on their reflectance values in different 

spectral bands). 

Object-Based Image Analysis (OBIA), on the other hand, groups pixels into 

meaningful objects or segments before classification. Objects are created 

through image segmentation before classification using segmentation 

algorithms such as multiresolution segmentation or watershed analysis. 

Pixels are grouped based on spatial, spectral, and contextual properties such 

as shape, texture, and proximity. OBIA is primarily used for the classification 

of high-resolution imagery, where features like buildings or tree crowns need 

to be classified as cohesive units rather than isolated pixels.  

In GeoAI classification tasks, they can be divided into semantic segmentation, 

object detection, and instance segmentation, each addressing different aspects 

of spatial data interpretation. Semantic segmentation (i.e., pixel-based 

classification) labels each pixel within an image (or point in a 3D point cloud) 

with a class, providing a complete understanding of the spatial distribution 

of objects. For instance, a satellite image of an urban area might be segmented 

into classes such as roads, buildings, vegetation, and water bodies. 

Object detection, on the other hand, focuses on both identification and 

localization of objects of interest within an image using bounding boxes. For 

example, detecting vehicles in parking lots or identifying individual trees in 

a forested landscape are everyday tasks in this category. Finally, instance 

segmentation combines the pixel-level detail of semantic segmentation with 

the localization of object detection by identifying and delineating each 

instance of an object separately. A typical use case is segmenting individual 

buildings in a dense urban environment or distinguishing between 
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overlapping tree canopies in a forest. These methods have been extensively 

used in different applications, including but not limited to environmental 

monitoring, urban planning, agriculture, and disaster management. 

Semi-supervised learning represents a branch of ML that combines 

supervised and unsupervised learning by using both labeled and unlabeled 

data to train models for regression or classification tasks. It uses a small 

amount of labeled data alongside a vast amount of unlabeled data to train 

models. As in supervised learning, the goal is to train algorithms that can 

accurately predict the output variables based on the input. The difference is 

that semi-supervised learning uses both labeled and unlabeled data in the 

training process. This concept is particularly beneficial when a large amount 

of unlabeled data is available, but labeling it all is too time-consuming and 

expensive. The semi-supervised learning model uses labeled data to learn a 

preliminary representation of the problem (such as the number of classes). At 

the same time, it exploits the structure and distribution of unlabeled data. It 

is based on several assumptions, including: unlabeled data used in model 

training must be relative to the task (if a task is to classify land cover classes, 

the images of cats and dogs will not be helpful), cluster assumption, i.e., the 

data with similar feature space should belong to the same class. The similarity 

can be based on different definitions, such as:  

● Smoothness assumption – if data points are close in feature space, then 

they are more likely to share the same labels. For example, if pixels in 

satellite images have similar reflection values, they likely belong to the 

same land cover class. 

● Low-density assumption - the decision boundary between different 

classes should lie in low-density regions where few or no data exist. 

● Manifold assumption - high-dimensional feature datasets comprise 

multiple lower-dimensional manifolds on which all points lie, and the 

data points on the same manifold belong to the same class. For 

example, a Landsat 8 image of 256 x 256 pixels has 393 216 dimensions. 

Comparing such a high-dimensional dataset is challenging due to its 

complexity and computational resources. Moreover, not all features 

are equally important for the specific task. Following proper 

dimensionality reduction and feature transformation, similar data 

points tend to cluster together.  
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Semi-supervised learning can be classified based on the way in which it 

incorporates unlabeled data:  

● pseudo labeling - model trained on labeled data is used to predict 

labels for the unlabeled data (pseudo labels). The model can then be 

retrained iteratively by using real and pseudo labels to improve 

accuracy. For example, training a Random Forest (RF) model on 

labeled data, using that model to classify unlabeled pixels and assign 

pseudo classes where predictions are of high confidence, and then 

retraining the model using both real and pseudo classes to improve 

accuracy. 

● unsupervised pre-processing - data transformation techniques are 

used to generate better feature representation or reduce noise in raw 

data before training an ML model with labeled data. For example, 

Principal Component Analysis (PCA) can be used to reduce Sentinel-

2 spectral bands from 10 to 5 while preserving maximum variance in 

the cropland classification task. 

● Objective function adjustment - modification of the loss function to 

enforce smoothness. Instead of minimizing only the usual loss 

function (e.g., cross-entropy for classification), additional terms can be 

added to promote better generalization (for instance, a consistency 

loss can be added to cross-entropy to ensure accurate prediction of 

land cover classes if the brightness condition on the satellite image 

slightly changes) and reduce overfitting. 

Semi-supervised learning has been used for various tasks, including text 

classification, image classification, and anomaly detection. 

Self-supervised learning is an ML technique that uses unsupervised learning 

for tasks that require supervised learning. Instead of relying on human-

annotated labels, self-supervised learning creates output labels directly from 

input data. In the pre-training phase, the model learns discriminative features 

by solving pretext tasks before applying them to the actual downstream task 

(such as classification). Predefined pretext tasks typically involve simple 

functions that help models understand the structure of key data features, 

which are used to solve real-world problems, enabling models to learn 

without human supervision. Self-supervised learning is particularly used in 

computer vision and natural language processing, but it has also been 
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successfully implemented for remote sensing tasks. For example, the model is 

trained on combining different sources of data, such as visible and radar 

images, improving its understanding of land cover types from diverse 

perspectives, or the model is given multiple time-step satellite images from 

the same region, and the task is to predict temporal changes, such as seasonal 

variation in vegetation. 

Reinforcement learning is a type of ML where an agent learns to make 

decisions by interacting with an environment. Unlike supervised learning, 

where the model learns from labeled data, in reinforcement learning, an agent 

learns by trial and error, receiving feedback through rewards and penalties 

based on its actions. The primary aim is to maximize cumulative reward over 

time. The agent is any system that can make decisions, such as self-driving 

cars. The environment encompasses everything an agent interacts with, 

providing information on its current state. The agent uses that information to 

determine which action to take. Action changes the state of the environment, 

and the agent receives a reward. The reward measures how good or bad an 

action was in achieving a goal. For self-driving vehicles, a reward can be 

reducing traveling time, remaining on the road, or being in the proper lane, 

among other objectives. Over time, the agent learns which actions lead to the 

most rewards. According to that agent, adjust strategy to favor actions that 

yield higher rewards, altering its decision-making process. The process 

continues until the agent reaches its goal. In remote sensing, reinforcement 

learning can be beneficial for tasks that involve real-time data analysis and 

sequential decision-making. 

1.2 Historical development of AI 
In recent years, AI and deep learning have made remarkable achievements in 

a wide range of applications. However, the development of AI started several 

decades ago, stretching back to the 40s. During that period, AI evolved from 

theoretical concepts to applications in different fields. There are several 

milestones in the development of AI:  

● 1943 - Walter Pitts and Warren McCulloch [3] presented the first 

mathematical model of neural networks in their paper “A logical 

calculus of the ideas immanent in nervous activity” 
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● 1950 - Alan Turing published a landmark paper, “Computing 

Machinery and Intelligence” [1]. This paper introduced the Turing 

test, designed to determine whether a computer can mimic human-

like intelligence. The Turing test became a central concept in AI, 

serving as a way to test a machine’s ability to exhibit intelligent 

behavior equal to that of humans. 

● 1952 - Arthur Samuel developed a program for playing checkers at a 

champion level  

● 1955 - the term “artificial intelligence” was introduced in a workshop 

proposal, “A Proposal for the Dartmouth Summer Research Project on 

Artificial Intelligence,” submitted by John McCarthy, Marvin Minsky, 

Nathaniel Rochester, and Claude Shannon [2]. During this workshop, 

a group of prominent scientists has gathered to establish the fields of 

AI and ML research. 

● 1957 - Frank Rosenblatt designed the first two-layer computer neural 

network that enabled pattern recognition, called the Perceptron [4]. 

● 1957 - The launch of Sputnik 1, the first artificial Earth satellite, marked 

the beginning of the space era. 

● 1963 - Roger Tomlinson introduced the term Geographic Information 

System (GIS). 

● 1966 - Thomas Cover and Peter Hart introduced the k Nearest 

Neighbor algorithm in their paper “Nearest Neighbor Pattern 

classification” [5]. 

● 1969 - The Harvard Lab for Computer Graphics created the first 

vector-based GIS called SYMAP, which allowed for the visualization 

of spatial data. 

● 1972 - NASA launched Landsat 1. The Landsat mission provides 

continuous multispectral imagery of the Earth's surface  

● 1978 - First Global Navigation Satellite System satellite, Navstar I, was 

launched. It achieved full global coverage in 1995. 

● 1986 - Rumelhart, Hinton, and Williams published a paper "Learning 

representations by back-propagating errors" [6], in which they used 

backpropagation for training neural networks and improving their 

ability to learn complex patterns. This research is a fundamental 

breakthrough in modern deep learning. It builds on the 1969 research 
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of Bryson and Ho [7] that first introduced backpropagation for 

overcoming the limitation in training multilayer networks.  

● 1986 - The SPOT satellite was launched, providing higher resolution 

images, allowing better mapping and monitoring of environmental 

changes.  

● 1988 - Judea Pearl published “Probabilistic Reasoning in Intelligent 

Systems,” [8] introducing Bayesian networks as a framework for 

probabilistic reasoning and decision making under uncertainty.  

● 1989 - Yann LeCun and his team successfully applied the 

backpropagation algorithm to Convolution Neural Networks to 

recognize handwritten zip code images [9]. This is one of the first 

applications of CNNs demonstrating the potential of AI for image 

recognition tasks. 

● 1995 - Vladimir Vapnik and Corinna Cortes introduced the Support 

Vector Machine algorithm [10], widely used in ML for linear and 

nonlinear classification tasks. 

● 1995 - one of the first applications of AI for processing geospatial data, 

such as decision tree-based land cover classification or ANN-based 

spatial interaction modeling [10]. 

● 1997 - Sepp Hochreiter and Jürgen Schmidhuber introduced Long 

Short-Term Memory (LSTM) [11], a type of Recurrent Neural Network 

(RNN) designed to capture long-term dependencies in data 

effectively.  

● 1997 - IBM chess computer, Deep Blue, beats world chess champion 

Garry Kasparov in a six-game match. This victory demonstrated that 

computers can outperform human intelligence in strategic games.  

● 1999 - IKONOS, the first high-resolution satellite with a panhromatic 

spatial resolution of 0.82 m and a multispectral resolution of 3.2 m, 

was launched. 

● 2007 - Fei-Gei Li and her team launch the most massive and 

comprehensive databases of annotated images. ImageNet [12] 

provides millions of labeled images across thousands of categories to 

support the development of visual object recognition software. 

● 2009 - Rahat Raina, Anand Madhavan, and Andrew Ng publish 

"Large-scale Deep Unsupervised Learning using Graphics 
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Processors," [13] demonstrating the GPU's superior computational 

power over traditional multi-core CPUs for deep learning tasks. 

● 2010 - Google Earth Engine (GEE) [14], a cloud-based service for 

geospatial processing, was launched. It integrates petabytes of 

geospatial data, free planetary-scale processing power, and AI 

technology. GEE has been a game-changer for GeoAI development, 

impacting both research and practical application. 

● 2011 - Apple launches Siri, a virtual assistant integrated into iOS, 

allowing users to interact with their devices through voice commands.  

● 2012 - Geoffrey Hinton and his team designed the AlexNet [15], a CNN 

network that achieves a 16% error rate in the ImageNet Large Scale 

Visual Recognition Challenge. This research shows that CNNs can 

outperform traditional image classification methods.  

● 2014 - Ian Goodfellow and his collaborators in their groundbreaking 

paper titled "Generative Adversarial Nets" [16] introduced GAN 

frameworks that teach AI how to generate realistic data through 

adversarial training between two networks (generator and 

discriminator). 

● 2015 - Kaiming He and his team introduced ResNet [17], a deep CNN 

architecture that introduced the idea of skip connection, allowing 

training of much deeper networks without the problem of vanishing 

gradients. 

● 2015 - Olaf Ronnenberger, Philipp Fischer, and Thomas Brox 

introduced U-Net in their paper titled "U-Net: Convolutional 

Networks for Biomedical Image Segmentation” [18]. U-Net represents 

a turning point for deep learning-based semantic segmentation, 

especially for high-resolution images and in tasks requiring spatial 

accuracy. In addition, UNet's ability to work effectively with a limited 

labeled dataset is a significant advantage in GeoAI. 

● 2017 - Vaswani et al. [19] introduced the Transformer, the first 

architecture based entirely on self-attention mechanism to enhance 

feature representation, achieving substantially faster training 

compared with recurrent or convolution models. 

● 2020 - OpenAI introduces GPT-3, a groundbreaking natural language 

processing algorithm able to generate human-like text, engage in 

conversations, write code, translate languages, etc. 
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● 2021 - DeepMind (a subsidiary of Alphabet) uses its neural network 

for accurate prediction of 3D structures of proteins for amino acid 

sequences with unprecedented accuracy. DeepMind’s breakthrough 

demonstrates that deep learning has the potential to accelerate drug 

development and disease research dramatically. 

● 2021 - Tesla launched the Full Self-Driving Beta that uses deep 

learning to navigate complex driving scenarios. 

● 2021-2023 - OpenAI launches DALL-E, followed by DALL-E 2 and 

DALL-E 3, generative AI models capable of generating highly detailed 

images from textual descriptions. 

● 2025 - DeepSeek realizes DeepSeek-V3, a free AI-powered chatbot 

aiming to achieve Artificial General Intelligence. They adopt Multi-

head Latent Attention (MLA) and DeepSeekMoE architectures to 

achieve efficient inference and cost-effective training, spending only 

$5.6 million on computing power for development. The development 

of AI models for a fraction of what other companies have been 

spending caused shock waves throughout the GPU market. 

1.3 Limitations 
In recent years, AI has revolutionized multiple industries and transformed 

how humans interact with technology. Despite its impressive capabilities, AI 

has significant limitations that need to be considered. Those concerns can be 

divided into several areas, including data, ethical concerns, and model 

interpretability. 

1.3.1 Data limitations 

AI, especially DL, relies on large amounts of data to make accurate decisions 

and predictions. This is the most obvious limitation. The rapid advancement 

of DL, especially during the 2010s, has been largely enabled by the availability 

of vast amounts of data. Despite the progress in storage hardware, the rise of 

the internet has made it possible to collect (social media, mobile devices, 

Internet of Things, public datasets), store, process, and distribute (cloud 

computing, big data technologies) a large dataset, which was a game-changer. 

Data limitations can manifest as a lack of data and a lack of quality data. 
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Lack of data. As mentioned earlier, many AI algorithms require vast amounts 

of labeled data, which can be expensive and time-consuming to create, 

especially in specific domains. The larger the architecture, the more data is 

needed to produce viable results. Although techniques such as fine-tuning 

and data augmentation are practical, having a larger dataset is always a 

preferred solution.  

Data quality and bias.  AI models are only as good as the data they are trained 

on. If the training data is biased or unrepresentative of the real world, the 

model can inherit those biases and lead to inexact outcomes. For example, in 

land use classification, if certain geographical areas are underrepresented in 

the training dataset (for example, underdeveloped regions), AI models might 

perform poorly in those areas. The most ideal way to mitigate such a risk is 

by collecting data from broad and diverse geographical areas, as 

heterogeneous datasets limit exposure to bias and result in higher accuracy. 

1.3.2 Ethical limitations 

AI has had a profound impact on the world, but its exact capabilities and 

limitations are not clearly defined. In recent years, AI has been integrated into 

the critical decision-making process, raising several ethical concerns. One of 

the key concerns, particularly in information retrieval, is the tendency to 

define a singular „truth“ rather than presenting different perspectives. 

Consider, for example, a search for a particular term on the internet. Earlier 

search engines would provide millions of different pages, allowing you to 

analyze and synthesize information from different sources to draw your own 

conclusions. However, AI tools like ChatGPT often provide just one or two 

definitive answers, streamlining information but also potentially narrowing 

the range of perspective and reducing the critical engagement with multiple 

viewpoints.  Moreover, there is no guarantee that the provided conclusions 

are correct. 

As AI becomes more autonomous, determining who is responsible for its 

decisions becomes increasingly complex. One of the most discussed examples 

is autonomous driving. If an AI driving vehicle causes an accident, who is 

responsible: the manufacturer, the software developers, the user, or the AI 

itself? 
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Also, AI-powered systems such as face recognition or video monitoring have 

raised concerns regarding security, surveillance, and invasion of privacy. 

Although these technologies can be helpful for security purposes, they also 

raise discussion about transparency, consent, and the potential for abuse by 

governments or corporations. Additionally, in combination with an increase 

in sensor capabilities, such as high-resolution satellite or UAV imagery, it can 

expose sensitive information about personal activities or locations. 

Moreover, AI's capability to automatically perform tasks that are traditionally 

done by humans raises concerns about its impact on the economy, income, 

and job security. The International Monetary Fund reported [20] that almost 

40 percent of global jobs are exposed to AI (up to 60 percent in developed 

economies). The report states that half of those may be negatively impacted, 

while the rest could have gains in productivity [20].  
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2 GEOSPATIAL DATA 

Geospatial data refers to information related to locations on the Earth's 

surface. Geodata (another name that can be used instead of geospatial data) 

describe objects, events, and other real-world phenomena within a specific 

geographical area, typically identified by coordinates, addresses, zip codes, 

or names. They combine location information (identifying where something 

exists or takes place), descriptive attributes (what is present at that location), 

and often include temporal information (when it occurs). They are essential 

for more efficient decision-making across multiple applications and have 

significant economic importance. 

Geospatial data can be static, such as the location of an event, or dynamic, like 

the movement of vehicles or the spread of an infectious disease, where the 

distinction between static and dynamic data depends strongly on the time 

scale considered. Geospatial data are collected from many diverse sources in 

varying formats. They can include various information such as census data, 

satellite imagery, weather data, smartphone data, as well as data from social 

networks, IoT sensors, etc. Moreover, integrating geospatial data with 

traditional business data can be especially valuable, allowing visualization in 

the form of maps, graphs, cartograms, or virtual globes and providing a 

deeper understanding of events, monitoring of changes over time, and 

recognizing the patterns and insights that might be overlooked in a large data 

spreadsheet. 

With advancements in technology, its application will continue to grow, 

contributing to smarter cities, sustainable environment, economic growth, 

and improved quality of life globally. 

There are two primary data models used to represent geospatial data. These 

models enable real-world geographic objects to be digitally stored in a 

database and visualized on maps or computer screens. The vector model is 

used for objects with clearly defined boundaries, for which it is precisely 

known where they begin and where they end. It uses points, lines, and 

polygons to represent features such as buildings, roads, trees, rivers, etc. A 

raster model is used for continuous phenomena. It represents data as a grid 

of pixels. Each pixel contains a unique value corresponding to a specific 

attribute such as temperature or elevation. The raster model is commonly 
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used for remote sensing, digital terrain models, and land cover classification, 

among other applications. 

All geospatial data have four key characteristics: location, scale, accuracy and 

resolution. Each geospatial dataset is associated to a location defined within a 

Coordinate Reference System (CRS), which provides a numerical framework 

to represent points on the Earth’s surface consistently. The scale refers to the 

ratio between a distance on the map and the corresponding distance on the 

ground, typically measured along representative lines, making it effectively 

an average value. Accuracy represents how closely information in the dataset 

matches the real world. For instance, positional accuracy represents how close 

geospatial objects (features) are to their real-world locations. Resolution refers 

to the smallest distinguishable unit in the data (e.g., pixel size in a raster 

image, or minimum distance between points in a vector dataset). Higher 

resolution means finer detail. The three concepts: scale, resolution and 

positional accuracy are closely related.  

Other relevant characteristics of the geospatial data are consistency and 

completeness. Consistency refers to whether the characteristics of geospatial 

objects in the dataset match those in the real world. For example, does a 

building in the dataset represent a building in the real world? Completeness 

refers to the extent to which instances of features are included in the dataset. 

For example, are all buildings in a city presented in the dataset? 

Metadata is often defined as “data about data,” and it describes properties, 

origin, ownership, quality, history, and other valuable properties. The 

primary purpose of metadata is to enable search and evaluation of geospatial 

data, to provide information on how to access and use resources effectively.  

Accordingly, metadata can be classified into three main types:  

● descriptive metadata - provides helpful information for discovering 

and identifying data resources. It describes a resource's what (name of 

dataset and description), when (when dataset is created and cycles of 

update if defined), where (geospatial extent of the dataset based on 

geographical coordinates, administrative units or geographical 

names), why (why data are created and), who (data sources, provider 

and leading target group), and how (how dataset is created and how 

to access to the,); 
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● evaluation metadata - includes all necessary data needed to determine 

if selected data meet all user needs, to assess their characteristic and 

quality; 

● Structure metadata - includes information necessary for access, 

transfer, loading, implementation, and use of data in the final user 

application. This type of metadata often contains details about data 

dictionaries, data organization, i.e., schemas, spatial references, 

geometric characteristics, and other information relevant for people 

and machines to use geospatial data properly.  

Metadata is particularly important because, despite the increasing availability 

of geospatial data from diverse sources and the relative ease of locating it, 

researchers often face challenges in finding and assessing data due to limited 

metadata. Recognizing the critical role of metadata, several standards (ISO 

19115-1, ISO 19115-2, ISO 19115-3) have been established to define the 

essential elements for describing geospatial datasets and related resources. 
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3 REMOTE SENSING 

Remote sensing is the science of acquiring information about Earth’s surface 

without being in contact with it. It is done by recording the reflected 

electromagnetic energy and using non-imaging sensors. The elements of 

remorse sensing (Figure 2) are: 

● Energy source (A) - the first element of remote sensing that illuminates 

or provides electromagnetic energy to the target of interest.  

● Interaction between radiance and atmosphere (B) - as the 

electromagnetic energy travels from the source to the target, it passes 

through the atmosphere and interacts with it. This interaction is 

repeated a second time as the reflected energy travels back from the 

target to the sensor. Atmospheric correction is used to minimize this 

effect and improve image quality. 

● Interaction with target (C) - once the energy makes its way to the 

target, it interacts with it depending on the properties of both the 

target and the radiance. 

● Recording of reflected energy by the sensor (D) - after the target 

reflects energy, it travels back to the sensor that collects and records 

the electromagnetic radiation. 

● Processing (E) - the energy recorded by the sensor has to be 

transmitted to a receiving and processing station, where the data are 

processed into images. 

● Interpretation and analysis (F) - the image is interpreted, visually or 

digitally, to extract useful information about the target. 

● Application (G) - the final element of remote sensing is the application 

of extracted information for better understanding the target, revealing 

some new aspects, monitoring changes over time, and supporting 

decision-making processes. 
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Figure 2 Elements of remote sensing 

3.1 Energy source 
Every object on the Earth's surface, due to solar radiation, has energy of a 

specific frequency and wavelength, and it emits energy from the 

electromagnetic spectrum. Every object is composed of charged particles, 

such as protons and electrons, which generate electric fields. These electric 

fields influence other charged particles within their range. When charged 

particles move, they create an electric current, which in turn produces a 

magnetic field. The interaction between changing electric and magnetic fields 

generates electromagnetic (EM) radiation, which can be described as either a 

wave (electromagnetic waves) or as discrete packets of energy (photons) in 

the quantum model of radiation.  

The electrical field varies in magnitude in a direction perpendicular to the 

direction in which radiation is traveling. In contrast, the magnetic field is 

oriented at a right angle to the electrical field. It can be noted that generated 

waves are in phase, i.e., when the electric field is maximum, the magnetic 

energy is maximum. Two main characteristics of EM radiation are: 

●  wavelength - is the length of one wave cycle, and it is defined as the 

distance between successive wave crests. Wavelength (𝜆) is usually 
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measured in nanometers (nm, 10−9meters), micrometers (𝜇m, 

10−6meters), or centimeters (cm, 10−2meters). 

● frequency - number of cycles of a wave passing a fixed point per unit 

of time. Frequency is usually represented by a Greek letter 𝜈 and it is 

measured in hertz (Hz), equal to one cycle per second. 

The following formula relates wavelength and frequency: 

𝑐 = 𝜆𝜈 

where 𝑐 is the speed of light, 𝜆  is wavelength and 𝜈 is frequency. It can be 

concluded that frequency and wavelength are inversely related to each other, 

i.e. the shorter the wavelength, the higher the frequency and reverse.  

The EM spectrum represents the collection of all wavelengths of EM radiation, 

which can be categorized into regions based on wavelength and frequency. 

The EM spectrum consists of gamma, X, ultraviolet, visible, infrared, 

microwaves, and radio waves. The range of gamma and  X waves includes 

wavelengths less than 0.01 μm, and they are unusable in remote sensing due 

to their low penetration through the atmosphere. The ultraviolet range 

comprises wavelengths between 0.01 μm and 0.04 μm. This region has the 

shortest wavelength that can be practically used in remote sensing. Certain 

materials on Earth's surface, primarily rocks and minerals, fluoresce or emit 

visible light when illuminated by UV radiation. However, this range is highly 

absorbed in the upper layer of the atmosphere by ozone, so its application is 

limited.  

The range of the visible part of the EM spectrum is defined by the sensitivity 

of the human eye and includes wavelengths between 0.4 𝜇m to 0.7 𝜇m. 

Humans perceive  the combination of all visible wavelength radiation as 

white light because the cones in our retinas respond to the full spectrum of 

visible colors simultaneously, but according to the wavelengths in the visible 

spectrum, different colors are distinguished from violet (0.4 𝜇m - 0.44 𝜇m), 

through blue (0.45 𝜇m - 0.5 𝜇m), green (0.5 𝜇m - 0.57 𝜇m), yellow (0.57 𝜇m - 

0.59 𝜇m), orange (0.59 𝜇m - 0.62 𝜇m) to the red (0.62 𝜇m - 0.7 𝜇m) with the 

largest wavelength. Although its portion is small compared to the rest of the 

spectrum, it is one of the most used in remote sensing due to its reflection 

properties. 
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The infrared (IR) portion of the spectrum includes wavelengths between 

0.7 𝜇m and 100 𝜇m. It can be divided into two categories: reflective IR and 

emitted (thermal part). Radiation in reflective IR (0.7 𝜇m - 3.0 𝜇m) region is 

used in remote sensing similarly to radiation in the visible part. The thermal 

IR covers a range from approximately 3.0 𝜇m to 100.0 𝜇m and represents the 

radiation that is emitted from the Earth’s surface in the form of heat. Both 

parts of the IR spectrum are essential for applications in remote sensing. 

Thermal IR is used to monitor temperature variations, making it useful for 

tracking water temperature, land surface temperature, and heat emission. 

Reflective IR has been widely used for vegetation monitoring. Also, they are 

frequently used in geology, geomorphology, agriculture, military 

surveillance, and environmental monitoring, aiding in tasks such as mineral 

exploration, terrain analysis, crop health assessment, and target detection in 

defense applications. 

Microwave range includes waves with a wavelength from 1000 𝜇m to 1 m. 

These are the longest waves that are applied in remote sensing, and their 

ability to penetrate the atmosphere is higher than that of the visible spectrum. 

Microwaves can penetrate clouds and haze, making them useful for all-

weather and day-night monitoring. They can be emitted from artificial (such 

as Synthetic Aperture Radar (SAR) or radar altimetry) or natural sources. 

Based on the source of energy, remote sensing can be categorized as passive 

and active. Sun Remote sensing that measures the naturally available energy 

is called a passive sensor. The sun is often used as a source of energy for 

remote sensing. Satellite missions such as Landsat and Sentinel-2 are 

examples of passive sensors. Passive sensors can only detect energy when it 

is naturally available. As a result, it can only collect data during the day. 

Additionally, their shorter wavelengths are unable to penetrate clouds, haze, 

and other atmospheric conditions, which limits data acquisition and causes 

data gaps. 

On the other hand, sensors that provide their own energy source are active. 

Aster and Sentinel-1 are examples of this sensor type. Active sensors emit the 

energy toward the target of interest and measure the amount of reflected 

energy. The main advantage of an active sensor is the possibility to collect 

data in all weather conditions and at all times of the day or season.  
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Passive sensors are more cost-effective and offer a wide set of observables, 

with high resolution. In contrast, active sensors enable observation in all 

weather conditions but require moderately complex and sophisticated 

processing techniques. The choice between active and passive sensors 

depends on specific application requirements, available budget, and 

environmental conditions. 

3.2 Interaction with atmosphere 
EM radiation travels from the source through the atmosphere, interacts with 

the target, and the reflected radiation travels again through the atmosphere 

before reaching a sensor. Unlike the vacuum of space, the atmosphere 

contains gases and particles that interact with and modify the radiation 

passing through it. The influence of the atmosphere on radiation is a function 

of atmosphere permeability, i.e., the physical characteristics of gases and the 

number and size of particles, and is known as the atmospheric effect. The 

permeability coefficient shows how much of the radiation that reaches the 

upper atmosphere will reach the Earth's surface. The permeability coefficient 

varies both spatially and with height. The mechanisms of scattering and 

absorption cause the atmospheric effect.  

Scattering occurs when EM waves interact with particles in the atmosphere, 

causing them to be redirected from their original path. The amount of 

scattering depends on several factors, including the wavelength of radiation, 

the abundance of particles and gases, and the distance that radiation travels 

through the atmosphere. There are three main types of scattering: 

● Rayleigh scattering - if the size of particles is smaller than the EM 

wavelength, they can result in diffuse and elastic scattering (change in 

wavelength) depending on size and dielectricity. It is inversely 

proportional to the one-quarter power, meaning that the scattering of 

blue light is much higher than that of EM with longer wavelengths. 

Rayleigh scattering is dominant in the upper atmosphere, and because 

of it, the sky appears blue during the day. During sunrise or sunset, 

the light has to travel farther through the atmosphere, and scattering 

of shorter wavelengths is more complete, which increases the 

percentage of longer wavelengths, i.e., red sky color 
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● Mie scattering - if particle size is about the same as wavelength. Dust, 

pollen, smoke, and water vapor most often cause this scattering, and 

it tends to affect longer wavelengths. Mie scattering occurs in the 

lower atmosphere where the presence of these particles is higher.  

● Non-selective scattering occurs when particles are much larger than 

the wavelength. It scatters all wavelengths equally, causing the white 

color of clouds and fog                    (blue + green + red = white) 

Scattering can significantly reduce the amount of information collected by 

remote sensing. 

Absorption is the process by which the energy of EM is transformed into other 

types of energy. Ozone, carbon dioxide, and water vapor are three leading 

causes of absorption. Ozone absorbs the ultraviolet range. Carbon dioxide is 

also called a greenhouse gas. Absorb the long IR region (area associated with 

thermal heating), trapping this heat in the atmosphere. Water vapor absorbs 

a large portion of IR and a short microwave. The combined effects of different 

atmospheric layers on absorption can make certain regions of the atmosphere 

to become impenetrable in certain parts of the spectrum. Consequently, there 

will be no registered energy in remote sensing, which reduces available 

information and limits the application. 

3.3 Interaction with target 
EM radiation that is not scattered or absorbed by the atmosphere can reach 

the target and interact with it. There are three forms of interaction: absorption, 

transmission, and reflection. The form of interaction is the function of the 

radiation wavelength, the properties (physical and chemical characteristics), 

and the conditions of the target.  Absorption occurs when radiation is 

absorbed, and transmission occurs when radiation is passed through an 

object. Once transmitted, energy can be absorbed or reflected.  The reflection 

occurs when energy  “bounces” off the target and is redirected. In remote 

sensing, the amount of reflected energy is measured. There are two main 

types of reflection: specular and diffuse.  

If the target surface is smooth, radiation is primarily reflected in a single 

direction (specular reflection). On the other hand, if the target surface is 

rough, the radiation will be reflected almost uniformly in all directions 
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(diffuse reflection). Most of the targets on Earth's surface are between those 

two phenomena. The type of reflection is the function of surface roughness in 

comparison to the wavelength. If the wavelength of incoming radiation is 

much smaller than the surface variation or size of the particles that it is made 

from, diffuse reflection will be dominant. For example, fine-grained sand on 

a beach appears relatively smooth to long-wavelength microwaves, which can 

penetrate the surface and interact with larger features. However, this same 

sand may appear rougher in the visible spectrum due to the smaller scale of 

surface irregularities compared to the wavelength of visible light. 

The target of interest can be detected and analyzed based on its spectral 

characteristics. Reflectance describes the interaction of EM radiation with an 

object of interest, forming a unique spectral signature which is used for target 

identification in remote sensing. Spectral signatures represent the average 

value of reflected energy of an object within a specific part of the EM 

spectrum. A graph showing a spectral signature is called a spectral curve.  

Reflectance can be calculated by using the following expression: 

𝜌 [%] =
𝐿𝑟
𝐿𝑖
⋅  100 

where 𝜌 Represents reflection, usually expressed as a percentage, 𝐿𝑟 reflected 

radiance measured by the sensor, 𝐿𝑖 Incident radiance refers to the energy 

coming from the sun or another source. 

Reflectance is an inherent property of an object. This property allows for 

distinguishing between objects based on their spectral reflectance 

characteristics, independent of the amount of incoming energy when 

normalized or calibrated. Different materials have unique spectral signatures, 

while similar objects exhibit variations in reflectance only if their physical 

and/or chemical characteristics change (e.g., vegetation stress, soil moisture, 

etc.).  

Spectral characteristics of vegetation are influenced by factors of leaves, 

including orientation and structure. The amount of reflectance for specific 

wavelengths is influenced by pigment and leaf thickness, composition (cell 

structure), and the amount of water in leaf tissue. In the visible part of the 

spectrum, the reflectance of blue and red wavelengths is relatively small 
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because these components are absorbed during photosynthesis. In contrast, 

green wavelengths are reflected due to the presence of chlorophyll. Leaves 

appear greenest in the summer, when chlorophyll concentration is maximum. 

During the autumn, the amount of chlorophyll decreased, there is less 

absorption and proportionally more reflectance in the red part of the 

spectrum, so leaves appear as yellow or red (yellow is a combination of red 

and green wavelength). The inner structure of healthy leaves represents a 

diffuse reflector in the NIR part of the spectrum. This is because under the top 

surface of the leaf (epidermis) (Figure 3), there are primarily two layers of 

cells; the top one is the palisade parenchyma consisting of elongated cells 

arranged tightly in a vertical orientation. Those cells absorb blue and red light 

to create chlorophyll and power photosynthesis. The lower level is the spongy 

parenchyma (Figure 4), consisting of irregularly shaped cells with numerous 

air spaces between them, allowing for the circulation of gases. The NIR energy 

is not affected by these pigments and almost completely penetrates the 

palisade parenchyma. When it reaches the spongy parenchyma, the presence 

of air spaces causes the refraction of the NIR energy in various directions. This 

results in approximately half the energy exiting the leaf from the lower 

epidermis and the other half from the top epidermis, towards the sky. 

Therefore, the reflection is the highest in the NIR part and depends on the 

degree of leaf development, while the SWIR range depends on the amount of 

water in the leaf tissue. This region has been widely used for distinguishing 

different species, but also for monitoring the health status of vegetation, since 

vegetation that is stressed shows higher reflectivity in the SWIR portion of the 

spectrum, and healthy vegetation is detected in the NIR. 

Water highly absorbs EM radiation. The most essential characteristics are 

reflection in the visible and a small portion of the NIR region, while almost all 

radiation with wavelengths longer than 1.2 𝜇𝑚 is absorbed. Due to that, 

detection and separation of water bodies is easiest in this region. Therefore, 

water absorbs longer wavelengths more than shorter wavelengths. 

Consequently, water usually appears as blue or blue-green. 

However, changes in the water physicochemical characteristics can 

significantly change spectral properties. Clear water reflects most of the 

radiance with wavelengths shorter than 0.6 𝜇𝑚. However, if the turbidity of 
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water changes (due to increased concentration of suspended organic and 

inorganic matter), transmission and, therefore, reflection drastically change.  

 

Figure 3 Spectral signature of vegetation 

 

 

Figure 4 Structure of a healthy leaf 

As a result, turbid waters have much higher reflectance in the visible 

spectrum compared with clean water.  

Reflection of the water also changes with a change in chlorophyll 

concentration. An increase in chlorophyll concentration will increase 

absorption in the blue part of the spectrum and increase reflectance in the 
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green part of the spectrum. Based on this, it is obvious that depending on the 

object complexity, the absorption, transmittance, and reflection mechanisms 

can completely change. 

By comparing the spectral curves of different objects, we can distinguish them 

in ways that would not be possible using a single wavelength. For example, 

vegetation and water have similar spectral signatures in the visible spectrum 

but they are completely different in NIR. Spectral curves can vary 

significantly even for the same object, and can vary in space and time. 

Understanding which part of the spectrum needs to be analyzed for a specific 

target of interest, as well as which factors influence the spectral signature, is 

crucial for accurate interpretation of remote sensing data.  

3.4 Spectral indices 
While the interpretation of visible bands is relatively straightforward, data 

collected from a non-visible part of the spectrum or its combination with 

visible bands must be processed and analyzed using mathematical 

transformations, indices, or predefined intervals to be interpretable. Spectral 

indices have been widely used in remote sensing by enhancing specific 

features in satellite imagery, making it easier to analyze and interpret 

different land cover types, vegetation health, water bodies, etc. These indices 

are derived by mathematically combining reflectance values from multiple 

spectral bands. The main objective of using the spectral index is to improve 

the detection and differentiation of specific features that might be difficult to 

distinguish using raw reflectance. The application of spectral signatures 

enables large-scale and cost-effective environmental monitoring. By 

emphasizing particular spectral properties, indices can be applied in: 

● Vegetation monitoring - assessing stress conditions, biomass, plant 

health, phenology, etc. Indices such as Normalized Vegetation 

Difference Index (NDVI), Soil Adjusted Vegetation Index (SAVI), 

Enhanced Vegetation Index (EVI), Fraction of absorbed 

photosynthetically active radiation (fPAR), and Normalized 

Difference Moisture Index (NDMI) are used. 
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● Water body analysis - identification of water bodies, monitoring of 

changes in aquatic environment (Normalized Difference Water Index 

- NDWI). 

● Forestry - Estimating biomass, deforestation monitoring, wildfire 

impact assessment (NDVI, SAVI, Normalized Burning Ratio -NBR) 

The simple form of indices is the ratio between two spectral bands. In contrast, 

normalized difference indices enhance the contrast between two spectral 

bands and reduce environmental effects (difference in slope, aspect, shadows, 

etc.), and are among the most widely used. Vegetation indices are quantitative 

measures that operate by contrasting chlorophyll pigment absorption in R 

against the high reflectance of leaf mesophyll in NIR.  

The most often used vegetation index is NDVI. It is widely used in vegetation 

identification, monitoring of phenology, and vegetation stress. NDVI is 

calculated using the following expression: 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

NDVI always ranges from -1 to 1. Pixels with values close to 1 indicate a high 

vegetation density, while values below 0 suggest the absence of vegetation. 

Healthy vegetation has a high NDVI as it strongly absorbs R and reflects NIR. 

In contrast, unhealthy and sparse vegetation increases reflection in visible and 

decreases reflection in NIR reflectance, resulting in a lower NDVI value. 

However, NDVI is sensitive to soil brightness, soil color, atmospheric 

conditions, cloud cover, cloud shadow, and leaf canopy shadow, necessitating 

proper remote sensing calibration (radiometric correction, atmospheric 

correction, etc.) to improve accuracy. 

To reduce NDVI’s sensitivity to soil background reflectance, Huete [21] 

established SAVI, which can be expressed as follows: 

𝑆𝐴𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 𝑅 + 𝐿)
(1+ 𝐿) 

where L is a soil conditioning factor, varying depending on the amount of 

green vegetation cover. It can have a value from 0 to 1. In an area with no 

green vegetation cover, L will be equal to 1, in an area with moderate green 

vegetation cover, L=0.5 (commonly used as a default value), and in an area 
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with high vegetation cover, L is close to 0, showing that the soil background 

does not affect the extraction of vegetation information. SAVI improves 

vegetation detection in mixed land cover types and is more reliable than 

NDVI in areas with low vegetation density. However, the L parameter must 

be chosen carefully based on vegetation cover, which requires prior 

knowledge. 

EVI [22] is similar to NDVI but corrects for atmospheric conditions and soil 

background effects. It is beneficial in high biomass regions, where NDVI may 

oversaturate or hit the maximum value. The formula for EVI is: 

𝐸𝑉𝐼 =  
𝐺 ⋅ (𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 𝐶1 ⋅ 𝑅 − 𝐶2 ⋅ 𝐵 + 𝐿)
 

where G is the gain factor, L is the canopy background adjustment, 𝐶1, 𝐶2 

coefficients represents atmospheric resistance terms and uses B i.e. blue band 

to correct aerosol influences in the R band. It is especially useful for 

monitoring forest and high biomass environments where NDVI tends to reach 

maximum, making it difficult to detect and monitor changes. 

NDWI [23] is one of the most commonly used indices in water body mapping 

and management. It enhances water features while minimizing the influence 

of vegetation and soil. The standard NDWI formula is: 

𝑁𝐷𝑊𝐼 =
𝐺 − 𝑁𝐼𝑅

𝐺 + 𝑁𝐼𝑅
 

However, it is sensitive to atmospheric conditions, particularly aerosols and 

cloud presence. 

To address this issue, Xu [24] proposed the Modified Normalized Difference 

Water Index (MNDWI), which replaces NIR with SWIR to improve water 

body extraction: 

𝑀𝑁𝐷𝑊𝐼 =  
𝐺 − 𝑆𝑊𝐼𝑅

𝐺 + 𝑆𝑊𝐼𝑅
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Table 2 Interpretation of NDVI, SAVI, EVI, NDWI and MNDWI value 

Index > 0.5 0.2 to 0.5 0 to 0.2 0 to -0.2 -0.2 > 

NDVI Dense, healthy 

vegetation (forests, 

peak-season crops) 

Moderate vegetation 

(grasslands, shrubs, 

cultivated crops) 

Sparse or 

stressed 

vegetation, dry 

grass 

Barren land, 

degraded soil, 

some built-up areas 

Water, snow, ice, 

highly developed 

urban areas 

(concrete, asphalt) 

SAVI Healthy vegetation, 

soil-adjusted 

Moderate 

vegetation, some soil 

impact 

Sparse 

vegetation, 

exposed soil 

influence 

Degraded soil, 

barren land, desert 

regions 

Urban areas, highly 

reflective surfaces, 

snow, water 

EVI Healthy green 

vegetation 

(croplands, 

pastures, well-

irrigated fields) 

Moderate vegetation 

(grasslands, shrubs, 

semi-arid 

vegetation) 

Sparse or 

stressed 

vegetation, bare 

land 

Degraded land, 

semi-arid areas, 

some built-up 

zones 

Urban 

infrastructure, snow, 

ice, water 
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NDWI Deep open water 

bodies (lakes, 

reservoirs, oceans) 

Wetlands, saturated 

vegetation, high 

moisture 

Vegetation with 

moderate water 

content, 

inundation, 

shadows 

Dry vegetation, 

bare soil, or built-

up areas, moderate 

drought  

Urban, barren land, 

or non-vegetated 

areas, drought 

MNDWI Open water, 

wetlands (better 

than NDWI in 

urban areas) 

Shallow water, 

pools, irrigated 

fields 

Moist soil or 

vegetation with 

high water 

content, 

inundation, 

humidity 

Dry soil, urban 

areas, or vegetation 

with low water 

content 

Highly urbanized 

zones, industrial 

areas, deserts, barren 

landscapes 
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MNDWI is widely used for urban and flood mapping, where NDWI may 

misclassify features. The interpretation of the index value is shown in Table 

2. 

NBR is used to detect burned areas and assess fire severity by leveraging the 

contrast between NIR and SWIR reflectance. Healthy vegetation has high NIR 

reflectance and low SWIR reflectance. On another hand, burned areas have 

low NIR reflectance but high SWIR reflectance, making NBR an effective post-

fire assessment tool: 

𝑁𝐵𝑅 =
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 

To measure fire impact and assess burn severity, the difference between pre-

fire and post-fire NBR (𝛥NBR) has been used: 

𝛥𝑁𝐵𝑅 = 𝑁𝐵𝑅𝑝𝑟𝑒−𝑓𝑖𝑟𝑒 −𝑁𝐵𝑅𝑝𝑜𝑠𝑡−𝑓𝑖𝑟𝑒 

NBR has been widely used for post-fire monitoring, wildfire management, 

and vegetation recovery studies. 

𝛥NBR values can vary from case to case, so interpretation in specific study 

areas should be done through field assessment. However, the United States 

Geological Survey (USGS) proposed a threshold to interpret the burn severity 

[25], which can be seen in Error! Reference source not found.. 

Table 3 Burn severity labels based on the ΔNBR, proposed by USGS [25] 

Severity level NBR 

Enhanced regrowth, high (post-fire) < -0.251 

Enhanced  regrowth, low (post-fire) -0.25 to 0.10 

Unburned -0.10 to 0.10 

Low severity  0.10 to 0.27 

Moderate-low severity 0.27 to 0.44 

Moderate-high severity 0.44 to 0.66 

High severity > 0.66 
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3.5 Characteristics of images 
As previously mentioned, geospatial data can be modeled either as raster or 

vector formats. Remote sensing data, in particular, are typically represented 

as a raster. The term 'resolution' is commonly used to describe the quality of 

a digital image, usually referring to the size of the pixel. However, this 

definition alone is insufficient for remote sensing. In this context, four 

different types of resolution are used: 

● Spatial resolution refers to the size of the smallest object that can be 

detected in an image. In digital and satellite imagery, resolution is 

defined by the size of the pixels. The smallest object that can be 

identified in an image cannot be smaller than the pixel size; thus, 

spatial resolution represents the dimensions of the pixels on the 

Earth's surface. For example, consider a satellite image whose spatial 

resolution is 10 m. This means that each pixel covers an area of 10 x 10 

m on the Earth's surface, i.e., covers a total area of 100 square meters. 

The spatial resolution and pixel size are inversely proportional; that is, 

the smaller the pixel size, the higher the spatial resolution. 

● Spectral resolution is defined as the specific range of EM radiation that 

a sensor registers, indicating the sensor's ability to distinguish 

between different wavelengths. Each spectral channel (also called a 

band) represents a narrow wavelength range in which information is 

collected. Higher spectral resolution corresponds to narrower spectral 

channels and a greater number of spectral channels. If the spectral 

resolution is too coarse, it can lead to a loss of information, hindering 

the accurate identification of target objects. Conversely, if the spectral 

resolution is too high, both data acquisition and processing become 

time-consuming and costly. Based on spectral resolution, satellite 

images can be categorized into three types: panchromatic (uses a 

single spectral channel), multispectral (comprises a collection of a few 

bands of the same area), and hyperspectral (involves the collection of 

hundreds of spectral bands). Black-and-white (panchromatic) images 

have low spectral resolution because they integrate radiation across 

the entire visible spectrum into a single band. In contrast, RGB images 

provide higher spectral resolution by capturing radiation separately 

in the blue, green, and red regions of the spectrum, though their 
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resolution remains lower than that of multispectral or hyperspectral 

data. 

● Radiometric resolution corresponds to a sensor's sensitivity to detect 

slight differences in radiance reflected from the Earth's Surface. 

Higher radiometric resolutions enable the detection of subtle changes 

within the same spectral bands; therefore, it improves the ability to 

distinguish between different features and materials. Radiometric 

resolution is typically measured in bits (e.g., 8-bit, 12-bit, 16-bit), 

indicating the number of gray levels available for each pixel. For 

example, an 8-bit image can represent 256 different intensity levels 

(e.g. pixel value ranging from 0 to 255). 

● Temporal resolution refers to the frequency at which a sensor can 

revisit the same area of Earth. It is inversely proportional to the time 

period between two subsequent observations; as the time period 

decreases, the temporal resolution increases, enabling accurate 

monitoring of changes over time. In remote sensing, temporal 

resolution is influenced by the characteristics of the satellite's orbit and 

the specifications of the sensor. It is typically measured in days but can 

also be expressed in hours or weeks. Higher temporal resolution is 

crucial for effectively monitoring changes over time, such as 

environmental shifts, seasonal variations, and dynamic events. 
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4 MICROWAVE REMOTE SENSING 

As already mentioned, the microwaves represent the portion of EM radiation 

between infrared and radio waves. This part of EM is characterized by 

wavelength from 1 mm to 1 m and frequency from 0.3 to 300 GHz. 

Microwaves have much longer wavelengths than visible and infrared 

radiation, which makes them largely unaffected by atmospheric particles such 

as ozone, carbon dioxide, water vapor, and dust. Moreover, active microwave 

sensors operate independently of ambient illumination conditions.  

Microwave remote sensing can be divided into two main categories: active 

and passive. These two sensor systems are fundamentally different, sharing 

only the fact that they both operate in the microwave spectral range. In 

passive microwave remote sensing, a sensor detects and records the radiation 

that is naturally emitted by objects or surfaces. Natural emission is influenced 

by the object's physical properties, such as temperature, moisture, and surface 

roughness. In addition, atomic composition and crystal structure also 

influence the amount of emitted radiance (for example, ice, due to its crystal 

structure, emits more microwave energy than liquid water). Although, due to 

longer wavelengths, microwave radiation can penetrate clouds, rain, and 

haze, enabling application in all weather conditions, the amount of available 

energy is relatively low which requires a wider field of view and, 

consequently, leads to lower spatial resolution in passive microwave datasets. 

Passive microwave sensors, such as radiometers, are particularly useful for 

many climate applications such as monitoring weather conditions, sea ice, or 

surface temperature.  

Active microwave remote sensing, on the other hand, involves the 

transmission of microwave signals toward a target and detects the 

backscattering signal i.e. active sensors operated independently of sunlight 

eliminating problems due to bad illumination. Active radar can be 

categorized into imaging and non-imaging.  The most common imaging 

active systems are RADAR (RAdio Detection And Ranging) systems, 

including Synthetic Aperture Radar (SAR). Similar to passive microwave 

systems, a major advantage compared to optical systems is the ability to 

observe in almost all-weather conditions and time, day or night. 
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The microwave part of the EM spectrum is quite large and it is usually divided 

into several bands (wavelength ranges). The most commonly used bands are: 

Ku bands, X-band,  C-band, S-band and L-band. The description of different 

bands is shown in Table 4.   

Table 4 Common microwave bands in remote sensing 

Band Frequency 

[GHz] 

Wavelength 

[cm] 

Application 

P band 0.3 to 1 100 to 30 Penetrates  vegetation  and soil; 

used in biomass studies, vegetation 

mapping and soil moisture 

monitoring. 

L band 1 to 2 30 to 15 Vegetation, soil moisture, forest 

structure, geophysical monitoring; 

used in missions like NASA's 

SMAP. 

S band 2 to 4 15 to 7.5 Weather radar, wave monitoring, 

some soil and vegetation studies. 

C band 4 to 8 7.5 to 3.8 Global monitoring, change 

detection, monitoring of ice, ocean; 

used in Sentinel-1, RADARSAT. 

X band 8 to 12 3.8 to 2.5 High-resolution SAR: urban 

monitoring, ice, snow, sensitive to 

surface texture; used in TerraSAR-

X, COSMO-SkyMed. 

Ku band 12 to 18 2.5 to 1.7 Snow measurement, Ocean surface 

wave measurements. 

K band 18 to 27 1.7 to 1.1 Rain radar, cloud profiling. 

Ka band 27 to 40 1.1 to 0.75 High-resolution cloud and 

precipitation studies. 
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In remote sensing, the polarization of microwaves—that is, the orientation of 

the plane in which the transmitted wave oscillates—is an important 

characteristic. Depending on the orientation of the transmitted and received 

radar wave, the emitted pulse results in a different information. Radar sensors 

emit radiation in horizontal (H) or vertical (V) polarization. Similarly, an 

antenna can receive horizontally or vertically polarized backscattered energy, 

or some radars can receive both. Therefore, the four combinations of 

transmitted and received polarization are possible: 

1. HH - horizontal transmit and horizontal receive, 

2. VV - vertical transmit and vertical receive, 

3. HV - horizontal transmit and vertical receive, and 

4. VH - vertical transmit and horizontal receive. 

Rough surfaces, such as bare soil or water, are most sensitive to VV scattering, 

volumetric scattering is most sensitive to cross-polarized data (HV or VH), 

while double bounced scattering is most sensitive to an HH polarized signal. 

Therefore, VV polarization is most suitable for bare surfaces, rough surfaces, 

vegetation with vertical structures, HV polarization for forest/non forest 

distinguishing, while HH polarization is recommended for mapping 

flooded/non flooded vegetation, urban areas. 

4.1 Radar basics 
Imaging radar systems consists of a transmitter, a receiver, an antenna and an 

electronic system to process and record the data (Figure 5). The transmitter 

generates and emits microwave pulses at specific frequencies to the antenna. 

The antenna focuses outgoing microwave energy into a beam, directs toward 

the target and receives the reflected echo within the illuminated beam 

allowing determination of the direction of the target echo. The duplexer is 

used to alternately switch the antenna between transmitters allowing usage 

of only one antenna. The duplexer sends the weak echo signal to the receiver. 

The receiver amplifies and processes the recorded backscattered signal 

returned from the target, while the signal processor converts raw signal data 

into interpretable forms. To create an image, each transmitted-received echo 

pulse sequence is sampled, and these samples are stored in a range line.  As 
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the sensor moves, the recorded and processed echo builds up an image of the 

surveyed region.  

 

Figure 5 Components of Radar 

The operation and data reconstruction principles of radar imagery differ 

fundamentally from those of optical sensors. Proper interpretation requires 

an understanding of what the radar actually detects: the intensity of the 

backscattered signal and the travel time of the returned echo. From this 

measured intensity, the backscattering coefficient is then obtained through 

radiometric calibration. It is a function of the radar system parameters and the 

physical properties of the surface. The backscattering coefficient 𝜎𝑜 is given 

as: 

𝜎𝑜 =
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑏𝑎𝑐𝑘𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑎𝑟𝑒𝑎

𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑝𝑜𝑤𝑒𝑟 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑎𝑟𝑒𝑎
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The backscattering coefficient expresses the fraction of the radar signal that is 

scattered back toward the sensor. In linear units it is always non-negative, but 

when expressed in decibels (dB) it can take negative values. This occurs, for 

example, over smooth surfaces - like calm water , which scatter most of the 

energy away from the radar rather than back to it. 

There are three main backscattering mechanisms in radar remote sensing: 

surface, double-bounce and volume scattering. Surface scattering (Figure 6 

(a)) is strongly dependent on surface roughness and sensor wavelength; it is 

characteristic of water, bare soils, roads, etc. The surface roughness (h) 

represents the average height variation in the target surface from a perfectly 

smooth surface. It can be expressed by using Rayleigh definition, i.e. 

ℎ <
𝜆

8𝑠𝑖𝑛𝜃
 

A smooth surface in radar images is represented as black since it acts as a 

mirror, reflecting the incoming radar beam at an equal and opposite angle to 

the incident angle (away from the antenna). The rough surfaces (ℎ >
𝜆

2
) will 

reflect the incident radar beam equally into all directions (diffuse scattering). 

The double bounce mechanism (Figure 6 (b)) occurs when targets have two 

(or more) perpendicular surfaces (such as buildings, tree trunks). The 

perpendicular surfaces cause most of the radar energy to be reflected directly 

to the antenna due to the double balance. It causes a very strong backscatter 

that is not wavelength dependent. 

The volumetric scattering occurs when signals penetrate inside the medium 

and scatter from different components within the medium, such as branches 

in the vegetation (Figure 6 (c)). It is common for natural surfaces due to their 

inhomogeneous structure. 

The backscattering coefficient and penetration depth of the radar signal are 

functions of many parameters, such as wavelength and surface characteristics 

(dielectric characteristics, surface roughness, orientation) of the target. The 

typical levels of backscattering, depending on target type, are presented in 

Table 5.  

The dielectric properties of the target dictate how much incoming radiation 

will scatter at the surface, penetrate into the target, or get absorbed.  
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Figure 6 Radar backscattering mechanisms (a) surface reflection (blue), (b) double bouncing 

mechanism (orange) and (c) volumetric mechanism (red) 

The penetration increases with the increase in wavelength. Shorter 

wavelengths (such as X-band radar) are scattered from the top of the trees, 

while longer wavelengths (L-band) will return from the ground in vegetated 

areas. Although the bare surfaces (such as glacier ice or alluvium solid) follow 

this rule, the penetration is strongly dependent on dielectric properties.  

Table 5 Relationship between target type and level of backscattering 

Type of the target  Level of backscattering 

Man-made objects 

Terrain slops oriented toward radar 

Very rough surfaces 

Steep look direction 

Very high  

Rough surfaces 

Dense vegetation 

High 

Medium level of vegetation 

Agricultural crops 

Moderate rough surfaces 

Moderate 

Smooth surfaces  

Calm waters 

Impervious surfaces 

Very dry terrain 

Low 
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The dielectric constant describes a material’s ability to store and transmit 

electrical energy when exposed to electromagnetic radiation. It is strongly 

influenced by moisture content: dry soil has a low dielectric constant, whereas 

water surfaces exhibit very high values. The radar signal’s penetration depth 

is inversely related to the dielectric constant—meaning that higher dielectric 

values lead to shallower penetration. 

When surface scattering dominates, the return signal is strongly affected by 

surface roughness. If the roughness height is much smaller than the radar 

wavelength, most of the energy is reflected specularly away from the sensor, 

producing a weak return (dark pixels). When the roughness height is 

comparable to the wavelength, the signal is scattered diffusely in many 

directions, resulting in a stronger return. This explains why a surface with the 

same height variations can appear rough in X-band but smooth in C-band. 

The incidence angle is also important: moving from near range to far range, 

the return decreases because less energy is directed back to the sensor. 

Most conventional radar uses pulsed radar systems, which transmit short 

radar pulses and listen for the return echoes. The distance (range) between the 

sensor and the individual target within the range line is calculated based on 

the traveling time T (time interval the signal needs to pass twice the distance 

between object and antenna) and the known speed of light c: 

𝑟 =
𝑐𝑇

2
 

While the range to the target can be determined, the radar measurement does 

not inherently contain information about the precise direction of the scattered 

signal.  This ambiguity can be addressed by using two approaches, i.e., real-

aperture radar (RAR) or synthetic aperture radar (SAR).  

The RAR (Figure 7 (a)) handles direction ambiguity by reducing the physical 

angular size (𝜃𝑎𝑛𝑡) of the radar beam. The radar beam width is proportional 

to the wavelength and inversely proportional to the antenna length, i.e., 

aperture. This means the longer the antenna, the narrower the beam. The 

angular width of the antenna is approximately given by 

𝜃𝑎𝑛𝑡 =
𝜆

𝐿𝑎𝑛𝑡
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where 𝜆 is the wavelength of the signal and 𝐿𝑎𝑛𝑡 is the physical size of the 

antenna.  

 

Figure 7 Comparison between RAR and SAR systems 

Therefore, the usage of larger antennas will reduce the width of the beam 

along the directions, since the range of possible directions from which the 

signal could be reflected becomes smaller.  Moreover, it increases the spatial 

resolution in the azimuth direction.  

The radar remote sensing is based on coherent EM waves, i.e., the waves that 

are in constant phase with each other over space (spatial coherence) and time 

(temporal coherence), allowing the system to measure not just amplitude but 

also the phase of the returned signal. Temporal coherence represents the 

correlation coefficient between the radar signal phase at different times with 

the same observation geometry, and it quantifies the quality of pixel values 

between two time periods. Temporal coherence is the main factor limiting the 

accuracy in interferometric and tomographic SAR applications. Several 

factors can cause decoherence, such as spatial and temporal baselines, thermal 

noise, transpiration processes, physical changes, atmospheric conditions, etc. 

The temporal coherence usually decreases with increasing temporal baseline, 

while the spatial coherence usually decreases with increasing spatial baseline.  
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4.2 Radar viewing geometry 
The platform carrying the radar sensor moves along the orbit flight direction 

with the nadir directly beneath the platform. The sequence of short 

microwave pulses of pulse length (𝜏𝑝) is transmitted perpendicularly to flight 

direction and it illuminates an area, i.e., a swath, with offset from the nadir. 

The direction along-track is called azimuth, and the direction across track is 

called range.  

Radar sensors are side-looking instruments. The portion of the image swath 

closest to the nadir track of the radar platform is called the near range, while 

the portion farthest from the nadir is called the far range. The incidence angle 

of the system is the angle between the radar beam and the local vertical. 

Moving from near to far range, the incidence angle increases. The look angle 

is the angle at which the radar observes the surface. Together with the 

incidence angle of the sensor and the local incidence angle, which varies 

depending on terrain slope and Earth curvature, it characterizes the radar 

viewing geometry. It is defined as the angle between the radar beam and the 

local surface normal. The radar sensor measures the radial line of sight 

distance between antenna and object. This line is called slant range, i.e. slant 

range distance. The true horizontal distance along the ground corresponding 

to each point measured in slant range is called ground range (Figure 8).  

To form a two-dimensional image, the echoes are sorted by their arrival time 

in both directions. A SAR image consists of pixels that are associated with a 

small area on the Earth’s surface called a resolution cell. Each pixel value 

represents the coherent sum of the echoes from all scatterers within the 

resolution cell, i.e. 

𝑠𝑝 =∑𝑎𝑛𝑒
𝑖𝜑𝑛

𝑁

𝑛=1

 

where 𝑎𝑛 represents the amplitude from scatterer n and 𝜑𝑛 is the phase of 

scatterer n within the p resolution cell. 
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Figure 8 Geometric properties of radar 

 Pixel value is a complex number that contains amplitude and phase 

information of the backscattered echo within the corresponding resolution 

cell. Amplitude represents the magnitude of the scattered signal while phase 

describes the signal position within its oscillation cycle. 

Different rows are associated with different azimuth locations, while different 

columns represent different slant range locations. 

The radar image spatial resolution in slant range and azimuth direction is 

defined by pulse length and antenna beam width, respectively. Due to the 

different parameters that determine the spatial resolution in range and 

azimuth resolution, it is obvious that the spatial resolution in the two 

directions is different. For radar image processing and interpretation, it is 

useful to resample the image data to a regular pixel spacing in both directions.  

In slant range direction the echoes from near-range swath edges arrive sooner 

than from far-range. The ability of radar to distinguish objects in range 

direction is defined by range resolution. The range resolution is defined as the 

distance that two objects on the ground have to be apart to give two different 

echoes in the return signal i.e. two objects will be resolved in range direction 
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if they are separated by at least half a pulse length. The range resolution 

depends on the bandwidth (𝐵𝑤) or pulse duration (𝜏𝑝) of the transmitted 

signal, i.e. 

𝛿𝑟 =
𝑐𝜏𝑝
2
=

𝑐

2𝐵𝑤
 

The beamwidth is inversely related to the pulse duration, which represents 

the duration of a single transmitted radar pulse. Although it is independent 

of the range, the ground range resolution will depend on the local incidence 

angle, i.e. 

𝛿𝑔𝑟 =
𝐶

2𝐵𝑤𝑠𝑖𝑛𝜃
 

The equation shows that the range resolution is not constant across the swath; 

it degrades with increasing distance from nadir. This behavior is the opposite 

of that observed in optical systems. 

The azimuth resolution refers to the capability of the radar system to 

distinguish between objects located at different angles in the horizontal plane. 

It is a function of the beam width 𝜃𝑎𝑛𝑡 and the range r and can be expressed 

as: 

𝛿𝑎 = 𝜃𝑎𝑛𝑡𝑟 

Azimuth resolution linearly decreases as range increases. Based on the 

equation, it can be concluded that the azimuth resolution changes from the 

near-range to the far-range edge of the swath. Since radar beamwidth is 

inversely proportional to antenna length, a longer antenna will produce finer 

resolution.  

4.3 Synthetic Aperture Radar  
On one hand, to provide the azimuth resolution of a few meters, the RAR 

would require an antenna length of several kilometers. On other hand, the 

physical size of the antenna that radar platforms carry is limited. To overcome 

this limitation, the forward motion of the smaller antenna along the azimuth 

direction over time is used to simulate a very long antenna (synthetic 

aperture).  
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In 1951, Carl Wiely discovered that the resolution of radar images depends on 

the Doppler beamwidth of the echo rather than the long-trach footprint width 

of the beam pattern. The Doppler effect represents the shift in frequency of 

the wave caused by the relative motion of the sensor with respect to the target, 

i.e., a receding source (moving away from the observer) exhibits a lower 

frequency, while an approaching source (moving toward the observer) 

exhibits a higher frequency than the emitted frequency. Since two target 

points are separated in the azimuth direction they have slightly different 

speeds in any time point to the antenna. Consequently, the signal echoed from 

each target will have a frequency shift. The SAR uses the Doppler shift to 

identify target position. 

The synthesis aperture concept is based on the fact that a target on the Earth 

surface is observed by many consecutive radar pulses. As the radar platform 

moves, the relatively small antenna of size 𝐿𝑎𝑛𝑡 (and corresponding azimuth 

resolution) illuminates the target from several positions. The target T at range 

R enters a beam when antenna is at 𝑝𝑠𝑡𝑎𝑟𝑡 position and leaves the beam at 𝑝𝑒𝑛𝑑 

position (Figure 9). The backscattered signals from each radar pulse are 

recorded for as long as the target remains within the antenna beam. The 

echoes collected during this time are then coherently combined to simulate a 

much longer antenna—known as the synthetic aperture—than the actual 

physical one. The target that is offset by the x from the central antenna axis 

(𝑅0) will have Doppler frequency shift (𝑓𝑑): 

𝑓𝑑 =
2𝑣

𝜆𝑅
𝑥 

where 𝑣 is the speed of the radar system platform and the target. The azimuth 

resolution is linearly related to the Doppler frequency resolution 𝛿𝑓𝑑  i.e. 

𝛿𝑎 =
𝜆𝑟

2𝑣
𝛿𝑓𝑑  

The 𝛿𝑓𝑑  depends on the time that target spent within the beam i.e. the Doppler 

frequency shift can be more precisely determined if the total time duration 

that target stays within the radar beam is longer. Therefore, the 𝛿𝑓𝑑  can be 

approximate as  

𝛿𝑓𝑑 ≈
𝑣

𝐿𝑆𝐴
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where the length of synthetic aperture is equivalent to the distance the radar 

moves while the target stays within the beam and it can be calculated using 

the following expression 

𝐿𝑆𝐴 =
𝜆

𝐿𝑎𝑛𝑡
𝑅 

As a result, the maximum achievable azimuth resolution of the SAR is 

approximately equal to half the length of a real antenna and it is independent 

of the range and the wavelength. Although targets farther from the sensor 

stay in the beam longer (due to wider beamwidth), and closer targets are 

observed for a shorter time, this geometric effect is balanced so that the 

azimuth resolution remains constant across the entire image swath. The 

ability of SAR to achieve high and uniform resolution regardless of range is 

its key advantage, making it widely used in both airborne and spaceborne 

radar systems. 

 

Figure 9 Geometry of observation using SAR for target T at along-track position 0 (Doppler 

shift 0). The pstart and pend represents position when target T entered and leaved the radar 

beam respectively 
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4.4 Distortions in radar images 

4.4.1 Geometric properties 

Due to side looking viewing geometry, radar images exhibit geometric 

distortion which are caused by the relation between the local topography 

(surface slope and similar terrain features) and incidence angle. Radar 

imagery is typically affected by three geometric distortions: foreshortening, 

layover, and shadow (Figure 10). 

In side looking geometry, if the radar beam reaches the base of a tall target 

before it reaches the top, the sensor-facing slope appears foreshortened i.e. a 

symmetrical mountain would appear as leaning toward the sensor side. As 

radar measures distance in slant range, the length of the slope will be 

compressed in the resulting image.  The foreshortened depends on incidence 

angle 𝜃 and the slope angle (𝛼), and it decreases with an increase in the 

incidence angle. The distortion is at its maximum if the radar beam is almost 

perpendicular to the slope. The echoes that come from sensor-facing slopes 

are stored into fewer pixels than it should be resulting in high digital 

numbers. Since echoes from different objects are combined the foreshortened 

areas in the radar image are very bright. 

The layover is an extreme case of foreshortening and it occurs in areas where 

slopes are steeper than the incidence angle (𝜃 < 𝛼). In layover situations the 

radar beam reaches the top of the slope earlier than the bottom, the slope is 

imaged upside down in slant range image. Due to that, the echo for slopes 

will overlay with image information at other areas. Layover effect decreases 

with increasing inclined angle and those areas are very bright on the image. 

In the case of slops that are facing away from the sensor, the radar beam 

cannot illuminate the ground surface. Therefore, there is no energy that can 

be backscattered to the sensor and those regions remain dark in the image. 

Shadow effect increases as the incidence angle increases from near to far 

range. 

The influence of all tree effects is related to the incidence angle. Although 

increasing the incidence angle can reduce foreshortening and layover, it also 

produces more shadow in the image. 
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Figure 10 Geometric distortion of radar images 

Due to that, the selected incidence angle should provide balance between 

foreshortening and layover on one side and shadow on another side. 

Foreshortened areas can be corrected by applying radiometric correction 

based on a digital elevation model. 

4.4.2 Radiometric properties 

In addition to geometrical distortion, all radar images, to some degree, exhibit 

a salt-and-pepper–like texture known as speckle. The speckle effect is caused 

by the interference of the different echoes within each resolution cell. The 

backscattered signal that forms one pixel comes from an area that contains 

numerous individual features that scatter radar beams. As a result, the 

backscattering signal from one pixel is a coherent sum of the thousand 

individual scattering contributions. With those scattering elements differing 

in position, orientation and height within the cell, the phase of the individual 

scatterers varies randomly, so that the scattering response of a single pixel 

results from the vector sum of numerous random contributions. The strength 



Introduction to Geospatial Artificial Intelligence 

51 

 

of the summation vector depends on the relative phase of the scattered signal. 

If scatterers are in phase, constructive interference will produce large 

amplitude and bright pixels. On another hand, if two or more returning waves 

are of phase (phases differs by ∼ 180∘) destructive interference occurs, causing 

them to completely or partially cancel each other, which leads to lower 

amplitude and dark pixels. This interference causes both the amplitude and 

phase of the summed backscatter vector to vary randomly from pixel to pixel, 

resulting in the characteristic grainy appearance. 

Speckle degrades radar image quality, making both visual and digital 

interpretation more complex. Although challenging to handle, several 

effective speckle filters and multi-look techniques have been developed to 

reduce it prior to image interpretation. 

The multi-look technique divides the radar beam into several narrower sub-

beams. Each sub-beam represents an independent look and the final image is 

created by averaging these multiple looks. It reduces speckle noise and it is 

performed during data acquisition. 

On another hand, spackle filtering is performed on the output image to reduce 

local noise while trying to preserve lines and edges to maintain sharpness of 

image, preserve line and point target contrast, retain of mean values in 

homogeneous regions and texture information.  Therefore, speckle filters 

need to balance between radiometric (noise removal) and spatial resolution 

(detail preservation). The type of target (homogeneous or point scatter) needs 

to be considered when designing the filters. For the targets with one or a few 

dominant radar returns within its resolution cell, such as buildings or poles, 

there is little or no random interference (Figure 11). Speckles are minimal, and 

the backscattered echo is a function of the reflection coefficient of the 

individual scatterer.  In natural terrains (even in seemingly homogeneous 

areas such as grasslands or rivers) that contain many small scatterers 

randomly distributed within resolution cells and none of them provides a 

much stronger echo than others, the speckle noise is random and fully 

uncorrelated.  

Taking that into consideration, two general frameworks are used: spatial 

filters and similar samples. The spatial averaging filter reduces speckle noise 
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by applying the standard algorithm to the target pixel neighborhood within a 

small moving window (usually 3x3, 5x5, 7x7, …).  

 

Figure 11 Modelling scattering mechanism inside a SAR resolution cell. (a) point scatterer - 

with one or more dominant scatterers within resolution, (b) multiple scatterers where there is 

no dominant scatterer. 

For example, the Boxcar filter is a pure spatial averaging filter in which the 

target pixel value will be replaced by the mean of the pixels in a moving 

window. Although it has several advantages, including reduction of the 

standard deviation of noise in homogeneous areas, simple application, and 

preservation of mean value, it leads to loss of resolution. However, simple 

averaging cannot remove multiplicative speckle noise, and more 

sophisticated algorithms need to be used. They are usually based on a 

Bayesian technique that models radar backscattering as a product of true 

backscattering and multiplicative noise, based on prior information about the 

signal model or its distribution given as 

𝑦𝑝 = 𝑥𝑝𝑠𝑝  

where 𝑦𝑝 is the amplitude or intensity of the pth pixel in the noise SAR image, 

𝑥𝑝 represents a noise-free backscattering and 𝑠𝑝 the speckle noise at the pth 

pixel. The 𝑠𝑝 is modeled as a stationary random process, independent of 𝑥𝑝, 

with unit mean and a relative variance that characterizes speckle. Considering 
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that the real and imaginary parts of the collected complex noisy images are 

independent and identically distributed, they can be modeled as complex 

Gaussian variables with zero mean and variance of 𝜎2/2. Since the real and 

imaginary parts are Gaussian, the probability distribution function (pdf) of 

the amplitude can be described following the Rayleigh distribution model: 

𝑓𝐴(𝑎) =
2𝐿𝐿

𝜎2𝐿(𝐿 − 1)!
𝑎2𝐿−1𝑒𝑥𝑝(−

𝐿𝑎2

𝜎2 ) 

where 𝑓𝐴 is the Rayleigh pdf of amplitude, L is the number of looks, a 

represents pixel’s values in an amplitude image (with a=y) 

The 𝑦𝑝 can be observed as a random variable whose mean is equal to 𝑥𝑝. 

Although the speckle noise does not significantly influence the mean value, it 

increases the variance. The primary aim is therefore to reduce variance and 

estimate the mean of noise-free backscattering. The expectation of 𝑦𝑝 is equal 

to the expected value of true backscattering, i.e. 𝐸(𝑦𝑝) = 𝐸(𝑥𝑝) since the 

speckle noise has a unit mean. The spatial averaging of similar pixels in the 

image can be used to approximate 𝑥𝑝 as: 

𝑥 =
1

𝐿
∑𝑦𝑝𝑖

𝐿

𝑖=1

 

One of the most widely used filters based on this methodology is the Lee filter.  

The Lee filter uses the local mean and variance of all pixels within the moving 

window to estimate noise-free reflectivity by a linear combination of the local 

mean and the noise measurement as follows: 

𝑥 = 𝑎𝑥̅ + 𝑏𝑦   

where a and b are determined by applying the minimum mean square error 

criterion, i.e. 

𝑎 = 1− 𝑏  i.e. 𝑥 = 𝑥̅ + 𝑏(𝑦 − 𝑥̅) 

here parameter 𝑏 =
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥)

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑦)
 is used to assess the heterogeneity of the local 

region and balance between local mean and original pixel value. In a 

homogeneous region, b=0 and the filter replace the pixel value with a local 

mean. In heterogeneous areas, 𝑏 ≈ 1, such as edges or textured regions, the 

filter preserves details by relying more to original pixel value. In regions with 
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moderate heterogeneity, the output pixel value will represent a linear 

combination between local mean and original pixel value. While Lee’s filter 

works well in homogeneous areas, some noise around edges can still remain. 

To address those limitations the Refined Lee filter is proposed. It uses a 7x7 

moving window to detect edges by comparing means and variance along 

different directions. If an edge is detected the algorithm uses local gradients 

to estimate its orientation. Local mean and variance are calculated by using 

only pixels within edge-oriented window and then the 𝑥 = 𝑎𝑥̅ + 𝑏𝑦 is applied; 

otherwise, the estimation of 𝑥 is performed using all pixels in the local region. 

The filter provides good results on edges and in high-contrast areas. 

Kuan filter relies on the same assumption as Lee filter but its weighting 

function is calculated based on the equivalent number of looks which can 

reduce the noise in the edge area. 

In recent years, the Convolution Neural Network (CNN), which will be 

discussed in a subsequent chapter of the book, has been widely used to image 

classification and various image processing tasks including SAR image 

despeckling. Those approaches are data-driven since algorithms learn a 

mapping from noisy input images to output based on training data. Training 

data for despeckling with CNN contains the noisy SAR data and 

corresponding noise-free reference data. Since it is not possible to collect the 

noise-free SAR images, two strategies can be employed: temporal 

multilooking and synthesis strategies. The synthesis strategy uses optical 

images to simulate noisy SAR images by applying statistical spackle models 

while the temporal multilook strategy is based on reducing noise by temporal 

averaging images over a long time-series. 
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4.5 SAR Interferometry 
SAR interferometry is a well-established remote sensing technique for precise 

measurement of geophysical parameters of the Earth’s surface. It uses the 

phase difference between pairs of coherent radar signals to measure the range 

between radar and target. The phase of the radar signal represents the 

position within the wave cycle corresponding to the distance traveled by the 

radar signal to the target and back. Phase difference refers to the relative shift 

between two waves, either in time or space. Two waves of the same frequency 

are considered in-phase, if their peaks are perfectly aligned. The total phase 

of the returning echo is given by 

𝜑 = 2𝜋
2𝑟

𝜆
+ 𝜑𝑠 

where 2r is round-trip distance, 𝜑𝑠 is the noise (speckle). An image of phase 

information is known as interferogram. 

4.5.1 SAR interferometry geometry 

 A SAR satellite observes the same area from slightly different positions or at 

different times. The distance between satellites in the plane perpendicular to 

the orbit is called the interferometer baseline (B) which can be decomposed 

into horizontal/vertical components (𝐵ℎ , 𝐵𝑣) while its projection 

perpendicular to slant range is the perpendicular baseline (𝐵⊥) (Figure 12). 

Taking into account the geometry of SAR configuration the following 

mathematical relationship can be obtained: 

𝐵⊥ = 𝐵𝑐𝑜𝑠(𝜃 − 𝛼) = 𝐵ℎ𝑐𝑜𝑠𝜃 + 𝐵𝑣𝑠𝑖𝑛𝜃 

𝐵ℎ = 𝐵𝑐𝑜𝑠𝛼 

𝐵𝑣 = 𝐵𝑠𝑖𝑛𝛼 

where 𝛼  is baseline orientation.  

The signal of the resolution cell in the first image and the signal of the 

corresponding pixel on second image will be given as 

𝑖1 = |𝑖1|𝑒
𝑖(2𝜋

2𝑅1
𝜆
)+𝜑𝑆1 and phase 𝜑1 = 𝑎𝑟𝑔(𝑖1) = 2𝜋

2𝑅1

𝜆
+𝜑𝑆1 
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𝑖2 = |𝑖2|𝑒
𝑖(2𝜋

2𝑅2
𝜆
)+𝜑𝑆2 and phase 𝜑2 = 𝑎𝑟𝑔(𝑖1) = 2𝜋

2𝑅2

𝜆
+𝜑𝑆2 

The first phase component is deterministic (proportional to range distance) 

while the second is stochastic (speckle). The interferogram is created under 

the assumption that the phase difference is independent of the scattering 

mechanism (the scattering component remains unchanged: 𝜑𝑆1 = 𝜑𝑆1) by 

coregistering two images and performing a pixel-by-pixel multiplication of 

their complex signals, i.e.: 

𝑖1𝑖2
∗ = |𝑖1𝑖2

∗|𝑒
−

4𝜋
𝜆
𝛥𝑟

 

 

 

Figure 12 Geometry of a satellite interferometric system. B⊥ represent the perpendicular 

baseline 

This process multiplies the corresponding amplitudes and computes the 

difference of the corresponding phases at each point producing a new 

complex image called interferogram. The interferometric phase of each pixel 

depends only on the difference in path length between the two SAR images. 

This difference can be caused by elevation differences, motion or deformation. 

The interferometric phase is given by: 
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𝛥𝜑 = 2𝜋
2𝛥𝑟

𝜆
+ 2𝜋𝑁 

where 𝜑 is interferometric phase, N represents the number of full wavelength 

cycles.  The phase difference is the measure of the target displacement vector 

over the time interval between acquisitions and can be approximated by   

𝛥𝑟 = 𝐵𝑠𝑖𝑛(𝜃 − 𝛼) 

If the measurements have been made from different locations in space and at 

different times, the interferometric phase is proportional to the difference in 

the signal path lengths between the two acquisitions: 

𝛥𝜑 =
4𝜋

𝜆
(𝛥𝜑𝑓𝑙𝑎𝑡 + 𝛥𝜑𝑡𝑜𝑝𝑜 + 𝛥𝜑𝑑𝑖𝑠𝑝 + 𝛥𝜑𝑎𝑡𝑚) =

4𝜋

𝜆
(𝛥𝜑𝑓𝑙𝑎𝑡 +

𝐵⊥ℎ𝑇
𝑟𝑠𝑖𝑛𝜃

+ 𝛥𝑟) 

where 𝜃 is local incidence angle. The 𝛥𝜑𝑓𝑙𝑎𝑡 represents the phase difference 

due to the Earth's curvature and satellite orbit. The orbit information provided 

by satellites can be used to estimate and remove the flat-earth interferometric 

phase components. This process is known as interferogram flattening. The 

𝛥𝜑𝑡𝑜𝑝𝑜 represents the phase caused by the terrain elevation variation relative 

to reference height and it can be removed if the digital terrain model (DEM)  

is available. If two SAR images are not collected simultaneously, the 

propagation of radar beams is affected by differences in the atmosphere. The 

atmospheric delay is caused by spatial and temporal variation in the 

atmosphere conditions (such as temperature, humidity, pressure) affecting 

both elevation and deformation measurements. It can significantly impact the 

accuracy of deformation estimates, but can be mitigated using statistical 

methods or auxiliary data for atmospheric modeling.  

4.5.2 DEM generation 

The phase variation between two points on the flattened interferogram 

directly correspond to the actual change in terrain elevation. However, the 

flattened interferogram provides an ambiguous measurement of the relative 

terrain altitude since the interferometric phase is wrapped between −𝜋 and 𝜋. 

The actual phase shift between two waves is usually larger than this range. 

The process of restoring continuous phase value by adding or subtracting the 

correct number of full cycles to the interferometric fringes - which represents 
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the full range of the phase values in an interferogram from 0 to 2𝜋) is called 

phase unwrapping.  

With reference to the geometry, the local height ℎ0 of the ground point is given 

as  

ℎ0 = 𝐻 − 𝑟1𝑐𝑜𝑠(𝜃) 

where H is the satellite flying height, 𝑟1 is the distance between the scatters 

and radar antenna 1. Meanwhile, the interferometric phase difference  

𝛥𝜑 = 2𝜋
2𝛥𝑟

𝜆
+ 2𝜋𝑁  i.e. 𝛥𝑟 =

𝜆𝛥𝜑

4𝜋
 . 

Taking into account the acquisition geometry (Figure 13) and applying the 

cosine’s rule to the triangle (𝑟2 = 𝑟1 + 𝛥𝑟) it is evident that 

(𝑟1 + 𝛥𝑟)
2 = 𝑟1

2 + 𝐵2 − 2𝑟1𝐵𝑐𝑜𝑠(𝜋/2− (𝜃 − 𝛼) i.e. 𝑠𝑖𝑛(𝜃 − 𝛼) =
(𝑟1+𝛥𝑟)

2−𝑟1
2−𝐵2

2𝑟1𝐵
 

Where B is baseline.  

 

Figure 13 SAR interferometric geometry 
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The altitude difference corresponding to two adjacent fringes is called the 

altitude ambiguity (ℎ𝑎). It is defined as the elevation difference that 

produces an interferometric phase change of 2π after interferogram 

flattening, and it is inversely proportional to the perpendicular baseline:  

ℎ𝑎 =
𝜆𝑅𝑠𝑖𝑛𝜃

2𝐵⊥
 

Based on the equation it can be concluded that the higher the baseline the 

more accurate the altitude measurement. However, an increase in the 

perpendicular baseline increases the decorrelation noise in interferometric 

phases. 

If two observed targets 𝑇1 and 𝑇2 are located at the same range but different 

heights (Figure 14) then the difference in range implies a different 

interferometric phase at each point, caused by the height difference (𝛥ℎ =

ℎ2 − ℎ1). The phase-to-height sensitivity represents how much the 

interferometric phase difference changes for a given height difference. It 

increases with longer spatial baseline, shorter wavelength, and smaller 

incidence angles. 

 

Figure 14 Illustration of the phase-to-height sensitivity in interferometric SAR. 
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4.5.3 Differential interferometry 

If some of the point scatterers on the Earth surface slightly change their 

relative position between two SAR acquisitions (for example due to 

landslides, earthquakes, etc.), an additional phase term appears in the 

interferometric phase: 

𝛥𝜑𝑑 =
4𝜋

𝜆
𝑑 

where d is relative scatter displacement projected on the slant range direction.  

This means that after the interferogram flattening, the interferometric phase 

contains both topographic and motion components, i.e. 

𝛥𝜑𝑑 = −
4𝜋

𝜆

𝐵⊥ℎ𝑇
𝑟𝑠𝑖𝑛𝜃

+
4𝜋

𝜆
𝑑 

where the first component represents the topographic phase while second 

represents the displacement phase. The fundamental equation for detecting 

and measuring changes is given by: 

𝑑 ≈
𝜆

4𝜋
(𝛥𝜑𝑑 − 𝛥𝜑𝑑

𝐵12

𝐵01
) 

where 𝐵12 is the baseline between SAR acquisitions 1 and 2 and 𝐵01 is the 

reference perpendicular baseline used for generating the modeled altitude 

phase. If a DEM is available, the differential interferogram can be obtained by 

subtracting the modeled phase contribution due to terrain elevation from the 

interferometric phase, thereby isolating the displacement signal. The 

measured displacement is not vertical but along the slant range and it 

represents the slant range component of the three-dimensional surface 

displacement vector under the assumption that the surface within a pixel 

deforms homogeneously. InSAR measures small-scale vertical movements, 

but large displacements cannot be detected directly because the phase 

difference is limited to half the radar wavelength. When displacements exceed 

this limit, phase unwrapping is needed to recover the total movement. The 

relative accuracy of detected displacements is on the order of millimeters, 

whereas the absolute accuracy of DEMs is much lower (e.g., 10–15 m for ERS 

data), since the differential phase is far more sensitive to displacement than to 

topography. 
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Differential interferogram has various applications including co-seismic and 

post-seismic displacement fields related to earthquakes, dynamics of glaciers 

and ice sheets, deflation and inflation of volcanoes, land subsidence (mining 

activity, exploitation of gas or oil.
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5 PHOTOGRAMMETRY 

Photogrammetry is the branch of remote sensing that extracts geometric 

information on a target area from a series of overlapping photographs taken 

from different positions. The main distinction between remote sensing and 

photogrammetry lies in their applications. Remote sensing typically uses data 

either from individual images, for tasks like classification, or from time series 

of images, for change detection, to derive information about the area of 

interest. It primarily relies on spectral analysis and the monitoring of large 

regions. In contrast, photogrammetry focuses on accurate geometric 

measurements and 3D reconstruction. 

Analog photogrammetry is based on the stereo-pair, i.e. two images of the 

same area taken from two different viewpoints are used to directly derive 3 

dimensional points, enabling measurement of heights. The basic principle of 

stereoscopy is binocular vision: by observing an object from two different 

perspectives, it is possible to perceive depth. By analyzing the parallax effect 

- the apparent shift of an object between the two images - it is possible to 

determine the depth of the object. More details can be found in [22]. 

In recent years, advancements in IT technologies and computer vision 

techniques, coupled with progress in sensor technology, have led to the 

development of Unmanned Aerial Vehicle (UAV) photogrammetry. UAV is a 

relatively new technology that combines the traditional photogrammetry 

principles with computer vision. Traditional photogrammetry contributes 

fundamental principles for accurate 3D reconstruction, such as collinearity 

equation, bundle block adjustment, camera calibration, etc. On the other hand, 

computer vision enhances the UAV photogrammetry with image matching 

and Structure from Motion (SfM) algorithms. SfM uses multiple series of 

overlapping photos from a variety of perspectives to create the 3D set of 

points (X, Y, Z coordinates) with associated RGB color information. Deep 

Learning (DL) and Artificial Intelligence (AI) enhance classification, object 

detection, and semantic segmentation, making UAV photogrammetry a 

powerful tool for a wide range of close-range applications. They enable near 

real-time processing, rapid data acquisition, and real-time transmission to 

ground stations, offering a flexible and low-cost alternative to traditional 
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photogrammetry. In addition, UAV images can be used for high resolution 

texture mapping on existing 3D models.  However, there are limitations in the 

use of UAV that need to be considered. UAVs, particularly low-cost models, 

have limited payload capacity, which necessitates the use of lightweight 

sensors. As a result, small- or medium-format amateur cameras are often 

employed, requiring a larger number of images to achieve the same coverage 

and comparable resolution as large-format cameras. Additionally, payload 

limitations require the use of lightweight navigation units, leading to reduced 

sensor orientation accuracy. The flight range is also constrained by the radio 

link distance and the pilot’s proficiency. 

5.1 Basic principles of photogrammetry 
To perform accurate 3D measurements based on 2D photos, the information 

lost in the acquisition process needs to be reconstructed. This is achieved by 

reconstructing a viewing ray for each ground point, often referred to as a 

feature. A viewing ray can be defined as the line from the feature, passing 

through the projective center of the camera to the corresponding pixel in the 

image sensor. However, a single viewing ray cannot unambiguously 

determine the feature’s position, as the feature could lie anywhere along the 

line. To resolve this ambiguity, a second image, collected from a slightly 

different position, is used. Knowing the orientation and position of the 

camera, the distance of the feature (and its coordinate) can be computed by 

calculating the spatial intersection of two or more viewing rays. For faster 

processing and higher-quality 3D reconstruction, it is recommended—but not 

mandatory—to capture all photos simultaneously and use the same camera.  

The perspective ray can be modeled as a pyramid with a rectangular base. 

Knowing the shape and size of the pyramid is essential for photogrammetry. 

Three parameters are needed for this purpose: width (SW) and height (SH) of 

the digital sensor (base of the pyramid) and focal length (height of pyramid) 

(Figure 15). However, the pyramid is not geometrically perfect, the ray 

passing through the camera lens follows a complex curved path, creating 

radial and tangential distortion. The exact shape of the distorted pyramid is 

determined during camera calibration. There are three main approaches to 

camera calibration: laboratory calibration, test-field calibration and self-

calibration.  
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A digital camera consists of a two-dimensional array of charged-coupled 

device (CCD) elements, known as a full-frame sensor, which is mounted in 

the focal plane (image plane). Light rays from all points in the scene pass 

through the lens center before reaching the CCD element. During image 

acquisition, all CCDs are exposed simultaneously, producing a digital frame. 

Digital cameras are classified by the number of pixels in the digital image 

which corresponds to the number of CCD elements. Generally, the higher the 

number of CCDs (pixels) in the sensor, the more expensive the camera is. For 

example, a 16 megapixels camera has a sensor with 4000 pixels x 4000 pixels.  

The optical axis (principal axis) is defined as a straight line joining the two 

centers of a lens’s spherical surfaces. The optical axis intersects the image 

plane at the principal point. When the light rays that are parallel to the optical 

axis enter the lens they converge or diverge to a specific point called focus 

point. The distance from the focal point to the center of the lens is the focal 

distance. It determines the angle Field Of View (FOV) and magnification level 

(the longer focal length, the higher magnification will be). The FOV represents 

the extent of the real world that the sensor can capture at a given moment. For 

a given sensor size, the angular FOV increases as the focal length decreases. 

Conversely, a shorter focal length provides wider ground coverage at a given 

flight height. The horizontal FOV (𝛼) is the function of sensor width while 

vertical FOV (𝛽) is the function of sensor height. In photogrammetry wider 

angles are preferable since they provide a lower flight height and increased 

swath width. The focal length cannot be too short, as this would result in 

excessive distortion. Typically, the focal length should be similar to the sensor 

height. Information about sensor characteristics are saved in image metadata.  

Ground coverage represents the ground surface area covered by a single 

photo. Ground coverage is a function of the sensor characteristics and the 

flight height (it increases quadratically with increase of height). It is not 

influenced by sensor resolution. If the ground is flat, the ground coverage is a 

rectangle with dimension a * b which can be calculated using the following 

expression: 

𝑎 = 2 ⋅ ℎ ⋅ 𝑡𝑎𝑛 (
𝛼

2
) 

𝑏 = 2 ⋅ ℎ ⋅ 𝑡𝑎𝑛 (
𝛽

2
) 
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where the ℎ is the distance to the object. 

 

Figure 15 (a) lens, (b) (c) geometry of digital camera 

The Ground Sampling Distance (GSD) is the distance between two 

consecutive pixel centers measured on the ground. The larger the GSD, the 

lower the spatial resolution of the image. It depends on sensor size, focal 

length and flight height. For standard cameras (FOV 72° and 16 MP) flying at 

120 m, the GSD is approximately 3 cm. Increasing the flight height negatively 

affects the GSD in a linear manner, meaning that lower flight heights result in 

higher spatial resolution. In contrast, the relationship between GSD and 

megapixels is not linear; increasing the number of megapixels does not 

significantly improve the GSD. The GSD should be chosen based on the 

specific application, allowing the flight height and camera specifications to be 

adjusted according to project requirements. 

5.2 Camera parameters 
In modeling the geometry of camera three coordinate systems must be 

considered (Figure 16): 

1. World coordinate system (WCS), 

2. Camera coordinate system (camera frame (CF)) uses the camera center 

(C) as origin and optical axis as the Z-axis, and  

3. Image coordinate system (image frame (IF)) measures pixel location in 

the image plan. 
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In order to represent the 3D point P of an object in an image, it is necessary to 

map the object position from the WCS location (P(X, Y, Z)) to camera 

coordinates (p(u, v, w)) and then to project camera coordinates onto the image 

plain to obtain the pixel coordinates (p(x’, y’)). To do so, following expression 

can be used 

𝑥 = 𝑃𝑋 

where x is homogeneous image coordinates, P is camera matrix and X is 

homogeneous world coordinates. 

 

Figure 16 Image coordinate system (a) world coordinate system, (b) camera frame, and (c) 

sensor frame 

5.2.1 Image coordinate system 

A pinhole camera can be constructed by placing a barrier with a small hole 

between the 3D object and sensor. Because of the aperture only a fraction of 

light emitted by objects will hit a sensor allowing one-to-one mapping 

between points on 3D objects and sensors. The film is commonly referred to 

as the image plane, while the aperture represents the center of the camera (and 

it is denoted with C). Let  𝑃 = [𝑥 𝑦 𝑧]𝑇 be the point of an object visible to the 

pinhole camera. The 3D point P will be projected onto the image plane 

resulting in the point 𝑃′ = [𝑥′ 𝑦′]𝑇 on this plane 𝛱′. Furthermore, the pinhole 

itself can also be projected onto the image plain resulting in a new point 𝐶′. 

The coordinate system [𝑢, 𝑣, 𝑤] centred at the pinhole and w axis coincided 

with the optical axis is known as camera coordinate system. 

The point P defined with X, Y, and Z coordinate in world coordinate system 

is projected on the image-plain by dividing them by their Z component i.e. 
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𝑃′ = [𝑥′ 𝑦′]𝑇 = [𝑓
𝑋

𝑍
 𝑓

𝑌

𝑍
] 

In a digital camera, the lens collects the light form object over a wider area 

and directs it to an image plane where an array of CCD sensors converts light 

to a digital image. Thus, the relationship between the point P in 3D space and 

its corresponding point 𝑃′ on the image plane can be expressed by 

𝑃′ = [𝑥′ 𝑦′]𝑇 = [𝑧′
𝑋

𝑍
𝑧′
𝑌

𝑍
 ]
𝑇

 

where 𝑧′ is the distance between the focal point and the image plane (in the 

pinhole camera model  𝑧′ = 𝑓, while in a lens-based camera 𝑧′ = 𝑓 + 𝑧0). 

However, the pixel coordinates in the digital image are defined in a different 

reference system than the ideal image plane. In the image plane model, the 

origin is located at the principal point C′, where the optical axis intersects the 

plane. By contrast, in a digital image, the origin of the coordinate system is 

usually placed at the top-left corner of the sensor array. Because of this, the 

2D coordinates on the image plane and 2D coordinates on the digital image 

are related by a translation vector [𝑐𝑥 𝑐𝑦 ]. Consequently, the mapping 

becomes: 

𝑃′ = [𝑥′ 𝑦′]𝑇 = [𝑓
𝑋

𝑍
+ 𝑐𝑥    𝑓

𝑌

𝑍
+ 𝑐𝑦]

𝑇

 

Moreover, in a digital camera the image plane is discretized into pixels, i.e. 

the point location on the digital image is expressed in pixel coordinates while 

the points on the image plane are represented in physical measurements. As 

a consequence, two parameters, 𝜌𝑤 and 𝜌ℎ that represent the width and height 

of the CCD sensor (usually expressed in 𝜇𝑚), need to be introduced (Figure 

17 (b)). In most cases, pixels are squares, i.e. 𝜌𝑤 = 𝜌ℎ. Under these conditions, 

the previous mapping can be expressed as  

𝑃′ = [𝑥′ 𝑦′]𝑇 = [𝑓𝜌𝑤
𝑋

𝑍
+ 𝑐𝑥    𝑓𝜌ℎ

𝑌

𝑍
+ 𝑐𝑦]

𝑇

 

The transformation from 𝑃 → 𝑃′ is not linear and therefore it cannot be 

expressed as a standard matrix-vector product. To overcome this problem, the 

coordinates are represented in homogeneous form. This means introducing 

the new coordinate 𝑃′ = (𝑥′, 𝑦′, 1) and 𝑃 = (𝑋, 𝑌, 𝑍, 1) in an augmented space.  

Homogeneous coordinates are obtained by appending an additional 
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dimension to the vector, with the convention that the last coordinate is equal 

to 1 after normalization. Using homogeneous coordinates, the mapping can 

be expressed compactly as  

𝑃′ = [
𝑓𝜌𝑤𝑥 + 𝑐𝑥𝑧
𝑓𝜌ℎ𝑥 + 𝑐𝑦𝑧

𝑧

] = [
𝑓𝜌𝑤 0
0 𝑓𝜌ℎ
0 0

     
𝑐𝑥 0
𝑐𝑦 0

1 0

] [

𝑋
𝑌
𝑍
1

] = [
𝛼 0
0 𝛽
0 0

     
𝑐𝑥 0
𝑐𝑦 0

1 0

] 𝑃 = 𝑀𝑃 

This can be transformed in  

𝑃′ = 𝑀𝑃 = [
𝛼 0
0 𝛽
0 0

     

𝑐𝑥
𝑐𝑦
1
] [𝐼 𝑂]𝑃 = 𝐾[𝐼 𝑂]𝑃 

where K represents the camera intrinsic matrix, 𝛼 = 𝑓 ⋅ 𝜌𝑤 is focal length in x 

direction (in pixels), 𝛽 = 𝑓 ⋅ 𝜌ℎ is focal length in y direction (in pixels), while 

𝑐𝑥 and 𝑐𝑦 represents the coordinates of the principal point in pixels. The 

camera matrix contains all essential parameters of the camera (two for focal 

length, two for translation and one for skewness) and these are collectively 

known as intrinsic camera parameters. 

Moreover, in real cameras the image axes may be not perfectly orthogonal due 

to sensor manufacturing imperfections; in this case the camera intrinsic matrix 

is given by: 

𝐾 = [

𝛼 −𝛼𝑐𝑜𝑡𝜃 𝑐𝑥

0
𝛽
𝑠𝑖𝑛𝜃⁄ 𝑐𝑦

0 0 1

] 

The camera matrix describes the transformation of a 3D point in the camera 

coordinate system into its corresponding point 𝑃′ on the 2D image plane. 

However, the location of objects in the real world is represented in a different 

system, namely the world reference system. Therefore, an additional 

transformation must be introduced to relate points from world reference 

system (𝑃𝑤) to the camera frame (P). This transformation is defined by a 

rotation matrix R and translation vector t i.e. 

𝑃 = [
𝑅 𝑡
0 1

] 𝑃𝑤 
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where R is the rotation matrix of the world coordinate system defined in the 

camera frame and t is the position of the world coordinate system’s origin in 

the camera frame. 

 

Figure 17 Intrinsic orientation (a) The central projection model. The image plane is a distance 

f of camera origin. (b) Image plane and discrete pixels 

 The R and t are known as extrinsic parameters and they do not depend on 

the camera characteristics (Figure 18). Consequently, the point 𝑃𝑤 can be 

computed in image frame as  

𝑃′ = 𝐾[𝑅, 𝑡]𝑃𝑤 = 𝑀𝑃𝑤 

where M is a 3x4 matrix known as a full projection matrix and includes both 

intrinsic and extrinsic parameters. It has 11 eleven degrees of freedom:  5 

intrinsic parameters (focal lengths, principal point coordinates and skew), 3 

parameters from rotation and 3 from extrinsic translation.  

Rotation of points in a 3D space can be represented as a product of three 

successive rotations around the coordinate axes, a process known as a 3D 

Euclidean transformation. The rotation matrix R is orthonormal, satisfying the 

conditions: 𝑅𝑅𝑇 = 𝐼 and |𝑅| = 1. 

The camera extrinsic and intrinsic parameters are estimated through camera 

calibration. The underlying image model is based on an ideal projection in a 

pinhole camera, in which straight lines in reality are transformed into straight 
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lines in the photo; however, these lines can appear as curved lines due to lens 

imperfection, an effect known as lens distortion.   

 

Figure 18 Extrinsic parameters 

The most common geometrical distortion is the radial one, in which straight 

lines appear to be curved. It is caused by the spherical shape of the lens, and 

it increases with the distance from the optical axis. The image edges can be 

curved outward (barrel distortion (Figure 19 (a))) or inward (pincushion 

distortion (Figure 19 (b))) from the image center.  

 

Figure 19 (a) Barrel distortion, (b) Pincushion distortion 
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The tangential distortion occurs when the lens and the image plane are not 

parallel, and its effect is generally smaller than the radial distortion. Many 

wide-angle lenses have noticeable reflection, especially lenses with short focal 

lengths. Lens distortion alters the shape of the object, and therefore reduces 

the accuracy of the model. Therefore, it must be accounted for during camera 

calibration.  

Camera calibration is typically performed by capturing several images of 

planar checkerboard patterns at different positions and orientations. The real 

2D coordinates of corners and corresponding coordinates are then used to 

determine the intrinsic and extrinsic parameters. 

5.3 Geometry of oblique images 
Generally, the images can be classified based on the camera tilt relative to the 

vertical axis into: vertical photos (camera tilt under 3°), low oblique (horizon 

is not visible), and high oblique (horizon is visible). The oblique image has 

higher resolution and greater total area captured compared with vertical 

images (Figure 20). Also, they offer extensive information on the side view of 

the ground object that cannot be obtained from a vertical image, thus leading 

to greatly increased redundant information. In the past, redundant 

information represented a challenge for traditional photogrammetry since it 

struggled to match corresponding pixels across multiple images due to 

changes in perspective and varying light conditions. This is especially 

challenging for oblique images. However, the redundant information is the 

key to the success of the SfM algorithm, thus a combination of vertical and 

oblique images of target objects will improve 3D reconstruction but also 

increase processing time.  

The principal plane of an oblique aerial image is the vertical plane that passes 

through the camera optical axis and the vertical line from the projection 

center; it intersects the oblique image plane at the principal line. The principal 

line passes through the image nadir point and the principal point. It is 

oriented in the direction of the biggest inclination in an oblique aerial image.  
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Figure 20 Comparison between the ground covered area per pixel on vertical and oblique 

images 

The nadir point N’ (i.e., image nadir point) is the intersection of the vertical 

from the perspective center with the image. The ground nadir point (N) 

represents the intersection of the vertical from the perspective center with the 

ground surface. The geometry of the oblique image is shown at Figure 21. 

The three angles of tilt (𝜏), swing (s) and azimuth (𝛼) completely define the 

angular orientation of the oblique image. The azimuth is the clockwise 

horizontal angle measured from the ground Y axis (usually north) to the 

datum principal line. The tilt angle is the angle between the vertical and the 

camera optical axis; it determines the magnitude of tilt of an image. If the tilt 

angle is zero, the image is vertical. The swing angle is the clockwise angle 

measured at an oblique image plane from the positive y-axis to the nadir 

point. 

The isocenter is the intersection of the bisector of the tilt angle and the oblique 

image plane. The isocenter lies on the principal line, the oblique image plane, 

and the plane of the equivalent truly vertical image. In an oblique aerial 

image, the displacement caused by tilt is radial with respect to the isocenter. 

This means that points on the image appear shifted along lines radiating from 

the isocenter. The key characteristic of this radial displacement is that angles 

measured from the isocenter in the image are true, meaning they are equal to 

the actual angles measured from the corresponding ground isocenter. This 

property is useful in photogrammetry because it allows certain angular 

measurements to be made directly on oblique images, despite the presence of 

tilt. 
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Figure 21 Geometry of oblique image 

In vertical photos the object distance changes only due to variations in 

topography. In oblique images, the scale of the image is affected by the 

magnitude and angular orientation of the tilt as well as topography variation. 

Due to that, the scale of point on an oblique image is not the same in all 

directions i.e. x-scale (scale of lines perpendicular to the principal plane), the 

y-scale (scale of lines parallel to the principal plane) and z-scale (scale of 

vertical lines) are not the same. The shorter the object distance, the larger the 

scale.  The scale of an oblique image varies along the principle line.  

Image displacements caused by relief on an oblique image depend on the 

flying height of the aircraft, height of object above the reference ground level, 

tilt of the camera and the location of the object in the image (objects farther 

from the principal point or isocenter are displaced more). Suppose that point 

T is located on the top of the building corner and point B at the bottom of the 

same corner. On 2D maps those two points will coincide since their X and Y 

coordinates are the same. However, in the aerial image the top of the building 

appears shifted outward, i.e. point T moves away from nadir, while point B 

remains close to its true position. The distance between two photo points is 

called relief displacement and it is caused by the height difference between T 

and B. The direction of relief displacement (Figure 22) is radial with respect 

to the nadir point. 
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Figure 22 Relief displacement (d) (H is flight height [m], ∆ℎ is elevation difference between 

two points on vertical object [m] and rT and rB is radial distance from the principle point (PP) 

to displaced image) 

5.4 Mission planning 
The first step in the planning process is to understand the client's needs 

ensuring that the overall products are aligned with those requirements. A 

wide range of products can be delivered including aerial images, orthophotos, 

digital elevation models, digital surface models, cross sections, point clouds 

and digital maps for GIS. Beyond the type of the products and their accuracy, 

factors such as the location of the project, the size, shape, topography and 

vegetation cover, the availability of GCP etc. will influence the procedures, 

costs and scheduling of surveys.  

Therefore, the project planning can be organized into following categories: 

● Selection of instruments and methodology to achieve the needed 

accuracy, 

● Mission planning, and 

● Ground control planning 

Typically, the selection process starts with selecting the platform as well as 

imaging and navigation sensor. Regarding the platform, the payload capacity, 

range and degree of autonomy must be considered. There are two main types 
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of UAV platforms: fixed wings and multi-rotor. Both of them have advantages 

and disadvantages. Multi-rotor unmanned aerial vehicles (UAVs) are 

relatively easy to operate and provide satisfactory flight autonomy. Their 

capability for vertical takeoff and landing enhances sensor safety and allows 

for greater operational flexibility, as no extensive area is required for launch 

or recovery. These characteristics make them particularly suitable for surveys 

conducted in complex environments. Their main limitation, however, lies in 

restricted flight duration, which in turn constrains the area that can be 

covered.  

Fixed-wing UAVs, on the other hand, benefit from aerodynamic efficiency, 

which enables longer range, extended flight endurance, and wider spatial 

coverage. Nonetheless, they require a runway-like surface for takeoff and 

landing, as well as skilled piloting to ensure safe recovery and to minimize 

the risk of damage to both the platform and its sensors. Fixed-wing UAVs are 

generally larger in size, support higher payload capacities, and are associated 

with higher acquisition and operational costs. 

The GNSS/INS system provides a real time precise positioning and 

orientation which allows the UAV to fly along a predefined path even in 

windy conditions, guaranteeing sufficient image coverage and overlap. Both 

UAV based GNSS and INS units are optimized for size, cost and power 

consumption limiting the transportation of high quality devices like those 

used in the airborne camera or LiDAR sensors. Although the professional 

surveying UAVs are equipped with RTK/PPK GNSS and IMU that can 

achieve centimeter-level accuracy, many lower-cost UAVs, which are often 

used in data collection, rely on the less-accurate, single-frequency GNSS 

receiver leading to accuracy of the final product in meter or decimeter range. 

Modeling errors in sensor position due to low-cost GNSS receivers is as 

important as camera calibration in photogrammetry. Poor GNSS accuracy can 

cause distortions, misalignments, and errors in 3D reconstruction, affecting 

the overall spatial accuracy of the resulting product. Therefore, compensation 

for GNSS-induced errors—through error modeling, the use of ground control 

points (GCPs), or post-processing techniques such as PPK or RTK 

corrections—is just as essential as accurate camera calibration. In applications 

with lower metric accuracy requirements, the raw accuracy of direct 

GNSS/INS measurements may be sufficient. 
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In photogrammetric surveys the variety of cameras, from low-grade customer 

cameras to digital single-lens reflex cameras, can be used. The type of used 

camera and the image resolution can influence the final product accuracy.  

UAVs most often use non metric digital cameras with low quality lenses and 

shutters that are not typically designed for photogrammetric survey due to 

their light weight and low cost. Those cameras have good radiometric quality 

but low geometrical quality due to lens distortion. Wide lenses (shorter focal 

length) are generally recommended for photogrammetric surveys. A camera 

with a time-lapse function is required when operating most aerial platforms, 

unless the interval between photographs is manually controlled. 

In order to achieve the homogeneous radiometric quality, the use of automatic 

white balance is not recommended since it can cause color shifts between 

images leading to inconsistencies in the orthophoto. The dominant use of 

automatic exposure control should be avoided. Exposure settings will change 

for each image, leading to varying brightness and colors, which reduce the 

quality of products. Additionally, if shutter speed is reduced (longer exposure 

time) and flight speed is increased, image might become blurred due to the 

UAV movement, affecting feature detection and image matching in the 

processing phase. The camera with manual settings will provide better control 

over exposure and focus. On the other hand, the manual control require 

understanding and proper adjustment of: 

● exposure time - to avoid motion blur, exposure time should be shorter 

that the time required to cover one GSD, 

● Sensor sensitivity - need to be adjusted to maintain correct exposure 

without noise, 

● Aperture (F-number) - Lower F-number (larger apertures) allow more 

light to reach the sensor. This is useful in low-light conditions but may 

affect depth of field. 

A typical survey with UAV systems requires a mission planning and GCPs 

measurement (required for georeferencing). The mission planning is an 

important step in photogrammetry as the image geometry has a strong 

influence on the quality of the resulting product.  Mission planning includes 

analysis of: application, the study area, the sensor to be used (resolution and 

focal length), the flight characteristics (law and legal limitations, technical 
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limitations, flight height, flight speed, front and side overlap, camera 

orientation, resolution and accuracy), and GCP consideration. 

Based on quality requirements (the expected resolution and accuracy) defined 

in line with clients’ requirements, several parameters are defined before flight. 

The flight attitude determines the spatial resolution of images, flight duration, 

area covered and number of images per area unit. Flight attitude is influenced 

by the value of the GSD and the sensor parameters. The following equations 

are used to calculate the above ground level (AGL) and smallest value of both 

equation is chosen: 

𝐴𝐺𝐿1 =
𝑓 ∗  𝐺𝑆𝐷 ∗  𝐻𝑅

𝑆𝑊
 

𝐴𝐺𝐿2 =
𝑓 ∗  𝐺𝑆𝐷 ∗  𝑉𝑅

𝑆𝐻
 

where 𝑓 is the focal distance [mm], 𝐻𝑅 and 𝑉𝑅 are the horizontal and vertical 

resolutions of the sensor [px], 𝑆𝑊 is sensor width [mm] and 𝑆𝐻 is the sensor 

height [mm]. The low flight height results in high spatial resolution, 

minimizes the effect of the altitude error, reduces covered ground area, and 

increases the flight duration, data volume and processing time.  

In flat or almost flat terrains UAV usually flies horizontally and maintains a 

constant height. In the complex terrain it is recommended to use terrain 

following i.e. to maintain a relatively constant AGL in each line since the 

vertical Root Mean Square Error (RMSE) can increase. The change in the 

distance between sensor and object of interest results in the overlap reduction 

and can become critically low in very steep areas with fewer images overall 

in steeper. Although terrain following provides more uniform spatial 

resolution the accurate terrain model is required for flight planning. 

In conventional photogrammetry, a front overlap of 55 - 60 % and a side 

overall of 15 to 25 % is typically recommended. However, SfM benefits from 

image redundancy and a higher degree of overlap increases the accuracy of 

the generated product. Usually it is recommended at least 80 % of front 

overlap and 60-70 % of side overlap. Front overlap defines distance between 

consecutive images and it depends on shutter speed assuming that the flight 

speed is constant. Side overlap influences the distance between flight lines. 

Front (𝑜𝑓)  and side overlap (𝑜𝑠) can be calculated using following expression: 
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𝑜𝑓 = (1−
𝑑𝑓  ∗  𝑓

ℎ ∗  𝑆𝐻
) ∗ 100 

𝑜𝑠 = (1−
𝑑𝑠  ∗  𝑓

ℎ ∗  𝑆𝑊
) ∗ 100 

where 𝑑𝑓 is the distance between consecutive images [m], 𝑑𝑠 is distance 

between flight lines [m], 𝑓 is the focal length [mm], h is distance between the 

sensor and the object [m], 𝑆𝑊 and 𝑆𝐻 are the sensor width and height [mm] 

respectively. 

There is a positive relationship between the image overlap and accuracy of 

the resulting product. The increase of the front overlap can significantly 

reduce the root mean square error (RMSE) while increasing the side overlap 

increases the time of the flight and data processing but has a lower impact on 

the height accuracy. However, exaggerated overlaps lead to increased 

processing time without improving the quality of the final product. 

The UAV flight speed is an important parameter that affects the image quality 

and power consumption. In order to define the optimal UAV speed, it is 

necessary to analyse several factors such as flight speed regulations, the wind 

speed and direction, the camera's shutter speed, and vertical overlap. 

Maximum wind speed at which the UAV is sensitive is usually defined by the 

manufacturer since it increases power consumption. Additionally, the high 

wind speed tilts the UAV leading to large pitch and roll angles and decreases 

the overall UAV stability. However, the flight speed has a critical impact on 

the image quality, primarily due to motion blur. Motion blur, which reduces 

image sharpness and detail, can negatively impact the photogrammetry 

process. It is usually expressed as a percentage of the GSD. Roth et al. [26] 

suggest that flight speed should be determined using the following 

expression: 

𝑆 =
𝐺𝑆𝐷 ∗  𝛿

𝑙𝑡
 

where 𝑆 is the UAV speed [m/s], 𝛿 is the maximum motion blur [px] and 𝑙𝑡 is 

shutter speed [s]. The same authors recommended motion blur to be kept 

below 50 % [26]. 
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The flight pattern determines the path that the UAV will follow. It is usually 

designed as parallel flight lines as predefined. Flight patterns can be 

automatically generated in flight planning software by specifying a few basic 

parameters. However, the single look direction in gridded image blocks 

typically lacks oblique images and therefore sufficient geometric information 

in complex scenes, leading to artificial doming due to error accumulation in 

the SfM process.  

Various flight configurations, such as single grid (Figure 23 (a)), double grid 

(Figure 23 (b)), circular mission (Figure 23 (c)) or a combination of them have 

been used. Single grid missions are recommended for generating 2D 

products, while double grid missions are beneficial for generating precise 3D 

reconstruction.  

 

Figure 23  (a) single grid mission, (b) double grid mission, and (c) circular mission. The blue 

dots represent the position where the image will be collected. Frontal and side overlap are 

also shown. 

The GCPs are used for georeferencing resulting data and to improve the 

estimation of intrinsic and extrinsic parameters of the camera in the SfM 
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process. The ground control involves several factors, such as the number and 

distribution of GCP and their accuracy.  

GCP needs to be easily identifiable in an image, distinct from the surrounding 

area, and visible on multiple images. The size of the reference target needs to 

match the model resolution in order to allow precise identification on the 

images. Some software provides preconstructed coded targets as GCP, 

enabling automatic detection. 

The accuracy of ground control points (GCPs) is primarily determined by the 

measuring instruments used. It is essential to ensure that a sufficient number 

of GCPs is employed to achieve the desired photogrammetric accuracy. 

Increasing the number of GCPs generally improves the resulting accuracy, but 

beyond a certain point, additional GCPs provide little to no further benefit. 

The spatial distribution of GCPs also plays a critical role: targets should be 

evenly distributed across the study area, both horizontally and vertically. A 

combination of edge distribution and stratified distribution is often 

considered best practice. In some cases, direct georeferencing—without 

GCPs—can be performed if the platform is equipped with a survey-grade 

GNSS/RTK receiver. 

According to the ASPRS standard [27], several conditions must be satisfied in 

order to assess the product accuracy: the coordinates of the GCPs must be 

independently surveyed with at least three times higher accuracy than the 

tested product; at least 20 GCP (depending on study area size)  should be 

used, regardless of the project size. For an orthophoto with an horizontal 

accuracy of 1 cm, the GCP points should be surveyed with horizontal RMSE 

= 0.25 cm and vertical RMSE = 0.5 cm. Clearly,  RTK GNSS cannot deliver this 

level of accuracy. However, if the spatial resolution of the orthophoto is 15 

cm, the GCPs should have 𝑅𝑀𝑆𝐸𝑋𝑌𝑍 of 2.5 cm, considering the required aerial 

triangulation 𝑅𝑀𝑆𝐸𝑋𝑌𝑍 of 7.5 cm (i.e., ½ of the orthophot’s pixel size) and 

therefore RTK GNSS may suffice [27]. 

Table 6 shows the horizontal accuracy for planimetric data [27] and 

orthophotography.  𝑅𝑀𝑆𝐸𝑟 is the radial accuracy, i.e. 𝑅𝑀𝑆𝐸𝑟  =

√𝑅𝑀𝑆𝐸𝑋
2 + 𝑅𝑀𝑆𝐸𝑌

2, while Table 7 presents the vertical accuracy for DEM  
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Table 6 The horizontal accuracy for planimetric data [27] and orthophotography 

Accuracy 

class 

RMSEZ in 

non-

vegetated 

terrain [cm] 

NVA at 

95 % 

VVA 

at 95% 

Appropriate 

contour 

interval 

supported by 

the RMSEZ 

MNRD 

 [pts/m2] 

/ MNPS 

[m] 

I 1.0 2.0 2.9 3 cm 20/0.224 

II 2.5 4.9 7.4 7.5 cm 16/0.250 

III 5.0 9.8 14.7 15 cm 8/0.354 

IV 10.0 19.6 29.4 30 cm 2/0.707 

V 12.5 24.5 36.8 37.5 cm 1/1.000 

VI 20.0 39.2 58.8 60 cm 0.5/1.414 

VII 33.3 65.3 98.0 1 m 0.25/2.000 

VIII 66.7 130.7 196.0 2 m 0.1/3.162 

IX 100.0 196.0 294.0 3 m 0.05/4.472 

X 333.3 653.3 980.0 10 m 0.01/10.000 
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Table 7 Vertical accuracy examples for DEM [27] where NVA at 95 % is non-vegetated 

vertical accuracy at 95% confidence level, VVA is vegetated vertical accuracy at 95th 

percentile, MNPD is minimum nominal return density, and MNPS is maximum nominal 

pulse space 

Accuracy 

class 

RMSEZ in 

non-

vegetated 

terrain [cm] 

NVA 

at 95 

% 

VVA 

at 

95% 

Appropriate 

contour interval 

supported by the 

RMSEZ 

MNRD 

 [pts/m2] 

/MNPS 

[m] 

I 1.0 2.0 2.9 3 cm 20/0.224 

II 2.5 4.9 7.4 7.5 cm 16/0.250 

III 5.0 9.8 14.7 15 cm 8/0.354 

IV 10.0 19.6 29.4 30 cm 2/0.707 

V 12.5 24.5 36.8 37.5 cm 1/1.000 

VI 20.0 39.2 58.8 60 cm 0.5/1.414 

VII 33.3 65.3 98.0 1 m 0.25/2.000 

VIII 66.7 130.7 196.0 2 m 0.1/3.162 

IX 100.0 196.0 294.0 3 m 0.05/4.472 

X 333.3 653.3 980.0 10 m 0.01/10.000 
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5.5 SfM 
SfM operates on the same principle as stereoscopic photogrammetry i.e. if a 

ground point, referred to as a feature, is identifiable in two or more 

overlapping, offset images, its 3D coordinates can be computed. However, 

there are fundamental differences compared to conventional 

photogrammetry since the geometry of the scene (K), camera position and 

orientation (R,t) are estimated simultaneously This is achieved through 

iterative bundle adjustment applied to highly redundant sets of matching 

features that are automatically extracted from multiple images. 

5.5.1 SfM workflow 

As mentioned, the SfM reconstructs camera orientation and scene geometry 

simultaneously through automatic identification of matching features in 

multiple images (Figure 24). Due to that, the key problem is that the SfM 

address is detection and marching features on images from different angles. 

SfM can be categorized to incremental methods and global methods. 

Incremental SfM starts with a minimal subset (two or three views) for the 

initial reconstruction and progressively integrates new images from 

associated 3D structure while performing bundle adjustment ensuring 

reconstruction accuracy. On another hang, global SfM solves all camera poses 

and 3D points simultaneously avoiding accumulation error. The estimated 

camera pose is then used to initialize triangulation followed by global bundle 

adjustment. Global SfM is faster but less robust than increment, especially if 

camera intrinsic parameters are not known in advance. SfM consists of several 

stages (Figure 25):  

1) automatic identification of homogeneous features in individual images. 

Most commonly the Scale Invariant Feature Transform (SIFT) [28] 

algorithm is used.  

2) Match corresponding features between images, 

3) Choose two image that provide stable estimation of relative camera pose, 

4) Estimate Essential matrix/Fundamental matrix and extract camera pose 

(𝑅, 𝑡), 

5) Construct 2D viewing rays from images,  

6) Use triangulation to estimate 3D position and generate sparse point cloud,  
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7) Refine the SfM model (poses and point) using bundle adjustment, and 

8) Use multi view stereo to densify the model generating a dense point 

cloud. 

 

Figure 24 Structure from Motion 

 

Figure 25 Structure from Motion workflow 
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5.5.2 SIFT 

SIFT consists of four stages: feature detection, feature description, indexing 

and matching and model verification. The feature detection starts with 

detection of stable features across all possible scales. For each octave the initial 

image is repeatedly convolved with Gaussian functions (𝐺(𝑘𝑖𝜎)) to generate 

a set of blurred images, each separated in scale space by constant factor k. 

Adjacent Gaussian images are subtracted to compute the Difference of 

Gaussians (DoG) and this procedure is repeated for all octaves. The Gaussian 

image is down-sampled by a factor of 2, and the process is repeated (Figure 

26). Local extrema of the DoG are found by comparing each pixel to its 26 

neighbors in the 3x3 region at the current scale (8 pixels) and at adjacent scales 

(9 pixels per scale) (Figure 27).  

 

Figure 26 Convolving the initial image with a Gaussian to create a set of scales (on left) and 

subtracting the adjacent image to generate a DoG (on right) 

If the pixel value is the maximum or minimum among all compared pixels, it 

is selected as a candidate for a keypoint. Since the location of an extremum is 

unlikely to coincide exactly with a pixel and is more likely to lie between 

neighboring pixels, sub-pixel localization is performed using a Taylor series 

expansion. 

𝐷(𝑥) = 𝐷 +
𝜕𝐷𝑇

𝜕𝑥
𝑥 +

1

2
𝑥𝑇
𝜕2𝐷

𝜕𝑥2 𝑥 
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Figure 27 Detecting maxima and minima of the DoG image. The X represents a pixel that is 

compared with 26 neighboring pixels (marked with an orange circle) 

The derivative is set to 0 to find the location of the extremum 𝑥 

𝑥 = −
𝜕2𝐷−1

𝜕𝑥2

𝜕𝐷

𝜕𝑥
 

The points with low contrast are generally less reliable than the high for 

feature points. Due to that 𝐷(𝑥) is used to filter candidate key points with low 

contrast by setting a threshold (discard all points with 𝐷(𝑥) < threshold). In 

addition, edge points that have high contrast in one direction and low in other, 

are filtered to ensure stability.  

To achieve rotation invariance, a consistent orientation is assigned to each 

keypoint based on local image properties. An orientation histogram is created 

from the local gradient orientation of the sample point within the keypoint's 

neighborhood. The peak of the oriented histogram that corresponds to the 

dominant direction is identified, and the orientation and sum of magnitude is 

assigned to the keypoint (Figure 28). 

Due to that, the keypoints are invariant to image rotation and scale and robust 

across a range of affine distortion, noise, and change in illumination 

conditions. The SIFT can automatically extract thousands of key points from 

images over all ranges of scales, ensuring robustness even in extracting small 

objects in a cluttered environment.   
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Assigning an image location, scale, and orientation for each key point is 

followed by the computation of a local feature descriptor which needs to be 

invariant to those transformations. The created descriptor needs to be highly 

distinctive to allow features to be matched in large datasets but invariant on 

changes in illumination or 3D viewpoint.  

To compute the descriptor, for each keypoint 8x8 neighborhood from DoG 

levels is identified (Figure 27) and subtracted by the orientation of key points 

(i.e. align orientation of neighborhood to x-axis). After that gradient 

magnitude and orientation at each image sample point in the region around 

the keypoint are calculated and weighted by Gaussian, Sum of the weighted 

gradient magnitude at the near direction and orientation histogram for each 

4x4 region is created. The histogram array represents the image descriptor. 

 

Figure 28 Feature description (a) image gradient magnitude and orientation (b) keypoint 

descriptor 

The number of detected key points is a function of the number of scale 

samples, image texture and resolution. Therefore, the sharpness, textures, and 

resolution of images determine the quality of the resulting product. The 

higher spatial resolution, the higher number of keypoints will be detected and 

therefore the higher quality of products.  

Feature matching for feature in image A is performed by finding its nearest 

neighbor in image B. Since nearest neighbor search may be too slow for large 

databases the SIFT uses a best-bin-first algorithm that returns the closest 
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neighbor with high probability. Descriptor vectors may match more than one 

reference pose database. For each pose 4D Hough transform is used to identify 

clusters.  Each key point votes for all pose(s). The correct interpretation is 

ensured by counting votes for the same pose of an object within clusters of 

keypoint . In the end each keypoint contains 4 parameters: 2D location, scale, 

orientation and each matched keypoint within the database.  

 

Figure 29 SIFT feature matching 

Matched points are based on the assumption that the features have a similar 

appearance in both images, and due to that this process usually results in 

outliers (i.e. wrong matches due to repetitive features, change in viewpoints, 

image noise, occlusion, blur etc). For accurate 3D reconstruction, outliers must 

be removed. Matching of corresponding points between two images is a 2D 

search problem (Figure 29). However, it can be reduced to a 1D search by 
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using an additional constraint that the corresponding points must lie on an 

epipolar line on another image.  

5.5.3 Epipolar geometry 

In multi-view geometry, the relationship between the camera position, a 3D 

point, and its projection onto the image plane is known as epipolar geometry. 

The single point 𝑃𝑤 is observed from two different viewpoints (𝐶1, 𝐶2). The 

line that connects the camera's center represents the base line. The camera 

centers 𝐶1 and 𝐶2 and  point 𝑃𝑤 will lie in a single plane, known as the epipolar 

plane.  The real point P will be projected onto the image planes of the two 

cameras 𝑃1 and 𝑃2. The intersection of the epipolar plane and image plane is 

an epipolar line (𝑙1 and 𝑙2). The point in which the baseline (the distance 

between two camera centers) intersects the two image planes is known as the 

epipole 𝑒1 and 𝑒2. Moreover, the epipolar lines intersect the baseline in the 

epipole, and all epipolar lines intersect in the epipole (Figure 30).  In practice, 

it is more efficient to coincide the scanlines with epipolar lines, making the 

correspondence search very effective. 

Rectification is the process of projecting each image onto a common plane, 

parallel to the baseline, by rotating the original cameras about their optical 

centers. If image planes are parallel to each other (i.e. there is no relative 

rotation between cameras), the baseline will be parallel to the image plane, 

epipoles will be located at infinity and the epipolar lines are parallel to an axis 

of each image (usually x-axis). Since epipolar lines are horizontal and parallel, 

the corresponding point will be located along the horizontal lines (i.e. they 

must have the same y coordinate) of the rectified image and search becomes 

faster and computationally less expensive.  

The horizontal displacement between corresponding points is called 

disparity. The disparity associated with each corresponding pixel of the image 

is called a disparity map. It is a grayscale image without any texture. Disparity 

is inversely proportional to the distance from the camera. The objects that are 

closer to the camera will have larger disparity and will appear brighter on the 

disparity map. 
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Figure 30 Epipolar geometry 

Epipolar geometry depends only on the relative pose (position and 

orientation) and internal parameters of the two cameras, i.e. the position of 

the camera centres and image planes. It does not depend on the scene 

structure (3D points external to the camera). However, the exact location of 

point  𝑃𝑤 is not known, but its projection to image planes can be determined. 

Based on that and known camera location (𝐶1, 𝐶2) the epipolar plane can be 

defined. Epipolar planes and image planes will determine the epipolar lines. 

By definition, potential matches for 𝑃 have to lie on the corresponding 

epipolar line , 𝑙2 and potential matches for 𝑃′ have to lie on the corresponding 

epipolar line 𝑙1. Due to that, it is possible to determine strong constraints 

between image pairs. 

 The epipolar constraint can be expressed by  

𝑃𝑇𝐸𝑃′ = 0 

where E is the Essential matrix and 𝑃 and  𝑃′ are conjugate points in the image 

coordinate. The E is defined by the following expression 

𝐸 = [𝑇𝑥]𝑅 

where [𝑇𝑥]𝑅 represents the relative pose of camera one with respect to camera 

two.  
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It has five degrees of freedom and it is completely defined by 3 rotations and 

2 translations. 

Moreover, the relationship between the corresponding set of points in two 

images from different views can be written as 

𝑃𝑇𝐹𝑃′ = 0 

where F is a 3x3 fundamental matrix, which is similar to the Essential matrix, 

but it contains the 7 degrees of freedom i.e., it contains information about 

camera matrices (𝐾1 and 𝐾2), relative translation T and rotation R between the 

cameras i.e. 𝐹 = 𝐾2
−1[𝑇𝑥]𝑅𝐾1

−1. 

The epipolar line along which the correspondent points in the image must lie 

is expressed by 𝑃′𝑇𝑙2 = 0 where 𝑙2 ≃ 𝐹 (The epipolar line on the second image 

is a function of the point 𝑃1 in the first image). 

The relationship between the Fundamental and Essential matrix is given by 

𝐸 = 𝐾2
𝑇𝐹𝐾1 

5.5.3.1 Eight-point algorithm 

A fundamental matrix can be estimated if the number of corresponding points 

between two images is higher than 8 without knowing extrinsic and intrinsic 

parameters by using the eight-point algorithm. The correct point 

correspondence is essential for fundamental matrix estimation. Each pair of 

correspondent points 𝑃 = (𝑥, 𝑦 , 1)𝑇, 𝑃′ = (𝑥′, 𝑦′, 1)𝑇need to meet epipolar 

constraint 𝑃1
𝑇𝐹𝑃2 = 0 resulting in a homogeneous linear system, i.e. 

[𝑥 𝑦 1] [

𝑓1 𝑓2 𝑓3
𝑓4 𝑓5 𝑓6
𝑓7 𝑓8 𝑓9

] [
𝑥′
𝑦′
1

] = 0 

Each corresponding pair will result in one independent equation, given as 

𝑥′𝑥𝑓1 + 𝑥
′𝑦𝑓2 + 𝑥

′𝑓3 + 𝑦
′𝑥𝑓4 + 𝑦

′𝑦𝑓5 + 𝑦
′𝑓6 + 𝑥𝑓7 + 𝑦𝑓8 + 𝑓9 = 0 

Since this constraint is linear, it only constrains one degree of freedom. Due to 

that, we need a minimum of eight correspondences to determine the 

Fundamental matrix, resulting in a homogeneous linear system with nine 

unknowns. It is given as following: 
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[
𝑥′1𝑥1 𝑥′1𝑦1 𝑥′1
⋮ ⋮ ⋮

𝑥′8𝑥8 𝑥′8𝑦8 𝑥′8

     
𝑦′1𝑥1 𝑦′1𝑦1 𝑦′1
⋮ ⋮ ⋮

𝑦′8𝑥8 𝑦′8𝑦8 𝑦′8

     
𝑥1 𝑦1 1
⋮ ⋮ ⋮
𝑥8 𝑦8 1

]

[
 
 
 
 
 
 
 
 
 
𝑓1
𝑓2
𝑓3
𝑓4
𝑓5
𝑓6
𝑓7
𝑓8
𝑓9]
 
 
 
 
 
 
 
 
 

= 0 

This can be compactly written as 

𝐴𝑓 = 0 

The least-squares solution of F is computed by performing singular value 

decomposition (SVD) on image coordinates. To do so, we 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ||𝐴𝑓||
2
  

subject to ||𝑓||
2
= 1 where A is an 8 x 9 matrix built from the correspondences 

and f is a vectorized form of the F matrix 

The eight-point algorithm is extremely sensitive to outliers, i.e., for small 

variations in input variables, there are large changes in the F matrix. Due to 

that, the estimated F matrix may not be precise. The main challenge is that the 

correspondence keypoint will have large values for coordinates, such as 𝑃𝑖 =

(1758, 2048,1). If the keypoints are located in the same part of the image than 

both vectors 𝑃𝑖 and 𝑃𝑖
′ will be similar, and therefore, A matrix will have one 

very large singular value. To solve this problem the normalized image 

coordinates can be used. First the origin is shifted to image center (translation) 

and distance of image point from origin is scaled by the factor 
√2

𝑚𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
. 

The matrix F is estimated by using a regular least-squares eight-point 

algorithm and then denormalized results to obtain the F matrix for regular 

coordinate space. 

5.5.4 RANSAC 

The Random Sample Consensus (RANSAC) algorithm is used to obtain a 

better estimation of the fundamental matrix. RANSAC [29] is an algorithm for 

robust fitting of models that uses a minimal number of points from which a 

model can be computed (for example minimal number of points to compute 

line is 2), rather than using all data points and then enlarge this set with points 

that fit with a predefined tolerance (inliers).  It is very efficient at finding the 
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inlier set even in the presence of a large number of outliers. Due to that, 

RANSAC is applied to compute Fundamental matrices to detect the 

uncorrected correspondences, matched by SIFT algorithm, and only point 

pairs that satisfy the epipolar constraints are used.  

 RANSAC loop consists of six steps (Figure 31): 

● Randomly select n points,  

● Calculate the model parameters that fit the data in the sample,  

● Calculate the residual error for each data point, 

● Select the data that support current hypothesis,   

● Repeat this process from 1 to k times, and 

● Select the transformation with the maximum number of inliers 

obtained within k interactions. 

The higher the number of interactions k, the lower the number of outliers will 

be.  The number of iterations can be determined by using an expression 

𝑘 =
𝑙𝑜𝑔(1 −  𝑝)

𝑙𝑜𝑔(1 −  𝑤𝑛)
 

where p is the probability of finding set of point that don't contain the outliers, 

𝑤 is the proportion of inliers in the data, and n is the number of points needed 

to estimate the model. For example, if we assume that 50 % of the 

corresponding points are inliers (𝑤 = 50%), and the desired probability is 𝑝 =

99%. The needed number of interactions for the eight-point algorithm is 1177. 

So the number of corresponding points does not influence the number of 

iterations. Since RANSAC is based on the random hypothesis generation 

process it is non-deterministic, i.e., for each run, different results will be 

obtained. 

The RANSAC is very effective at finding inlier, even in the presence of a high 

number of noise. Due to that, the eight point algorithm and RANSAC are 

applied together for SfM to separate outliers and provide the best estimation 

of the fundamental matrix.  
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Figure 31 RANSAC algorithm steps 

As already mentioned, these inputs are the corresponding key points created 

by the SIFT algorithm that need epipolar constraint. First, the eight points are 

randomly selected in order to estimate the fundamental matrix. The model is 

tested against all other points and those that fit (i.e. inliers) support this 

model. The model is repaired k times and the model that has the most inliers 

will be selected. 
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Figure 32 One interaction of eight point RANSAC (a) the image pair and corresponded key 

points donated by arrow,  (b) overlapping keypoint from image 2 to image 1 (the arrows donate 

the motion vector of keypoint) (c) randomly selecting 8 corresponding points (marked by 

magenta vector) and using them to estimate the F  (d) using estimated F matrix to detect inliers 

(yellow arrow) outliers (red arrow).  
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First, a viewing ray for that feature must be reconstructed from each image. 

A viewing ray can be defined as the line from the feature, passing through the 

projective center of the camera to the corresponding pixel in the image sensor. 

Second, considering that we know the orientation and position of the camera, 

the distance of the feature (and its coordinate) can be computed by calculating 

the spatial intersection of several viewing rays (Figure 32). 

5.5.5 Stereo vision and triangulation 

Stereo vision is a technique for 3D reconstruction based on obtained disparity 

between corresponding pixels from two images taken from slightly different 

viewpoints, and then apply the principle of triangle similarity to calculate 

depth information between object and the cameras. It is based on a binocular 

vision that our brain uses to perceive depth from the left and right image i.e. 

we perceive depth by using disparity from the left and right eyes, resulting 

from the eyes' horizontal separation.  

Stereo vision consists of two main steps: matching and reconstruction. 

Matching resolves the correspondence problem i.e., finding the 

corresponding pixel between images, which is a challenging task due to 

variation in illumination, blurring, and noise. The process of detection 

features, finding correspondents and estimation of the fundamental matrix is 

already explained in previous sections. Reconstruction uses the camera 

intrinsic parameters (𝐾 and 𝐾′) and extrinsic parameters (𝑅 and 𝑡) to 

reconstruct a viewing ray (𝑙 and 𝑙′) defined by camera center and image 

locations (𝐶1 and 𝐶2). The 3D location of the point 𝑃𝑤 can be computed as the 

intersection of 𝑙 and 𝑙′ based on triangulation. On the Figure 33, the position 

of point 𝑃𝑤 is defined by (x, y, z) coordinates, the 𝑃𝑤 is observed by camera 

with pose 𝐶𝑖 and 𝑝𝑖
𝑤 represents the image-plan projection of observed point 

while 𝑥1 and 𝑥′1 are pixel coordinates in the left and right image respectively.  

Based on geometry, the depth of the point can be computed from the 

properties of similar triangles  

𝑍

𝑏
=

𝑍 − 𝑓

𝑏 − 𝑥1 + 𝑥′1
 

where f is focal length, b is baseline. 
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Due to feature uncertainty, precision of camera calibration, noise and 

numerical errors, they will not intersect exactly. Instead, triangulation usually 

computes the best approximation of a 3D point, by minimizing the distance 

between viewing rays. Different algorithms such as linear triangulation, 

midpoint method or nonlinear triangulation can be used.  

The resulting 3D points are estimated locally from a subset of views and 

therefore are not globally consistent. 

 

Figure 33 Triangulation with rectified images - top-down view 

SfM uses similar principles as stereo and triangulation across multiple images 

to build a global sparse point cloud of the scene. The aim of the stereo vision 

is to reconstruct the 3D from images assuming that K, R, t are known while 

SfM aims to reconstruct 3D scenes and estimate camera poses simultaneously 

from multiple images. It can be categorized into incremental, global and 

hybrid approaches.  In incremental SfM, the process starts with selection of 

the initial pair of images.  There are several factors that need to be considered 

when choosing the stereo paras for initial SfM estimation: (1) if almost 

identical views are selected it will result with high uncertainty in 

triangulation, (2) very different view will lead to low overlap and high camera 

uncertainty (3) the larger baseline often provides better triangulation 
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accuracy. Usually, the two views are selected based on the maximum number 

of triangulation points (many overlapping cameras) for initial reconstruction. 

The selection of the initial pair is crucial for SfM quality of reconstruction and 

performance. After that the 8-point algorithm (or 5-point if using Essential 

matrix) is applied to estimate the F or E matrix followed by triangulate 3D 

points from corresponding points in the two images forming initial sparse 3D 

reconstruction and the pose of two cameras.  Then the next image is added to 

the initial reconstruction sequentially. Based on given 2D-3D correspondence 

(from existing 3D points that are visible in the added image) the new camera 

pose is estimated followed by triangulation to compute new 3D points and 

optimization of existing points that are visible on this image. This process is 

repeated incrementally until all images are registered and the spares point 

cloud is completed. The application of incremental SfM for reconstructing 

large-scale scenes is not always ideal due to drift (due to accumulation of 

errors) as the number of images increases leading to low efficiency and time-

consuming repetitive bundle adjustment. 

In contrast to incremental SfM, global SfM solves the position of all images 

simultaneously using the view graph as input. The process starts with image-

based feature extraction and matching followed by pairwise pose estimation 

and construction of the initial view graph of the input images where each 

node represents the camera and each edge links cameras that have enough 

matching points (relative orientation). The problem is usually solved in two 

separate steps i.e. radiation and translation averaging steps. The all relative 

rotations are used to compute global orientation for all cameras by applying 

rotation averaging that solves global rotation so that the inconsistency 

between relative and global rotation are minimized. After that, translation 

averaging is performed to determine the global camera position that is 

maximally consistent with pairwise relative translation.   

The increment methods provide highly accurate and robust results, but it is 

computationally intensive. Global SfM is much faster and efficient, but does 

not as effectively remove outliers, resulting in lower accuracy and robustness. 

The SfM is subject to some unique ambiguities since it tries to recover both 

object structure and the camera motion without any prior knowledge. First of 

all, ambiguity in object shape due to small viewpoint variation. If camera 

intrinsics are not known or not used in reconstruction, the resulting model is 

ambiguous by arbitrary 3D projective transformations. Due to that, 
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reconstructed models may appear distorted i.e. lines may not remain parallel, 

and angles may not be preserved.  To resolve projective ambiguity, a 

calibrated SfM approach or self-calibration can be used.  If constraints on the 

camera calibration matrix or scene are Affine, ambiguity can be observed as 

more restricted projective ambiguity when the SfM assumes an affine camera 

model (orthographic projection). In this access, reconstruction is only accurate 

up to an affine transformation, i.e., it preserves parallel lines and volume ratio 

but not true angles and lengths.  

The next most often ambiguity is the scale (for a perspective camera) or depth 

(for an orthographic camera) ambiguity. It has some unique disadvantages 

such as ambiguity in the absolute scale of the scene that cannot be determined. 

Without a reference measurement, it is impossible to recover the absolute 

scale of the scene. For example, the bigger object at a longer distance and the 

smaller object at a closer distance may yield the same projection.  

5.5.6 Bundle adjustment 

Bundle adjustment is an optimization process that simultaneously adjusts all 

camera poses and all 3D feature coordinates (scene geometry) to minimize the 

total projection error in order to provide the most accurate reconstruction of 

structure and motion. The “bundle” refers to viewing rays that are adjusted 

optimally together in one bundle. The camera model and estimated camera 

pose can be used to reproject the estimated 3D feature coordinates onto the 

image plane. The reprojected error is the image-plane distance between the 

reprojected and observed position of the feature in the image plane (Figure 

34).  

It optimizes the structure and motion (R and t) by minimizing the sum of 

squared reprojection error, and it is commonly used after least square 

estimation of R and t (after the 8-point algorithm). I.e., bundle adjustment 

extends two-view reprojection minimization to multi-view scenarios. Since 

not all corresponding points are visible for each camera, it calculates the 

reprojection error for only the observations that are visible from all cameras. 

The most common approach is the Levenberg-Marquardt algorithm.  It 

combines the Gauss-Newton algorithm and gradient descent, resulting in fast 

convergence and robustness. 
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Figure 34 Bundle adjustment 

To formalize the multi-image alignment, let's consider the N different camera 

poses with known camera parameters and a collection of n feature points. The 

camera at the pose 𝐶𝑖 observes point 𝑃𝑗 and image-plane coordinates are 

represented by 𝑝𝑖
𝑗
 The estimated value of the image-plane projection of the jth 

feature point in the ith image donated by 𝑃𝑖
𝑗
. The refined position of the feature 

point 𝑃𝑗̂ is calculated by minimizing the sum of reprojection errors, i.e.: 

𝑃𝑗̂ ≃ 𝑎𝑟𝑔min
𝑝𝑗

∑ ||𝜋(𝐶𝑖 ⋅ 𝑃
𝑗, 𝐾𝑖) − 𝑝𝑖

𝑗
||

2
.
𝑖,𝑗  

The number of unknown parameters in this system is 6 ∙ 𝑁 + 3 ∙ 𝑛, i.e., six 

unknowns for each camera pose and three unknowns for each feature point. 

Since one camera is considered the reference, the number of unknowns is is 

6 ∙ (𝑁 − 1) + 3 ∙ 𝑛, while the number of measurements is 2 ∙ 𝑁 ∙ 𝑛, as the 

projection of each feature point onto the image plane is measured. 

Bundle adjustment calculates the optimal relative pose and position not 

absolute position. In addition, scale ambiguity also applies here since changes 

in focal length and z-axis translation.  
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5.5.7 Multi-view stereo 

In SfM the sparsity of feature matching points leads to spares point cloud. 

However, for most applications highly detailed and robust 3D point clouds 

are beneficial. To overcome this limitation, the multi-view stereo technique is 

often used to improve reconstruction.  

Multi-view stereo has the same principles as the classical stereo, but it benefits 

from a large number of images and images with more varied perspectives. 

The multi-view stereo can be formulated as the simultaneous estimation of 

depth maps at key frames while optimizing not only photometric consistency 

(intensity or color similarity) and smoothness consistency but also the 

geometrical consistency (consistency of estimated disparity across multiple 

views). It provides more accurate depth maps and complete dense 3D scene 

models since it attempts to find a match for almost all pixels in an image. For 

example, if pixel size on the ground level (ground sampling distance) is 5 cm 

for state-of-the-art systems, a point density of hundreds of points per square 

meter can be achieved. This is much higher compared to the traditional 

LiDAR point clouds. 

In SfM, multi-view stereo can be observed as a post-processing stage. The 

process began with taking the camera parameters and the sparse model 

obtained by SfM as input. After that, each image is considered as a reference 

and pair selection is performed where for each reference image, a subset of 

neighboring views with good overlaps and viewing angles is selected to 

improve depth estimation quality. A high number of matching points across 

images is essential, along with large angles between the sparse 3D points and 

the optical center of the image, to ensure accurate and stable reconstruction. 

The multi-view algorithm is used to compute the depth map by comparing 

multiple neighboring views with a reference image. This involves pixel-wise 

or patch-wise photogrammetric matching, where each pixel is matched across 

the views to find its most likely depth estimation using stereo principles such 

as plane-sweeping stereo, patch matched stereo or deep learning based MVS. 

The depth maps from multiple views are merged, and dense point clouds are 

obtained. This fusion step involves filtering out noise or inconsistent depth 

estimation and combining overlapping measurements to create a unified 3D 

surface. 
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6 LIDAR 

Light Detection and Ranging (LiDAR) is a remote sensing technology that 

uses laser pulses to measure the distance between the sensor and target. A 

laser (Light Amplification by Stimulated Emission of Radiation) is a device 

that generates a coherent beam of light through the process of stimulated 

emission. When atoms or molecules in the active laser medium (gain medium) 

absorb external energy, their electrons transition to an excited state, moving 

to higher energy levels. 

Each electron orbit corresponds to a specific energy level. For an electron to 

move to a higher orbit, it must absorb a photon with an energy exactly equal 

to the difference between its current and target energy levels. However, 

electrons do not remain in an excited state for long; they quickly return to 

their ground state, releasing a photon. The emitted photon is identical to the 

photon that was absorbed. This emitted photon can then stimulate other 

excited atoms to release additional photons of the same wavelength, phase, 

and direction. This chain reaction leads to the amplification of light, resulting 

in a powerful, coherent laser beam.  

The key characteristics of a laser are: 

● Coherence – laser beam exhibits spatial and temporal coherence, 

meaning that light waves have a constant phase over both space and 

time. This is an important property since high coherence results in an 

extremely high power. 

● Monochromatic – A laser emits light in a single wavelength (or very 

narrow range of wavelengths), unlike ordinary light sources that 

consist of multiple wavelengths.  

● High intensity – in contrast to natural light that spreads in all 

directions, laser beams are highly directional and spread minimally 

over long distances; the intensity of the laser beam reaching the target 

is high. This enables different applications such as cutting, welding, 

and long-distance measurement. In remote sensing, high intensity 

provides a high-flying height, ensuring that enough energy returns 

from the target to the detector. 
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● Collimation – Laser beams are highly directional and spread 

minimally over long distances, making them useful for applications 

that require precision. The narrower beam ensures better range 

accuracy. 

6.1 Principles of LiDAR 
The laser scanners can be categorized by the principle of the distance 

measurement on: 

● time of flight principle  

● phase-based principle. 

Time of flight (Figure 35) measures the difference in time between emitting a 

pulse and detecting its return (i.e. echo). The distance to the target of interest 

can be determined by the following expression: 

𝐷 =
𝑐 ⋅ 𝑡

2
 

where D is the distance between scanner and target object that reflects the 

laser pulse (range), c is the speed of light, and t is the time-of-flight.  

 

Figure 35 LiDAR distance measurement based on the time-of-flight principle 
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These scanners use discrete laser pulses for distance measurement and they 

are commonly known as pulse scanners. The pulse frequency is limited 

because the transmitter cannot send the next pulse until the receiver detects 

the previous one. Electronic measurement of time is crucial for this type of 

distance measurement. For instance, since the speed of light is approximately 

300 000 km/s, it can be calculated that 3 nanoseconds (ns) are required for light 

to travel 1 meter. This means that to achieve a length measurement accuracy 

of 1 millimeter, it is necessary to measure a time interval of just 3 picoseconds 

(ps). 

Phase-based principles (Figure 36) modulate the amplitude of the emitted 

laser in sine-wave-like patterns. When the laser light is reflected by the object 

and received by the scanner, the waves seem to be delayed or shifted 

compared to the waves that are currently emitted. This shift is the basis for 

the distance measurement; it is directly proportional to the distance of the 

object. 

The x, y, z coordinates of each point are then calculated by using angle 

encoders to measure the mirror rotation and horizontal rotation of the scanner 

i.e. 

𝑡 =
𝛥𝜙

2𝜋⋅𝑓𝑚
; 𝐷 =

𝑐⋅𝑡

2
⇒ 𝐷 =

𝑐⋅𝛥𝜙

4𝜋⋅𝑓𝑚
 

Where the c is the speed of light, t is period of time from laser emission to 

detection of the reflected signal, 𝜙 is phase shift and 𝑓𝑚 is a modulated 

frequency. 

As sine waves form an identical repeating pattern, ambiguity can arise if the 

phase shift is larger than one complete cycle of the wave. Because the sine 

waves repeat, any actual phase shift that is larger than one sine wave will 

appear identical to a corresponding phase shift within a single cycle. 

Therefore, in this type of system max distance is limited to that in which phase 

shift is smaller than one sine wave. The equation for max distance that 

guarantee the uniqueness of results is: 

𝑧𝑎𝑚𝑏 =
𝑐

2 ⋅ 𝑓𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑒𝑑
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Meaning that if the wavelength is 300 m the max distance from objects is 150 

m. Therefore, the long sine waves are used to avoid this ambiguity.  

 

Figure 36 Phase-based distance measurement 

Unfortunately, it is more difficult to determine the phase shift accurately if the 

sine waveforms a long slope. It can be determined more accurately if the slope 

is short and steep. This means, for accuracy reasons, short sine waves are 

preferred. To provide a larger max distance two or more frequency 

modulations are used. An approximate measurement is made based on the 

low frequency i.e. large wavelengths, and then a precise measurement is 

made by using high frequency. The largest wavelength provides an 

unambiguous measurement, while the shortest wavelength defines the 

precision that can be provided. Scanners based on phase-time measurement 

are faster and have a better resolution but lower precision compared with the 

time of flight-based scanners. 

The accuracy of phase-based scanners is limited by several factors: 

● Frequency Modulation: Variations in frequency modulation can 

introduce errors in measuring the phase shift, affecting the overall 

accuracy of the distance measurement. 

● Accuracy of phase shift measurement: The precision of the phase shift 

measurement directly impacts the accuracy of the distance 
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calculations. Any errors in this measurement will influence the final 

distance result.  

● Stability of the oscillation modulation: The stability of the modulator 

that generates the oscillation is crucial. Fluctuations or instabilities in 

the modulator can lead to variations in the emitted signal, causing 

inaccuracies in the phase measurement.  

● Air turbulence: Air turbulence can distort the propagating wave, 

leading to variations in the phase measurement. 

LiDAR scanners can be mounted on a static (tripod) or dynamic platform.  

When a scanner is placed at one position during data acquisition, that is static 

laser scanning. If the scanner is positioned close to the Earth's surface, this 

method is known as terrestrial laser scanning (TLS). The advantage of static 

laser scanning is high precision and high density of the resulting point cloud.  

In contrast, dynamic laser scanning the device is mounted on a mobile 

platform. The examples of platforms for dynamic laser scanning are plains, 

cars, Unmanned aerial vehicle (UAV), trains etc. This approach allows for the 

rapid collection of data over large areas, although it may result in slightly 

lower precision compared to static scanning. 

Additionally, handheld LiDAR scanners are becoming increasingly popular 

and even some of the latest smartphones have a LiDAR sensor.  While 

handheld scanners may offer lower precision than tripod-mounted systems, 

their ease of use, due to their compact size and effectiveness, makes them ideal 

for use in certain situations. Making them valuable tools in various 

applications. 

6.2 Components of LiDAR 

The LiDAR systems are used for rapid measurement of the Earth’s surface, 

achieving a sampling rate greater than 150 000 pulses per second. The 

resulting product is a highly dense and accurate georeferenced point cloud. 

The three-dimensional coordinates (e.g., X, Y, Z or latitude, longitude, and 

elevation) of the target object are computer-based on the: (1) time of flight, (2) 

the angle at which the pulse was emitted, and (3) the absolute location of the 

sensor on or above the Earth's surface. 
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To ensure high accuracy, it is essential to determine these components within 

a centimeter or so. This presents a challenge, as aircraft typically fly at speeds 

of 160 to 320 kilometers per hour, while experiencing altitude fluctuation and 

keeping track of hundreds of thousands of lidar pulses per second.    Due to 

that, apart from the laser scanner, the LiDAR system uses a GNSS and an 

Inertial Navigation System (INS) to provide precise positioning and 

orientation data (Figure 37).   

GNSS provides the global position and orientation of the laser scanner, 

needed for georeferencing, i.e., to convert distance measurement into 3D 

points measurement in a global coordinate system such as WGS84. To achieve 

a highly accurate global position, differential GNSS (DGNSS) is employed. 

DGNSS enhances the accuracy of GNSS by using a ground-based reference 

station with a precisely known position. These stations continuously compare 

their actual position with the position determined by GNSS and broadcast the 

difference as a correction signal. The aircraft receives these correction signals 

from nearby DGNSS stations and applies them to refine its own GNSS 

position. By using DGNSS, the accuracy of the GNSS position can be 

improved from several meters to a few centimeters, significantly enhancing 

the precision of LiDAR-derived geospatial data. 

To obtain the accurate orientation of the laser scanner, the INS of the aircraft 

is used. The INS accurately measures the aircraft's rotation around the X, Y, 

and Z axes using an inertial measurement unit (IMU). The X axis (roll) is 

aligned with the direction of the aircraft’s flight, the Y axis (Pitch) lies in the 

horizontal plane and it is perpendicular to the X axis, and the Z axis (yaw) is 

in the vertical plane and it is perpendicular to the X and Y axes. Once the 

orientation of the laser scanner is determined, the direction in which the laser 

pulse is emitted can be accurately calculated.  

By combining the global position and orientation of the laser scanner with the 

distance measurement from the laser pulse, the georeferenced 3D coordinates 

of the points on the target object that reflected the laser pulse can be 

computed. In a typical commercial system, distance is measured with an 

accuracy of 2-3 cm, GNSS error is between 5-10 cm, and IMU error is 27 cm at 

a flight height of 3000 m. Consequently, the absolute accuracy of LiDAR-

derived elevation is between 10 and 20 cm, while relative accuracy is even 

higher.  
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Figure 37 An airborne LiDAR system 

6.3 Echo detection 
In a LiDAR, one emitted pulse can lead to multiple echoes since a single laser 

pulse can interact with multiple surfaces. Since the laser pulses are typically 

emitted with slight divergence, their footprint on the ground spans several 

centimeters in diameter. This means that when a pulse encounters an object, 

part of the energy may be reflected while the remaining energy continues past 

the object, allowing it to interact with additional surfaces.  

Once the reflected pulse is received by the sensor, it forms a waveform that 

represents the received signal power (amplitude) over time (t). The system 

detects echoes based on a predefined threshold—an echo is recorded 

whenever the signal power exceeds this threshold. This enables LiDAR to 

capture multiple returns from a single pulse, which is essential for mapping 

vegetation, buildings, and terrain with high accuracy. 
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An echo can also be referred to as a return. For each return, the return number 

and the number of returns are recorded. Return number refers to the position 

of a specific return within a single laser pulse, i.e., the first return is the first 

echo received from an emitted laser pulse, and the last return is the last 

received echo (see Figure 38). The return number can, in some cases, be used 

to determine if an echo was reflected on vegetation or ground (ground should 

then be the last return). The number of returns is the total number of returns 

for a given pulse. 

 

Figure 38 Multiple return LiDAR system 

Multiple return systems can capture up to five returns per pulse, increasing 

the amount of data and ability to comprehensively analyses 3D structures 

such as forest canopy.  There are typical for semi-transparent objects, 

overhanging objects (such as power lines), or abrupt surface discontinuities 

(building edges) A tree is particularly interesting because it often causes 

multiple echoes (one or more on branches and one on the ground below). 
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6.4 Laser properties 
As mentioned above, the LiDAR operates using laser pulses at specific 

wavelengths. To select the optimal wavelength several factors need to be 

considered such as:  

● Atmospheric scattering - how much of the signal is lost by traveling 

through the atmosphere,  

● Absorption capacity of vegetation - how much of the signal is lost 

because it is absorbed by vegetation, 

● Sunlight interference - Undesired light in the LiDAR signal due to 

direct sunlight or scattered sunlight, which can introduce noise in the 

measurements, 

● Safety - The degree to which a laser wavelength is absorbed by the 

human eye. The wavelength must be chosen so that it is not absorbed 

by the eye so much, and 

● Application - as different wavelengths interact with surfaces in a 

unique way. 

Near-infrared wavelengths (typically between 1040 and 1550 nm) are most 

widely used in LiDAR systems, as they provide strong reflection from 

vegetation and the built environment. The attenuation of near-infrared pulses 

in the atmosphere is minimal when the atmosphere is cool, dry and clean. 

However, the presence of water vapor and carbon dioxide increases 

attenuated severely. Green LiDAR is used primarily for bathymetric 

applications due to its ability to penetrate water efficiently.  

Scanning frequency represents the number of pulses emitted by laser in one 

second. It is directly related to the density of echos. The higher frequency at 

constant aircraft speed and a standard height above target will result in a 

higher number of returns and higher accuracy due to increased number of 

measurement points collected over area. Moreover, the high-frequency 

system can finer detail by operating on an aircraft that flies higher and faster 

than an aircraft equipped with a lower frequency system, thereby reducing 

flying time and acquisition costs.  

The laser scanner is fixed to the aircraft and it typically includes rotating 

optical elements, such as mirrors or prisms. The mirrors are used to direct 
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emitted laser pulses in a cross-trac direction i.e. perpendicular to the direction 

of flight. This scanning mechanism significantly increases the ground covered 

per flight distance. The different configurations of rotating optics, and 

therefore different scanning patterns, can be used. A few common types are: 

zig-zag, parallel line, and elliptical patterns. Scanning patterns represent the 

spatial distribution of returns that would be expected from a flat surface. The 

zig-zag pattern (Figure 39 (a)) uses oscillating mirrors that direct laser pulses 

across the swath width in both directions of the scene. Although the spacing 

between points is preserved, it yields a much higher density on scan edges 

(non-uniform density). In the parallel line pattern (Figure 39 (b)), a rotating 

polygonal mirror is used to direct pulses across swaths in one direction of the 

scan only. The elliptical pattern is generated by using a rotation mirror that 

revolves about an axis perpendicular to the rotation mirror. With this pattern, 

the point density at the swath edge is higher (Figure 39(c)), which is beneficial 

for connecting neighboring swaths.  It is clear the point density is affected by 

the scanning pattern. In practice, uniform patterns such as parallel lines and 

ecliptic patterns are preferred. 

 

Figure 39  (a) zig-zag pattern, (b) parallel pattern, (c) elliptical pattern 

The scanning angle is the angle at which the beam axis is directed away from 

the “focal” plane of the LiDAR instrument. It controls an area of ground being 

observed in a single flight line. The maximum scan angle is up to 30° in both 

directions from the vertical. Positive and negative angles represent pulses 

emitted to the right (starboard side) and to the left (port side) of the nadir, 

respectively. The scanning angle and flight height determine the scan swath. 

A narrow scan angle range limits the swath width, increases costs, and 

reduces efficiency. On the other hand, larger scan angles can introduce 

distortion, especially on steep terrain. Additionally, the laser footprint 
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increases at higher angles, affecting spatial resolution. For example, a study 

shows that for DEM production in steep terrains, the scan angle should be 

kept less than 15° [30].  For forest application, the often recommended scan 

angle is between 15 to 20 degrees [31]. However, using a wider scan angle can 

be beneficial in forest applications since the chance of detecting the ground 

and penetrating deeper into dense forests is higher for vertically incident 

beams (especially with newer systems capable of detecting multiple echoes 

with lower intensity). 

The swath width is given by: 

𝑆𝑤 = 2ℎ ⋅ 𝑡𝑎𝑛 (
𝜃

2
) 

where 𝜃 is scan angle range. At flight height of 500 m and scan angle range of 

40 the swath width will be ∼364 m. 

 Laser beam forms the footprint, the ground area illuminated by laser beam, 

known as Instantaneous Field of View (IFOV). Although the laser beam has 

low divergence (i.e. very narrow beam), with increase of the distance from 

source the size of the beam also increases (beam divergence). Due to that the 

laser footprint is not a point but an area. If the aircraft is perfectly horizontal 

and the laser beam is perpendicular to the ground, IFOV will be circular. As 

laser signal moves from vertical, the beam will be elongated in the direction 

of scanning, forming an ellipse. Additionally, the distribution of pulse energy 

is not uniform over the extent of IFOV and it decreases radially from the 

center. 

The IFOV is a measure of spatial resolution of the LiDAR system. Thus, the 

point density within the point cloud will relate to the IFOV. Large IFOV will 

reduce the density but increase the coverage, leading to a lower signal-to-

noise ratio. If IFOV is small, the sensor can determine the point position more 

precisely since it covers a smaller area.  

The diameter of IFOV on the ground can be computed by: 

𝐼𝐹𝑂𝑉 =
ℎ ⋅ 𝛾

𝑐𝑜𝑠(𝜃𝑖𝑛𝑠𝑡)
 

where h is the altitude of the aircraft above ground level, 𝜃𝑖𝑛𝑠𝑡 is the 

instantaneous scan angle, and 𝛾 is the divergence of the laser beam. Typical 
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laser beam divergence ranges from 0.1 to 1.0 millirad. The change of IFOV for 

different scan angles at laser divergence of 0.5 millirad, and distance of 500 m 

from the instrument is shown in the Table 8. 

Table 8 Change of IFOV considering different scan angles 

𝜽𝒊𝒏𝒔𝒕  𝒉𝒊𝒏𝒔𝒕 IFOV 

0° 500 0.2500 

10° 500/cos(10)=507.63 0.2538 

20° 500/cos(20)=532.38 0.2662 

30° 500/cos(30)=577.35 0.2887 

The minimum detectable object within the footprint depends primarily on its 

reflectivity rather than on the object size. For example, a power cable with a 

diameter of 1 cm is detectable, while a dark tree branch with a diameter of 3 

cm will not be detectable. Moreover, the return pulse can be detectable even 

if it covers a small area of the target within the laser footprint if that area has 

high reflectivity (Figure 40 (a)). In addition to reflectivity, several factors like 

range, laser power, atmospheric conditions, terrain inclination, 3D structure, 

and type of reflectivity (diffuse, spectral or both) influence detectability and 

accuracy. For flat surfaces with high homogenize reflectivity in the laser 

footprint, the reflected pulse will be very similar to received on. There will not 

be range averaging of various targets, resulting in good accuracy. On another 

hand, if multiple irregular surfaces close to each other reflect the received 

pulse, the reflected pulses are combined to a wider pulse with lower 

magnitude and longer rising time, resulting in range averaging and lower 

range accuracy. In addition to surface roughness, the measured range 

depends on surface slope. The laser pulses on the steep slope will be wider 

than on the flat surfaces and the measured range is an average of the range of 

the laser footprint. For example, if a beam is emitted with a scanning angle of 

12 degrees down the 100-percent slope (45 %) the incident angle to the ground 
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will be 57 degrees i.e. the IFOV will be 0.5446 compared with 0.2555 on the 

flat surface (Figure 40 (b) and (c)). 

 

Figure 40 Interaction between laser beam and target (a) laser footprint partially covers a 

highly reflective object (b) laser pulse on a flat surface, and (c) laser footprint on a steep 

surface 

Minimum separation between objects along the pulse path defines the vertical 

resolution of the Laser data. Usually, the returned pulse has a lower 

amplitude and wider width compared with the received pulse. The minimum 

vertical separable objects will be a function of pulse width (duration of a laser 

pulse as it travels from the sensor to the target and back). 

Footprint spacing (Figure 41) is the nominal distance between the centers of 

consecutive beams along and between scanning lines, which, along with the 

beam divergence, determines the spatial resolution of LiDAR data.  

The footprint spacing is a function of: 

● Scanning frequency (number of emitted pulses per second [Hz]), 
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● The flight height - the maximum flight height depends mainly on 

transmitted power, while the minimum depends on national 

regulations and eye safety distance 

● The speed of aircraft, and 

● Scanning angle. 

 

 

Figure 41 LiDAR horizontal resolution 

6.5 Data characteristics 

In addition to the previously mentioned number of returns and return 

number, several attributes are usually available for each detected point. 

Pulse density is the direct function of footprint spacing over a hypothetically 

flat plane, and it can be calculated by pulse density = 1/ footprint spacing. It is 

the most consistent measure of LiDAR spatial resolution. 

Return density represents the number of returns per unit square area (for 

example, 7 points per square meter). It is usually defined based on the 

application for which data is being collected. Return density is controlled by 
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specifications and operation mode of a LiDAR system (flight height, flying 

speed, scan angle, scan frequency, scan pattern, variation in acceleration and 

attitude) and type of target (geometry and reflectivity). For example, return 

density generated by 5 returns capable systems over forest will be much 

higher than the density generated over pasture or water surfaces. 

Recommended return density for the specific DEM accuracy class is presented 

in Table 7 

Intensity is an attribute that describes the peak intensity value of the returned 

laser signal received by the sensor. It represents the reflective properties of the 

target, surface roughness, spreading loss, and atmospheric attenuation. High 

reflective surfaces, such as roads, dry soil, have higher intensity. Intensity is 

often used in feature detection and extraction, and can be used as a substitute 

for aerial imagery when they are not available. However, intensity is relative 

and values off the same target will vary from flight to flight or elevation to 

elevation, due to: 

● Dependence on bidirectional reflectance distribution effect - describes 

how EM radiation is reflected at different angles. Since intensity 

depends on the angle of incidence and viewing geometry, its value 

may change significantly even for the same object,  

● The distance of the laser instrument - the intensity will decrease with 

increasing distance due to atmospheric attenuation and energy 

dispersion,  

● The total number of returns identified - the intensity varies depending 

on which return is recorded (first, second, last), and 

● The rank of the return. 

Moreover, to prevent hardware damage in case of extremely high amounts of 

backscattered energy due to the presence of high reflective targets, the 

receiver sensitivity is reduced practically instantaneously. However, 

increasing sensitivity for weak returns usually takes several seconds. Taking 

that into account, the presence of a single high-reflectivity target in one flight 

line can lead to a substantial discrepancy in the mean intensity of returns on 

the overlapping part of two adjacent flight lines. The fluctuations in the 

energy emitted by the laser also introduce variability in intensity values. 

Those fluctuations are likely more pronounced for high-frequency systems. 

Due to that, the application of intensity in point cloud classification is 
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challenging. Intensity is recorded in 8 bits (value from 0 to 255), 12 bits (0 to 

1023), or in 16 bits (0 to 65535). 

GPS time is an indication of the precise time that the pulse was emitted. This 

attribute can be used as a unique identifier for a pulse. 

End-of-scan-line is a binary attribute (true or false) indicating whether the 

parent beam marked the edge of scanning lines.  

Scan angle attribute indicating an instantaneous scan angle. Usually recorded 

in degrees. 

6.6 Stripes and blocks 
Data in airborne laser scanning is acquired strip-wise. The strip represents the 

set of points collected during one flyout. In order to scan larger areas, multiple 

flyouts, i.e., multiple strips next to each other with an overlap to avoid gaps, 

are needed (Figure 42). Larger overlaps are preferred to increase accuracy in 

strip adjustment and increase return density. Usually, an overlap between 20-

30% is needed, depending on the geomorphological characteristics of the 

region being surveyed. Due to that, an overlap area of two overlapped strips 

will be surveyed twice, resulting in higher point density, increased data 

volume, and non-uniform distribution of points. 

The set of all scanning strips represents the scanning blocks. The block design 

should include additional crossing flight strips and control areas. Their 

number is a function of the size and shape of the block. Each data strip must 

be covered by one crossing strip. The GNSS/IMU drift can result in misaligned 

or shifted point clouds between strips. Higher precision can be achieved by 

applying the strip adjustment. To increase redundancy and confidence in 

adjustment, it is recommended that control areas be covered by a crossing 

strip. A longer data strip is covered by more than one strip to reduce errors 

caused by GNSS accuracy variations. For control areas, usually long and wide 

flat areas (such as football fields) are required so that the uncertainty of the 

horizontal position would not affect its vertical component. Control points on 

the surface are measured with high precision in the local control network. The 

coordinates of control points should have at least 3 times better accuracy than 
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a LiDAR scanner. Those points are used for absolute accuracy analysis, which 

is necessary to calibrate the LiDAR system.  

If there are discrepancies between overlapping laser scanner strips in height 

and planimetry, it is necessary to perform the strip adjustment. Those 

misalignments in the absolute and relative orientation of the point cloud are 

caused by systematic errors.  

The discrepancies in ground control features imply errors in absolute 

orientation. Absolute orientation refers to the correct georeferencing of a 

LiDAR dataset in a global coordinate system. Relative orientation describes 

the orientation of strips with respect to each other, maintaining internal 

consistency. It does not consider absolute positioning but ensures that 

overlapping areas do not have mismatches. Relative accuracy is calculated 

between data overlapping swaths. The higher the swath overlap, the more 

precise the assessment would be. 

Various strip adjustment methods have been used to eliminate the 

inconsistency in elevation, position, and accuracy. Those methods can be 

roughly categorized into two categories: data-driven approach (strip 

adjustment) and sensor system-driven (calibration) approach.  

Sensor system-driven methods are based on the physical sensor model 

relating the system parameters to the ground LiDAR coordinates. These 

methods require the original observations (GPS, IMU, and the laser 

measurements) or at least the trajectory and the time-tagged point clouds. 

This data is not always available to the end-user. 

Data-driven approaches rely solely on the LiDAR point cloud itself. In this 

approach, the systematic errors are removed by applying translation and 

rotation models e.g., a seven-parameter rigid body transformation or even a 

simple vertical shift. In order to provide both planimetric and vertical 

constraints for LiDAR strips, the relationship between matched conjunction 

features, such as lines and surfaces, needs to be established in order to 

calculate transformation parameters. This process includes the segmentation 

process, feature extraction, feature matching on the target point cloud, and 

then performing strip adjustment calculation. 
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Both sensor system-driven and data-driven methods need control elements or 

tie elements. Currently used control or tie elements are mainly lines and 

surfaces. 

 

Figure 42 Strip configuration (blue) of the block, including three control areas (yellow) 

1.1 Data Quality Control 
Quality control of LiDAR data involves evaluation of return coordinates 

accuracy and precision, compliance with acquisition specifications, and data 

spatial consistency and completeness. Each sensor in an airborne LiDAR 

system can potentially generate errors, contaminating the laser data with 

systematic and random errors. The sources of errors in airplane LiDAR 

surveys are: 

● Distance measurement error, 

● Scan angle measurement errors,  

● Error of aircraft position, 

● Error in measuring aircraft orientation 

● Device installation error, 

● Geoid normal error, and 

● Error caused due to time deviations (syndication error and 

interpolation error). 
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Random errors in LiDAR systems are most often caused by random 

fluctuation in measurement, such as inherent sensor noise, noise in recording 

scanning angles, range noise, platform instability, etc.. The magnitude of 

random errors is calculated during system calibration. Due to that, periodic 

calibration of LiDAR systems is needed. Random errors affect the absolute 

accuracy of returned coordinates, but also the relative accuracy. For example, 

the influence of attitude noise in the GNSS/IMU derived orientation will vary 

with scan angle, affecting less nadir regions compared with the off-nadir 

regions. Randomness can be reduced by averaging or repeating 

measurements. 

Bias in GNSS, aircraft attitude, scanning angle, and time measurement course 

systematic errors. The device installation error, i.e. the three-dimensional 

offset between the GNSS unit and the laser pulse emission, would cause the 

systematic error independent of the flight height, but dependent on the flight 

direction. In multi-pass LiDAR, the strips may not align properly.  An error 

in measuring the scanning angle can cause the return coordinate errors that 

increase with flight height and flight direction. This type of error produces a 

fixed amount of bias that can not be reduced by averaging, but it can be 

reduced when their sources are known. 

Typical error values that occur in an aircraft laser scanning system are 

presented in Table 9. 

Spatial completeness is a key quality factor of airborne LiDAR data. It 

represents the lack of continuity or scanning uniformity in LiDAR datasets. 

The scanning uniformity is represented by variability in pulse density or 

return density over the same objects. There are two types of data density: local 

and mean density. Mean density is calculated by dividing the all point 

number with the whole project area. High return density does not guarantee 

a uniform point distribution. Mean density is a general measure of dataset 

resolution, but it can not reflect the spatial completeness, so local density is 

needed. The local density computes the number of points within a defined 

neighborhood. Its variations occur due to variations in flight height, the 

distance between adjacent flight lines, or instability of the aircraft's attitude. 

For example, turbulence during data collection causes continuous variations 

of aircraft pitch and roll, causing the aircraft to deviate from its ideal scanning 

path, leading to gaps in data over certain areas despite the swath overlap. The 
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local density highly influences the performance of data processing techniques 

and the quality of the created products. All the local density values in an area 

form a density distribution map.  

Table 9 Typical error values that occur in an aircraft laser scanning system 

Error Typical Value 

Geoid normal error 0.017° 

IMU error 0.01° 

Device installation error (rotation between laser scanner 

and IMU) 

0.3° / 0.01° 

Scan angle measurement errors ε=0.02° 

Δτ=0.03° 

Distance measurement error 5-10 cm 

Device installation error (translation between laser 

scanner and IMU) 

3 cm 

Device installation error (translation between GNSS and 

IMU) 

3 cm 

GNSS error 10 cm 

Error caused due to time deviations 1 cm 

Accurate assessment of the error budget requires field surveying on the 

ground and of objects that are clearly observable in the resulting point cloud.  

The vertical accuracy depends on the quality of INS, integration with GNSS 

and methods of post-processing. As already mentioned, the effect of attitude 

error on the 3D accuracy increases with flying height and the scan angle. In 

recent years, vertical accuracy is measured against the LiDAR surface in GCP. 

The LiDAR surface can be modeled using Triangulation Irregular Network or 

other interpolation methods. The orthogonal distance between the GCP and 

LiDAR surface represents vertical error. Using multiple GCP, the statistics 
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such as the maximum vertical errors per DEM accuracy class are presented in 

Table 7. 

The positional accuracy depends mainly on the quality of DGNSS post 

processing, but other factors such as GNSS satellite constellation during flight, 

the number of satellites, the distribution and distance of ground reference 

stations, the accuracy of IMU (roll, pitch, and heading), the flight height, and 

scanner accuracy are also included. The assessment of positional accuracy is 

usually based on comparison between GCP coordinates and their conjugate 

points from the LiDAR dataset. However, the assessment of positional 

accuracy is not an easy task since point clouds are abstract and cannot be 

easily compared with discrete objects. 

6.6.1 Data format  

The result of the airborne LiDAR survey is a point cloud. A point cloud is a 

discrete set of data points in a 3D coordinate system. It allows the individual 

spatial measurements to be combined into a meaningful 3D representation of 

objects or environments. The point cloud is characterized by an enormous 

number of points (from a few thousand to a few million points). In addition 

to X, Y, and Z coordinates, each point can be described by several attributes 

such as R, G, B color, classification etc. Due to its characteristics, several 

formats can be used for point cloud storage. Point clouds differ fundamentally 

from classical raster and vector formats, meaning that traditional processing 

and analyzing methods of raster and vector data cannot be applied directly 

on point clouds. The two main categories of point cloud formats are ASCII 

and binary. ASCII uses human-readable text characters to represent X, Y and 

Z coordinates of each point. The benefit of text-based format lines is the fact 

that content of text files are usually well supported and easily accessible via a 

text editor. For example, the use of a delimited format, where each line 

contains data for single return makes it easy to integrate data into popular 

SQL databases where it can be queried and rearranged as needed. However, 

they are large in size resulting in very slow reading and interpretation even 

for a small number of points. In addition, the metadata is lost.  ASCII file 

format includes xyz, obj, ptx, asc. 

The American Society for Remote Sensing (ASPRS) introduced the LAS file 

format as an alternative to the ASCII file format. LAS is a public binary file 
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format for the interchange of 3D point clouds between different data users. It 

maintains metadata specific to the LiDAR while not being overly complex. A 

LAS file contains information about points in one of the point data record 

formats defined by the specification. The current version, LAS 1.4, allows 11 

point data record formats (from 0-10), the preferred formats are 6-10 since 

they have improved several aspects of the core information in the point data 

records (improvement of classification scheme and waveform storage). All 

points must be of the same format within the files. The various formats differ 

in the available data fields. 

The LAS 1.4 defines Variable Length Record and Extended Variable Length 

Record. The number of bytes used per point data record is explicitly given in 

the public header block. The Extended Variable Length Record enables the 

definition of additional user-defined fields in “extra bytes” to the field given 

by specification.  The LAS file format is not compressed. However, an open-

source project, LASzip, defines the open file format LAZ, significantly 

reducing file size up to 90% while maintaining precision, making it ideal for 

large-scale applications such as terrain modeling, forestry analysis, and 

autonomous navigation. LAS and LAZ formats provide interoperability with 

various software used in the analysis and visualization of LIDAR data.  
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7 REFERENCE FRAME 

A reference frame is a three-dimensional coordinate system that describes the 

Earth's body and provides the foundation for determining position on Earth 

and in space. Many applications require precise global frames, such as 

geodetic survey, engineering, cadaster, photogrammetry, geophysics, 

hydrology, climatology, etc. Also, it allows the quantification of changes due 

to geodynamic processes and climate change. For example, in order to assess 

sea level variation, an accurate global reference that remains stable in the long 

term is needed. The global reference frame ensures a uniform basis for 

geospatial data. Geodata doesn't have value without a reference frame; thus, 

it has an elementary role in modern society. 

Reference frame includes the following concepts: reference surface, datum, 

and coordinate system. 

All human activities and all measurements are performed on the Earth's 

surface. The primary aim is to present collected information on various maps. 

However, due to the irregular distribution of the third dimension, i.e., vertical 

variations between mountains and valleys, it is impossible to approximate the 

shape of the Earth with any reasonably simple mathematical function.  To 

overcome this, all measurements must be projected orthogonally onto a 

mathematical figure that closely approximates the Earth's shape and 

dimensions. Once this projection is made, the measurements can then be 

transformed onto a two-dimensional plane (i.e. map).  

As a first-order approximation, the sphere could be used for small-scale 

mapping purposes (from 1: 1 000 000) or when very high accuracy is not 

required. However, the sphere does not meet accuracy requirements when 

high precision is required and ellipsoids need to be used. 

The Earth’s ellipsoid is any ellipsoid that approximates the Earth’s surface. In 

geodesy and cartography, a rotation ellipsoid with small flattening is used. It 

is a surface resulting from rotating an ellipse around its semi-minor axis. The 

size of the ellipsoid can be defined by using a semi-major axis (a), a semi-

minor axis (b), and flattening (f). Flattering is a parameter that emphasizes the 

difference between the sphere and the ellipsoid, and it is equal to 𝑓 =
𝑎−𝑏

𝑏
. 
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Some of the most used ellipsoids are: Bessel (1841), WGS84, and GRS80. 

The most accurate approximation is the geoid. The geoid is an equipotential 

surface of Earth's gravity field, ideally still sea surface extended under land 

mass, and it is always orthogonal to Earth's gravity direction at every point. 

It can be simplified by imagining that the entire Earth's surface is covered by 

water. If the current and other influences, such as winds and tides, were 

absent, the result would be an ideally still sea whose surface is affected only 

by Earth’s gravity and rotation. 

The geodetic datum describes the orientation and position of the ellipsoid in 

relation to Earth. At least seven parameters are needed to define a global 

datum: three for the determination of origin, three for the determination of 

the orientation of the reference ellipsoid, and a scale factor (usually in parts 

per million (ppm) units). The horizontal geodetic datum is a reference for 

defining 2D coordinates on a reference surface (ellipsoid or sphere). A vertical 

geodetic datum is a basis for the definition of heights.  

7.1 Vertical geodetic datum 
Since Earth’s gravity field is irregular due to variations in mass distribution, 

the geoid is undulated rather than a perfectly smooth surface. Depending on 

the mass deviation in land mass, the geoid will be below (where mass 

deficiency exists) or above (where a mass surplus exists) the reference 

ellipsoid. The deviation between the geoid and reference ellipsoid is called 

geoid undulation (N) (Figure 43). 

𝑁 = ℎ − 𝐻 

where N is the geoid undulation, ℎ is ellipsoidal height, and 𝐻 is orthometric 

height. 

The geoid is used to describe height and a reference surface for the 

measurement of land elevation and water depths on Earth (vertical datum). 

Since the geoid is a theoretical surface and the actual sea surface is constantly 

affected by tides, currents, and waves, tide gauges (mareographs) are used to 

record sea levels over several years. By averaging these long-term 

measurements, short-term fluctuations are eliminated, resulting in the Mean 
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Sea Level (MSL). MSL serves as an approximation of the geoid and is 

commonly used as a reference surface for measuring elevations. 

 

Figure 43 Vertical datum 

Every country or a group of countries has established the mean sea level 

measuring points located near the area of concern (local vertical datum). For 

ex-Yugoslavia, the local mean sea level is derived through the mareograph in 

Trieste (zero height). All elevations in ex-YU are measured relative to the 

Trieste tide gauge using geodetic leveling. The result is orthometric heights, 

i.e., heights above local sea level.  The orthometric height, the distance 

between the geoid and a point on the topographic surface, measured along a 

normal, is crucial for many engineering and geoscience applications. 

There are several realizations of the local vertical datum (the height reference 

system for specific regions). They are approximately parallel to the geoid but 

offset by a couple of meters due to local conditions (currents, tide, 

temperature difference, etc.)  at the specific location. 

The use of the Global Navigation Satellite System (GNSS) to determine height 

has been widely used. However, the GNSS determines height with respect to 

the reference ellipsoid, i.e., ellipsoidal heights. To convert ellipsoid heights to 

orthometric, the geoid undulation is required. 

In addition to local measurement, satellite missions, such as Gravity Recovery 

and Climate Experiment (GRACE) and Gravity field and steady-state Ocean 

Circulation Explorer (GOCE), have significantly improved geoid 

determination by providing global gravity field measurements. Those 
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satellite-derived global geoid models, such as EGM 2008 or EGM 96, are 

widely used in geodesy and navigation to convert GNSS measurements to 

orthometric heights. However, the global gravity model doesn't completely 

represent the Earth's gravity field because their resolution and accuracy are 

limited. Typically, a combination of GNSS leveling and global vertical datum 

provides absolute accuracy from centimeter to decimeter [30], [31]. 

7.2 Horizontal datum 
There are two primary types of horizontal datums: the global horizontal 

datum and the local horizontal datum. 

As the demand for interoperability in geodetic measurements increases, there 

is a growing need for a global reference surface that ensures coherent and 

consistent results across various disciplines, such as astronomy, geophysics, 

and other Earth sciences. The parameters of this ellipsoid, its placement, and 

orientation within the Earth should closely match the shape of the global 

geoid. Therefore, during their determination, specific conditions are set to 

ensure an accurate approximation. Among these conditions, the rotational 

axis of the ellipsoid must align with the Earth's axis of rotation, and the 

geometric center of the ellipsoid must coincide with the center of the Earth's 

gravity (geocentric). In addition to these requirements, if the ellipsoid's 

volume is made equal to that of the geoid and the sum of the squared 

distances between the geoid surface and the ellipsoid is minimized, such an 

ellipsoid is referred to as the global reference surface. 

In contrast to global datum, the local horizontal datums are reference surfaces 

that apply to specific countries or regions. Local datum positioning the 

ellipsoid to provide the best fit to the geoid in the area of interest. In this way, 

the difference between the reference ellipsoid and geoid could be ignored. The 

orientation of the ellipsoid is defined by the fundamental point (𝜑, 𝜆, ℎ) and 

an azimuth to an additional point. The local horizontal datum is determined 

through a triangulation network. There are several hundred local horizontal 

datums in the world. In ex-YU, the fundamental point is Hermannskogel, 

located near Vienna, and the underlying ellipsoid is the Bessel ellipsoid. 

A global reference frame provides a uniform basis for geospatial data, 

ensuring interoperability, consistency, and the combination of measurements 
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collected by ground or space-based sensors. It is needed for the precise orbit 

of satellites, all navigation, and change detection. A geodetic reference system 

provides a basis for a uniform global coordinate system in which every point 

on the Earth can be described by unique coordinates. 

7.2.1 ITRS 

The fundamental global geodetic reference system in use today is the 

International Terrestrial Reference System (ITRS). The ITRS is a geocentric 

coordinate system (its origin is at the center of mass of the whole Earth, 

including oceans and atmosphere) with three orthogonal coordinate axes (X, 

Y, Z) co-rotating with the Earth in its diurnal motion in space. The Z-axis 

points to the historical direction of the Earth's mean axis of rotation. The X-

axis is oriented towards the mean Greenwich meridian, and it is orthogonal 

to the Z-axis. The Y-axis completes the right-handed reference coordinate 

system. The scale unit is the meter. 

The ITRS is realized through the International Terrestrial Reference Frame by 

determining the 3D coordinates of firmly anchored points. Those points 

represent observation stations distributed worldwide. Their coordinates are 

computed consistently with the system definition by space geodetic 

observation techniques.  

ITRF serves as the foundation for many global and local geodetic datums such 

as WGS84 and ETRF (European Terrestrial Reference Frame). The ITRF2020-

u2023 is the latest realisation of ITRS. It represents the update of ITRF 2020 

[30], extending its data coverage by including observations from 2021 to 2024. 

The frame parameters (origin, scale, and orientation) are the same as ITRF2020 

[32].  

7.2.2 WGS84 

WGS84 is a global geodetic reference system used in various applications, 

including positioning, navigation, and mapping. It is the standard coordinate 

system used by the Global Positioning System (GPS), and it is maintained by 

the US National Geospatial-Intelligence Agency. WGS84 defines a global 

Cartesian coordinate system (X, Y, Z) with its origin at the Earth’s center of 

mass. The Z-axis points the direction of the BIH Conventional Pole (epoch 
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1984). The X-axis passes through the intersection of the Greenwich meridian, 

and the plane passes through the origin, and it is normal to the Z-axis. The Y-

axis completes a right-handed orthogonal coordinate system. The origin of 

WGS 84 is periodic refinement. The current realization WGS84 (G2139) aligns 

closely with ITRF 2020 to within one centimeter in each 3D component [33]. 

7.3 Coordinate systems on an ellipsoid 
The geodetic coordinates are geodetic latitude, geodetic longitude, and 

height. They are also referred to as ellipsoidal coordinates (Figure 44). 

Geodetic latitude is defined by the angle from the equatorial plane to the 

normal to the ellipsoid at the given point. It is usually marked with a Greek 

letter 𝜑 and it can have a value in the interval between 0 and 90 on North and 

South (−
𝜋

2
≤ 𝜑 ≤

𝜋

2
).  

Geodetic longitude is defined by the angle that the prime meridian (the 

meridian of the Greenwich observatory near London) makes to the meridian 

plane of a given point. It can have value in the interval [0,180] on the East and 

West and is marked with the Greek letter  𝜆. 

Geodetic coordinates uniquely define the position of any point on the 

ellipsoid. However, to determine a point's position on the actual Earth's 

surface, the distance from the ellipsoid to the point along the ellipsoidal 

normal is required. This distance is known as the ellipsoidal height (h). 

In this coordinate system: 

● Latitude and longitude define the horizontal position of a point on the 

ellipsoid. 

● Ellipsoidal height (h) represents the vertical distance of the point 

above or below the ellipsoid. 

While latitude and longitude provide a reference for horizontal positioning, 

ellipsoidal height is essential for determining elevation relative to the 

mathematical model of the Earth's shape. 
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Figure 44 Geodetic coordinates latitude (φ) and longitude (λ) 

7.3.1 3D Cartesian coordinate system 

Geodetic coordinates 𝜑, 𝜆, ℎ can be transformed to an Earth-centred, Cartesian 

three-dimensional system using the following equations (Figure 45): 

 

 𝑋 = (𝑁 + ℎ)𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜆 

𝑌 = (𝑁 + ℎ)𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜆 

     𝑍 = (𝑁(1− 𝑒2) + ℎ)𝑠𝑖𝑛𝜑 

where 𝑁 =
𝑎

√1−𝑒2𝑠𝑖𝑛2𝜑
, 𝑒2 =

𝑎2−𝑏2

𝑎2  , a is the semi-major axis, b is the semi-minor 

axis of the ellipsoid.  
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Figure 45 3D Cartesian coordinate system 

7.3.2 2D Cartesian coordinate system  

In geodesy, the 2D Cartesian coordinate system in the plane is often used. It 

consists of two perpendicular coordinate axes that intersect at a single point 

(O), called the origin. The horizontal axis is called the abscissa axis and is 

denoted by the symbol ‘X’. The vertical axis is called the ordinate axis and is 

denoted by the symbol ‘Y’. 

The position of a point in this system is defined by two perpendicular 

coordinates: the ordinate (y) and the abscissa (x), which are measured along 

their respective coordinate axes from the origin. 

7.4 Cartographic projection 
One of the primary tasks in geodesy and cartography is map production. To 

represent part of Earth on a flat paper map or computer screen, the curved 

surface must be mapped onto the 2D plane. Meaning that each point on the 

reference surface with geodetic coordinates (𝜑, 𝜆) must be transformed to a set 

of Cartesian coordinates (x, y). This mathematical transformation, known as 

cartographic projection, establishes the functional relationship between 
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points' coordinates on an ellipsoid and their corresponding coordinates in the 

plane. However, this process inevitably includes distortion since it is 

impossible to represent a curved surface on a map without distortion of 

angles, length, or area. Based on the type of distortion, projection can be 

classified as conform (equality of angles, i.e., shape preservation), equivalent 

(there is no deformation of area), and conditional (most often equidistant, i.e., 

there is no deformation of length). Cartographic projection allows for the 

computation and analysis of distortion, assessment of spatial distribution, and 

effective management of these factors in mapping. 

Historically, maps were created using geometric projections—tangible 

methods where one could literally imagine projecting the Earth’s curved 

surface onto a flat sheet or developable surfaces using a light source inside a 

globe. The map projection can be classified based on the: type of surface 

(cylindrical, conical, or azimuthal (Figure 46)), point of secancy (tangent or 

secant), and aspect (normal, transversal, or oblique). In normal projection, the 

main orientation of the projection surface (the rotation axis of a cone or 

cylinder, or normal on a plane and ellipsoid in tangent point for azimuthal 

projection) is parallel to the Earth's rotation axis. In transversal projection, the 

main orientation of the projection surface is perpendicular to the Earth's 

rotation axis, while in oblique projection, they form an angle between 0𝑜 and 

90𝑜. 

These projections maintained an intuitive, visual link between the round 

Earth and the flat map, preserving certain geometric properties such as 

distances, angles, or areas depending on the projection type. Geometric 

projections were widely used in the past because they could be physically 

constructed or measured, making them easy to understand and interpret. 

Modern cartography, however, relies on analytical (or analytic) projections, 

which are defined by mathematical formulas rather than physical 

constructions. Analytical projections do not necessarily have a direct 

geometric interpretation, but some can be seen as refinements of older 

geometric projections—for example, the Gauss-Krüger projection can be 

derived from a transverse Mercator cylindrical projection. The main 

advantage of analytical projections is their precision, computational 

efficiency, and flexibility, allowing maps to be tailored to preserve specific 

properties such as area, shape, or distances in a given region. As a result, 
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analytical projections have become the standard in today’s digital 

cartography and GIS, replacing the geometric methods of the past while 

building conceptually on their foundations. 

 

Figure 46 Developable surfaces used in cartographic projection (a) cylinder (cylindrical 

projection), (b) cone (conical projection), and (c) plane (azimuthal projection) 

7.4.1 Universal Transverse Mercator projection 

The Universal Transverse Mercator (UTM) projection is an analytical 

projection that can be considered a derivation of the transverse secant 

cylindrical conformal projection. It represents the modification of the Gauss-

Krüger projection. It allows for the representation of the entire Earth within a 

single coordinate system with limitations for polar areas (north of 84𝑜𝑁 and 

south of 80𝑜𝑆), for which the Universal Polar Stereographic projection should 

be used.  

UTM specifications: 

● The whole world is divided into 60 zones, each 6 degrees of longitude 

wide, starting at the International Date Line (180𝑜) and moving 

eastward. Zones are numbered from 1 to 60, with Zone 1 covering 

longitudes from 180𝑜 to 174𝑜𝑊(Figure 47). 

● It covers an area from  84𝑜 north latitude to 80𝑜 South latitude. Each 

zone is divided into subzones, each 8 degrees of latitude, starting at 

80𝑜𝑆 and moving northward. The subzones are marked by letters of 

the English alphabet from C to X. Letters I and O are omitted due to 

their similarity with 1 and 0. The first row covers the latitude from 

80𝑜𝑁  to 72𝑜𝑁. Letters A and B and W and Z are used for polar areas. 
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● A scale factor is 0.9996 on the central meridian of the zone, i.e., the 

scale error is 0.4 m/km. 

● Each zone has a coordinate system. The origin is defined at the central 

meridian and equator. The position of points is defined by coordinates 

easting and northing (E, N). The easting indicates distance in meters 

from the central meridian, while the Northing indicates the distance 

from the equator. 

● To avoid negative coordinates for positions located west of the central 

meridian, the false easting of 500,000 m is assigned. The equator has 

been given a Northing value of 0 m for positions north of the equator, 

and a false northing value of 10 000 000 m for positions south of the 

equator. 

UTM is one of the most important cartographic projections, which was 

primarily developed by the military in the 20th century. However, UTM is 

widely used in Earth observation, photogrammetry, cadastral, etc. UTM is 

particularly effective for large-scale mapping as it maintains relative accuracy 

and minimizes distortion within each zone. Due to relatively small 

deformation, precision georeferencing of images and precise navigation, 

UTM became very popular.  

One disadvantage of the UTM is that multiple coordinate systems must be 

used for large areas, which can lead to confusion.  

 

Figure 47 UTM zones of the World 
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7.4.2 EPSG code 

The EPSG code is a unique identifier assigned to a specific coordinate 

reference system, projection, or datum. EPSG stands for European Petroleum 

Survey Group and is a scientific organisation that maintains a geodetic 

parameter database. Each entity is assigned a unique EPSG code between 1024 

and 32767, ensuring consistency across different GIS applications. The EPSG 

code is very important since there are many different coordinate systems 

defined for different areas. By using the EPSG code, there is no need for 

manual specification of parameters, ensuring spatial accuracy, consistency, 

and efficiency in geospatial data processing. 

The EPSG code represents a different geodetic parameter set, which includes: 

Coordinate reference system, projection, datum, and units. Some of the 

frequently used codes are: 

● EPSG:4326 - WGS 84, a geographic coordinate system with latitude 

and longitude in degrees, 

● EPSG:3857 - Pseudo Mercator, used in web mapping applications 

(Google Maps, OpenStreetMap, Bing Maps, etc.) with coordinates in 

meters, 

● EPSG:32633 - UTM Zone 33N (WGS84), and 

● EPSG: 32733 - UTM Zone 33S (WGS84). 
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8 UNSUPERVISED LEARNING 

Four of the most common aims of remote sensing data analysis are clustering, 

dimension reduction, regression, and classification.  

8.1 Clustering 
Clusters are groups of objects that share common characteristics. Clustering 

is the process of dividing a dataset into such groups, so that the objects within 

each cluster are as similar as possible to one another, while being as different 

as possible from objects in other clusters. In practice, this means minimizing 

the distance between data points within the same cluster and maximizing the 

distance between points belonging to different clusters. The main challenge 

lies in defining what “similarity” means. Clustering is one of the most widely 

used techniques in unsupervised learning, where the goal is to discover 

hidden patterns in data that are not labeled in advance. 

All clustering techniques consist of two main steps: calculating the similarity 

measure between data samples (distance) and applying a clustering algorithm 

to group similar objects. The similarity measure can be defined as the distance 

between different data points, and it represents the strength of the 

relationship between two data samples. It can be defined in different ways 

depending on the particular application, and it is significant for clustering. 

The most commonly used distance measures are Minkowski distance, 

Euclidean distance, Manhattan distance, Chebyshev metrics etc. (Figure 48). 

Minkowski distance is a generalized similarity metric and can be used for 

both ordinal and nominal variables. It is given by  

𝐷(𝑋,𝑌) = (∑|𝑥𝑖 − 𝑦𝑖|
𝑝

𝑛

𝑖=1

)

1/𝑝

 

where X, Y are independent variable vectors of n length and parameter p 

controls the type of distance used. If 𝑝 = 1 the distance becomes the 

Manhattan distance, for 𝑝 = 2 the Euclidean distance and for 𝑝 = ∞ the 

Chebyshev distance. Euclidean distance measures the straight-line (shortest) 

distance between two points. Manhattan distance, also called city-block or 

taxicab distance, is the sum of the absolute differences across all dimensions. 
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Instead of taking the direct path, it measures distance as if movement is 

restricted to a grid, like walking along city blocks. Chebyshev distance, 

sometimes referred to as the maximum metric, is determined by the largest 

absolute difference along any single dimension. It can be visualized as the 

number of moves a king would need on a chessboard to travel from one 

square to another. Cosine similarity, instead, measures the cosine of the angle 

between two vectors, capturing their orientation while ignoring their 

magnitude. 

The clustering is an optimization problem. The aim is to find clusters that 

optimize an objective function that is subject to the same constraint. i.e., it is 

necessary to define an objective function that minimizes the distance within 

the cluster. However, pure minimization of distance is not a solution since the 

result can be that each data point represents a cluster. Therefore, constraints 

such as defining the number of clusters in advance or setting a minimum 

distance between clusters are often required. 

 

Figure 48 Similarity measures (a) Euclidean distance, (b) Manhattan distance, (c) Chebyshev 

distance, (d) Cosine similarity. 
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 Cluster algorithms can be classified into several categories, including: 

● Exclusive clustering: each observation belongs to only one definite 

cluster (such as K-means), 

● Overlapping clustering, which uses fuzzy sets to cluster data so that 

each point can belong to two or more clusters with different degrees 

of membership (for example, fuzzy c-means), 

● Hierarchical clustering, which has two versions: agglomerative 

clustering and divisive clustering. Agglomerative clustering works in 

a bottom-up approach. It is initialized by setting each sample as its 

own cluster and merging the closest (most similar) pairs in each step. 

Divisive clustering uses a top-down principle i.e. it starts from one 

cluster containing all data points. At each step, the clusters are 

successively split into smaller clusters according to some dissimilarity, 

● Density-based clusters, which are based on the assumption that the 

clusters are dense regions in space separated by sparse regions. It is 

used to find non-linear shape structures (for example, Density-Based 

Spatial Clustering of Applications with Noise (DBSCAN)), and 

● Probabilistic clustering: data points are clustered based on the 

likelihood that they belong to a particular distribution. The Gaussian 

Mixture Model is one of the most used methods. 

8.1.1 K-means 

K-means clustering is an interactive centroid-based process that groups 

unlabeled data points into K non-overlapping clusters by using mathematical 

distance measure. It is one of the most widely used unsupervised ML 

algorithms. The aim is to minimize the sum of distances between data points 

and their centroids. The k-means clustering algorithm consists of a few steps: 

1. Users specify a number of clusters K {𝑐1
0, . . . , 𝑐𝐾

0  } . 

2. Algorithms initialize K centroids so that they are placed as far as 

possible from each other. Calculate the centroids of clusters such as 

𝑢𝑗
𝑖 =

1

|𝑐𝑗
𝑖|
∑ 𝑥
𝑥𝜖𝑐𝑖

𝑗  where i represents the i-th iteration. 

3. Each data point is assigned to the closest centroid based on a distance 

metric (usually Euclidean distance) i.e., minimizing an objective 
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function. For the objective function, which represents the quality of 

clustering, the sum of error (SE) is often used 

  𝐽 = ∑ ∑ (𝑥 − 𝑢𝑖)
2

𝑥𝜖𝑐𝑖
𝐾
𝑖=1  where x represents the data sample and 𝑢𝑖 

represents the centroid to which x has been assigned 𝑢𝑖 =
1

𝑚𝑖
∑ 𝑥𝑥𝜖𝑐𝑖 . 

4. After points are assigned to clusters, the centroids are recalculated. 

The new centroid is the mean of all the data points within the cluster.  

5. This process is repeated iteratively until centroids no longer change or 

a predefined number of iterations is reached.  

K-means is an efficient, relatively fast, and scalable clustering algorithm. One 

of the biggest challenges is selecting the number of clusters K and sensitivity 

to randomly chosen centroids. If initial centroids are poorly selected, 

algorithms can get stuck in local optimums that are very different from the 

global optimum. Due to that, usually multiple runs are performed, and a 

solution that minimizes the similarity measure is chosen. Another key issue 

in clustering is selecting the optimal number of clusters. The appropriate 

number of clusters can be chosen based on prior knowledge about data or by 

using a heuristic approach. 

Example: Classify the Sentinel-2 image into 2 classes: forest and non-

forest. 

 
 

As seen in the previous chapters, a satellite image consists of multiple bands 

such as Red, Green, Blue, Near-infrared etc, and each pixel is represented as 

a vector of its spectral values across different bands. Application of the k-

means algorithm starts with defining the k number of clusters (in this case, the 

number of classes that we want to identify on the satellite image). The k 
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clusters' centroids are randomly initialized in spectral space. Each pixel is 

assigned to a cluster whose centroid is closed based on Euclidean distance in 

spectral space. After that, the centroids are updated by averaging the spectral 

values of all pixels in each cluster. The process is repeated until the centroids 

no longer change significantly. 

8.2 Hierarchical clustering 
Hierarchical clustering is implemented through a splitting (divisive) or 

merging (agglomerative) approach. It uses distance measures where the 

number of clusters is unknown. It shows the hierarchy of merging or division 

of clusters via a tree-based diagram called a dendrogram. In the dendrogram, 

each level represents one interaction of the algorithm. The agglomerative 

algorithm works by grouping data one by one based on the distance measure 

of all pairwise distances between the data points. For a given set of data points 

𝑥𝑖 where 𝑖 = 1, . . . , 𝑁  

● Start by assigning each point to a cluster 𝑐𝑖 = 𝑥𝑖. The number of 

clusters will be equal to the number of data points 𝐾 = {𝑐1, . . . , 𝑐𝑁}.  

● Find the pair of nearest clusters (𝑐𝑖, 𝑐𝑗) such that 𝐷(𝑐𝑖, 𝑐𝑗) ≤ 𝐷(𝑐𝑖
′, 𝑐𝑗

𝑖), 

∀𝑐𝑖
′ ≠ 𝑐𝑗

𝑖 𝜖 𝐾 and merge them into one cluster 𝑐𝑘. Delete 𝑐𝑖, 𝑐𝑗 from K 

and insert 𝑐𝑘 so that cluster number is equal to N-1. 

● Compute the similarity between the new clusters and each of the old 

clusters.  

● The process continues until all items are classed into a single class of 

size N. By using the dendrogram, the number of actually present 

clusters is determined. 

The distance can be defined in different ways, distinguishing: 

● Single linkage clustering (Figure 49 (a)) - The distance between one 

cluster and another cluster is equal to the shortest distance (shortest 

edge between two nodes in the graph) from any member of one cluster 

and any member of the other cluster. It provides good performance 

for long, elongated clusters and nonconvex shapes, but it is sensitive 

to noise. 

● Complete-linkage clustering (Figure 49 (b)) - The distance between 

one cluster and another cluster is equal to the greatest distance from 
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any member of the cluster to any member of another cluster. It is less 

sensitive to outliers, but it tends to create a compact and spherical-

shaped cluster, and  

● Average-linkage clustering (Figure 49 (c)) - The distance between one 

cluster and another cluster is equal to the average distance from any 

member of one cluster to any member of another cluster. 

The main advantage of hierarchical approaches, beyond their ease of 

implementation, is that they do not require prior knowledge of the number of 

clusters. However, they are highly sensitive to noise and outliers and struggle 

to handle clusters of different sizes or complex shapes. In addition, 

hierarchical methods are computationally expensive, which limits their 

scalability to large datasets. 

Another challenge of hierarchical clustering is the absence of an explicit global 

cost function, which makes it difficult to objectively determine the correct 

number of clusters from the dendrogram. In a dendrogram, the bottom nodes 

correspond to individual data points, while internal nodes represent clusters 

formed through successive merging. The vertical axis indicates similarity 

(also referred to as cluster height): shorter branches reflect higher similarity, 

whereas longer branches indicate lower similarity. Clusters are defined by 

drawing a horizontal cut across the dendrogram at a chosen similarity level, 

with all points connected below the cut belonging to the same cluster.  

 

Figure 49 Similarity measures in hierarchical clustering (a) single-linking, (b) complete-

linking, and (c) average-linking 

8.2.1 Density-Based Spatial Clustering of Application 

with Noise (DBSCAN) 

DBSCAN is a simple and effective density-based clustering algorithm that 

enables the identification of clusters with random shapes and sizes. The 

principle is that clusters correspond to regions with a high density of points, 
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whereas noise is associated with areas of low point density. The DBSCAN is 

defined by two parameters 𝜀 and minPts. 𝜀 represents the radius used to 

define neighbors, i.e. if the distance between two points is lower or equal to 𝜀, 

the points are considered as neighborhood points, while minPts defines the 

minimal number of points within the 𝜀 region.  

For a given data set X containing a total of 𝑖 = 1, . . . , 𝑁 objects, DBSCAN 

formulates a local density as 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑥𝑖) in the neighborhood of the i-th point 

as the total number of points in its neighborhood 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑥𝑖) = 𝑐𝑜𝑢𝑛𝑡(𝑁𝜀(𝑥𝑖)) 

where 𝑁𝜀(𝑥𝑖) represents estimation of local density, i.e. 𝑁𝜀(𝑥𝑖) =

(𝑥𝑗∀𝑗, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥𝑖, 𝑥𝑗) < 𝜀). Based on the number of points in a neighborhood, 

objects can be classified into three categories (Figure 50): 

● core points (𝑥𝑐𝑜𝑟𝑒) - if at least minPts are in the neighborhood of object 

𝑥𝑖, 

● border point (𝑥𝑏𝑜𝑟𝑑𝑒𝑟) - if the number object belongs to the 

neighborhood of 𝑥𝑐𝑜𝑟𝑒 and local density is less than minPts, and 

● noise point (𝑥𝑛𝑜𝑖𝑠𝑒) - if in the neighborhood of radius 𝜀, there are fewer 

than minPts of an object and none of them is the core point. 

The point 𝑥𝑖 is density reachable if it is in the neighborhood of 𝑥𝑐𝑜𝑟𝑒. The 

process begins by picking an unvisited point 𝑥𝑖. If a point 𝑥𝑖 is identified as a 

core point, it forms a new cluster (𝑥𝑐1) and all points that are density-reachable 

from 𝑥𝑐1 are added to the cluster.  The cluster is then expanded recursively by 

examining the neighbors of each neighbor. Points that are not assigned to any 

cluster after the process are considered noise. 

 

Figure 50 Graphical presentation of key definitions in DBSCAN (a) cluster, (b) core data 

point, (c) border data point, (d) density reachable object 
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One of the main advantages of DBSCAN is that it does not require 

specification of the number of clusters. Moreover, it is capable of efficiently 

handling noisy data, finding arbitrary-shaped and sized clusters, and it is 

mostly insensitive to point ordering within the database. However, it has 

some limitations.  

The algorithm is highly sensitive to the user-specified parameters global 

density threshold 𝜀. If 𝜀 parameter is too high, the algorithm may merge 

distinct clusters into a single cluster that should remain separate. On the other 

hand, low 𝜀 value results in misclassifying objects as noise if the density 

within the cluster is not satisfied. Therefore, accurate results can be obtained 

if the parameter is set to its optimal value. The chosen value plays a critical 

role in the clustering outcome. Another challenge is dealing with datasets 

with high-density variations since DBSCAN uses a fixed ε for all points. 𝜀 and 

minPts parameters are not flexible to handle large differences, resulting in 

missing sparse or merging dense clusters. Moreover, dealing with high 

dimensionality is limited since the data space grows exponentially with the 

increase of dimensionality (a phenomenon known as curse of dimensionality). 

As a result, most high-dimensional datasets are sparse, and since DBSCAN 

relies on a fixed density threshold, many points may be incorrectly labeled as 

noise. High dimensionality also increases computational cost and can degrade 

performance. To address these challenges, preprocessing steps such as 

dimensionality reduction can be applied before clustering. 

8.3 Dimensionality reduction 
The number of input features in a given dataset is known as dimensionality. 

Although having multiple features can help distinguish between different 

objects, handling high-dimensional datasets is challenging due to the curse of 

dimensionality. Redundant or irrelevant variables can degrade algorithm 

performance, and the computational cost increases significantly. 

Dimensionality reduction aims to reduce the number of features that are used 

to represent objects while preserving their essential structure and patterns. 

For example, in remote sensing, high-dimensional data such as hyperspectral 

images often contain redundant or irrelevant information that can lead to 

overfitting and require more memory and longer processing time. 

Dimensionality reduction helps mitigate these issues by reducing the number 
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of features to a manageable size while maintaining the integrity of the original 

data set.  

The reduction of feature number can be made by: 

● Feature selection - aims to identify the most relevant features while 

discarding the less significant. Common approaches include filtering, 

wrapper methods, and embedded, and 

● Feature extraction - aims to create new features by combining the 

existing ones, providing the dimensionality reduction without 

missing relevant information. 

Filtering methods use statistical techniques such as correlation or Chi-square 

tests to select optimal features. In terms of computation, they are very fast and 

computationally inexpensive. 

Wrapper methods are based on using classification techniques (SVM (see 

Section 12), decision tree (see Section 13). The model is trained by iteratively 

using a subset of features. The feature subset used for training can be created 

by using methods such as forward selection (Start with no features and 

iteratively keep adding one at a time) or backward elimination (it starts with 

all features and after each iteration it removes the least significant). It will 

continue until the addition/removal of new features does not improve model 

performance. This approach allows the creation of an optimal subset for 

model training, thus resulting in higher accuracy, but it is computationally 

intensive since it requires training and evaluating the model multiple times. 

Embedded methods combine feature selection into the training process. The 

model identifies the most relevant features based on the built-in mechanisms 

such as Lasso (L1 regularization) and Elastic net (L1 and L2 regularization) 

regularization or tree methods (see Section 9.14). Embedded methods are 

more computationally efficient than wrapped methods and more accurate 

than filter methods. 

An underfitted model occurs when it does not have enough parameters or 

complexity to capture the patterns in the underlying system, resulting in poor 

performance even on the training data. On another hand, including too many 

features can lead to overfitting (the model works well on training data, but it 

fails during testing). One common solution to reduce overfitting is 
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dimensionality reduction, which eliminates redundant or irrelevant features, 

helping the model focus on the most informative variables and improving its 

generalization ability. 

8.3.1 Principal component analysis 

Principal component analysis (PCA) is one of the most commonly used 

dimension reduction methods. It represents the process of identifying the 

principal components of samples, i.e. the variables that capture the most 

important patterns in the data. These components are linear combinations of 

the original features and are designed to explain the maximum possible 

variance in the dataset with fewer dimensions. Essentially, it transforms the 

data into a smaller set of features while preserving as much information as 

possible. Each component is independent and orthogonal, i.e., each principal 

component (PC) does not depend on another. PC is based on the analysis of 

the correlation or the covariance structure in the set of measurements X on m 

variables for n observations. If the covariance is positive, then the two 

variables increase or decrease together (correlated), while a negative 

covariance means that one variable increases when another decreases (the two 

variables are inversely correlated). 

Eigenvectors of the covariance matrix are computed to determine the PCs of 

the data. Each eigenvector represents a direction in the feature space along 

which the data varies the most, and the corresponding eigenvalue indicates 

the amount of variance captured along that direction. Let A be an m×m 

covariance matrix. If there exists a nonzero vector x in 𝑅𝑛 such that 𝐴𝑥 = 𝜆𝑥, 

the scalar 𝜆 is called the eigenvalue of A and x eigenvector of A.  𝜆  represents 

the amount of variance explained by the corresponding PC, while the vector 

x (mx1) represents  the direction of that component in the feature space.  We 

can rewrite 𝐴𝑥 = 𝜆𝑥 as (𝐴 − 𝜆𝐼𝑚)𝑥 = 0 where 𝐼𝑚 is the 𝑚𝑥𝑚 identity matrix. 

For a nonzero solution (𝑥 ≠ 0) this homogeneous system must have no 

unique solution for 𝑥 i.e., 𝑑𝑒𝑡(𝐴 − 𝜆𝐼𝑚) = 0. The determinant gives 

polynomial equation of degree 𝑚 in 𝜆. Solving this polynomial gives all the 

eigenvalues 𝜆1, . . . , 𝜆𝑚 of A. The determined 𝜆 values are substituted back into 

the equation (𝐴 − 𝜆𝑖𝐼)𝑥𝑖 = 0 to calculate the corresponding eigenvectors x. 

The eigenvector with the largest eigenvalue 𝜆1 is the direction of greatest 
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variation (also known as first PC), while 𝑚𝑡ℎ larges 𝜆𝑚 is 𝑚𝑡ℎ PC (𝜆1 > 𝜆2 >

𝜆3. ..) (Figure 51).  

Let's consider a image with two attributes NDVI and NDWI each with 3 

samples.  

,  

These four attributes can be combined into matrix of attributes 𝑆 

 
From the matrix, we can compute a covariance matrix A 

 
 

 
𝜆1 = 3, and 𝜆2 = 1 

To find 𝑥, we substitute the two eigenvalues into matrix 

  

For 𝜆1 = 3, we will have 

 i.e.  

𝑥1 + 𝑥2 = 0 ⇒ 𝑥1 = −𝑥2, therefor all vectors [1  − 1]𝑇 are solutions. 

For 𝜆2 = 1, we will have 

 i.e.  

𝑥1 − 𝑥2 = 0 ⇒ 𝑥1 = 𝑥2, therefor all vectors [1  1]𝑇 are solutions. 

The matrix of eigenvectors can be explained as a rigid rotation in a high-

dimensional space in which the covariance matrix is diagonal. When this 

transformation is applied to the original data, it is projected onto a principal 
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direction (the axis corresponding to the highest variance). The projection of 

original data onto each eigenvector gives an idea about the importance of the 

feature to the object. The larger values in the corresponding component of the 

principal vector mean that the feature is important in explaining the 

variability of the data. 

 

Figure 51 Graphical representation of a PCA transformation in 2D. 

Principal components are new variables formed as linear combinations of the 

initial variables. Those combinations are done in such a way that PCs are 

uncorrelated (i.e., orthogonal to each other). There are as many PCs as 

variables in the data, but they are designed in such a way that most of the 

information within the initial variables is compressed into the first 

components. The first PC corresponds to the direction of maximum variance 

in the dataset, while the second PC is orthogonal to the first and captures the 

maximum remaining variance, and so on. To reduce dimensionality, the PCs 

are ranked in order of decreasing eigenvalue, and only enough components 

are retained to preserve a desired percentage of the total variance—commonly 

around 85–95%.  In this way, dimensionality is reduced without losing much 

information since components with low information are discarded. However, 

a key limitation is that PCs are often less interpretable, as they are 

combinations of original variables and do not have a direct, intuitive meaning. 
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Principal component analysis (PCA) is based on analyzing the variance in the 

data and does not require any tuning parameters. It is non-iterative and does 

not suffer from issues related to local optima. Additionally, directions with 

small variance typically capture mostly noise, so retaining only the top 

principal components can effectively reduce noise in the data. However, PCA 

is limited to linear projections and therefore may not perform well when the 

underlying structure of the data is nonlinear. 
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9 OPTIMIZATION  

Imagine standing on a hill, trying to figure out which direction to throw the 

ball to get downhill the fastest. To determine that direction, we need to know 

how steep the ground is and in which direction it goes down. The slope of a 

line is the rate of the vertical change (change in the y-coordinate (rise)) for the 

corresponding change in the x coordinates (run) for points on the line. This is 

the basic idea of gradient-based optimization. In reality, the slope of the 

terrain is not constant, and it changes from point to point. Due to that, for 

nonlinear functions, the rise over run presents the average rate of change 

between points. The main idea is to measure the slope between two points 

(f(x) and f(x+h)) that are close together to find the rate and direction of the 

change (Figure 52), i.e. 

𝑠𝑙𝑜𝑝𝑒 =
𝑟𝑎𝑖𝑠𝑒

𝑟𝑢𝑛
=
𝛥𝑦

𝛥𝑥
=
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

As two points get closer (i.e. ℎ →0), the limit is the derivative at point x, which 

represents the exact slope of the curve at the point.  

 

Figure 52 Run-over-rise (a) constant slope (b) slope constantly changes (non-linear function) 

Let us consider the terrain slope (orange curve in Figure 52) represented by 

the function 𝑓(𝑥) = 𝑥2 and suppose we want to determine the slope at the 

point x=1. The first derivative is equal to 𝑓′(𝑥) = 2𝑥 which represents the 

equation of the tangent and the slope at the point x is equal to 2. Meaning that 
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the function increases at a rate of 2 units (rise) for every 1 unit increase in x 

(run). 

Let f be a predictor that maps an input x to an output y. Most machine learning 

algorithms involve optimization by minimizing or maximizing a function of 

𝑓(𝑥). The 𝑓(𝑥) is referred to as the objective function or criterion. The objective 

function is minimised through the loss function, also known as the cost 

function. The loss function 𝐿(𝑓(𝑥, 𝑤), 𝑦) measures the difference between the 

prediction (obtained by applying the model with parameters w to make a 

prediction on x) and the true value y. It measures the model's performance by 

calculating the training error and reflects how far the prediction is from the 

actual outcome y. The ultimate goal is to minimize the loss function during 

the training phase to optimize the model parameters, i.e. 

min
𝑤∈𝛺

∑𝐿𝑖(𝑓(𝑥𝑖 , 𝑤𝑖) 𝑦𝑖  )

𝑛

𝑖=1

  

where 𝑥𝑖 are the input data,  𝑦𝑖 are the output data, and 𝑤𝑖 are the model 

parameters that need to be optimized. The optimizer determines how the 

network updates its parameters based on the loss function. To solve the 

𝑚𝑖𝑛𝑤𝐿(𝑓(𝑥, 𝑤), 𝑦) , a gradient descent algorithm is frequently used. 

9.1  Gradient 
Let 𝑓:𝛺 ⊂ 𝑅𝑛 → 𝑅𝑚 be a function that maps n dimensional vectors to m 

dimensional space, where 𝛺 is a subset of an Euclidean space. Formally, if 

there exists a unique linear map 𝐷𝑓(𝑥0): 𝑅
𝑛 → 𝑅𝑚 such that  

𝑙𝑖𝑚
||ℎ||→0

||𝑓(𝑥0+ℎ)−𝑓(𝑥0)−𝐷𝑓(𝑥0)[ℎ]||

||ℎ||
= 0 , 

the function f is differentiable at 𝑥0 and 𝐷𝑓(𝑥0) is called the derivative of f at 

𝑥0. In the case of a univariate function (m=n=1), the derivative 𝐷𝑓(𝑥0) = 𝑓
′(𝑥0) 

corresponds to the slope of the tangent line at the point  𝑥0. Moreover, the best 

linear approximation of f around 𝑥0 is defined as: 

𝑔(𝑥) = 𝑓(𝑥0) + 𝑓
′(𝑥0) ⋅ (𝑥 − 𝑥0) 

and it geometrically corresponds to the tangent line at the graph of f at the 

point (𝑥0, 𝑓(𝑥0)). Similarly, in the case of a multivariate function (for any 
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𝑚, 𝑛 ≥ 1), the derivative 𝐷𝑓(𝑥0) defines the tangent plane of f at  (𝑥0, 𝑓(𝑥0)) ∈

𝑅𝑚+𝑛 which is defined by the equation 

𝑔(𝑥) = 𝑓(𝑥0) + 𝐷𝑓(𝑥0) ⋅ (𝑥 − 𝑥0). 

This represents the best linear approximation of f around the point  𝑥0 , i.e., it 

provides the slope of f(x) at that point. 

If 𝐷𝑓(𝑥) exists for all 𝑥 ∈ 𝛺 , we say that it is differentiable. If addition, if  𝐷𝑓(𝑥) 

is continuous in x, the f is continuously differentiable.  

Since 𝐷𝑓(𝑥0) is the best linear map that approximates f, it can be represented 

as a matrix multiplication  

𝐷𝑓(𝑥0) = 𝐽𝑓(𝑥0) ⋅ ℎ 

where 𝐽𝑓(𝑥0) is known as the Jacobian of f.  

If 𝑓(𝑥) = 𝑓1(𝑥1, . . . , 𝑥𝑛), . . . , 𝑓𝑚(𝑥1, . . . , 𝑥𝑛) is the vector-valued function, then its 

Jacobian is 

[𝐷𝑓(𝑥0)]𝑖,𝑗 =
𝜕𝑓𝑖

𝜕𝑥𝑗
(𝑥0)  i.e., following mxn matrix 

𝐷𝑓(𝑥0) =

[
 
 
 
 
𝜕𝑓1
𝜕𝑥1

(𝑥0) …
𝜕𝑓1
𝜕𝑥𝑛

(𝑥0)

⋮ ⋱ ⋮
𝜕𝑓𝑚
𝜕𝑥1

(𝑥0) …
𝜕𝑓𝑚
𝜕𝑥𝑛

(𝑥0)]
 
 
 
 

 

If f is real-valued, the Jacobian 𝐷𝑓(𝑥0) reduces to a row vector: 

𝐷𝑓(𝑥0) = [
𝜕𝑓

𝜕𝑥1
(𝑥0)  . . .  

𝜕𝑓

𝜕𝑥𝑛
(𝑥0) ] . 

The transpose vector consisting of partial deviation with respect of each input 

is called the gradient of f at 𝑥0and it is often denoted as𝛁𝑓(𝑥0) i.e. 

𝐷𝑓(𝑥0)(ℎ) = 𝛁𝑓(𝑥0)  ⋅ ℎ 

 The gradient has several important properties that are relevant to 

optimization: 

● The direction of the gradient 𝛁𝑓(𝑥0) at a particular point 𝑥0 indicates 

the direction in which f increases the most locally around 𝑥0 (steepest 

ascent direction). Consequently, the opposite direction, −𝛁𝑓(𝑥0), 
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points toward the direction in which f decreases the most (steepest 

descending direction), 

● The magnitude of the gradient vector represents the rate of the fastest 

change (i.e. how steep the slope is). If the slope is negative, it means 

that a small change in x results in a decrease in f(x). Similarly, if the 

magnitude is positive, a small change in x results in an increase of f(x), 

and  

● At any point, the gradient vector 𝛁𝑓(𝑥) is orthogonal to the level set 

of f at 𝑥. In 2D, these level sets correspond to contour lines. 

Consequently, moving along the contour line does not change f, 

whereas moving perpendicular to it results in a maximum or 

minimum change in f.  

9.1.1 Basic geometrical properties of functions 

Convexity: The zero-order definition states that a function 𝑓 is convex if its 

domain 𝛺 is a convex set, i.e., if for every 𝑥, 𝑥0 ∈ 𝑅 and 0 ≤ 𝜆 ≤ 1 the 

inequation 

𝑓(𝜆𝑥 + (1 − 𝜆)𝑥0) ≤ 𝜆𝑓(𝑥) + (1− 𝜆)𝑓(𝑥0). 

Let consider 𝑓(𝑥) = 𝑥2 and pick two points 𝑥 = 1, 𝑥0 = 3, and 𝜆 = 0.5. 
𝑓(0.5 ∙ 1 + 0.5 ∙ 3) ≤ 0.5 ∙ 𝑓(1) + 0.5 ∙ 𝑓(3) 

𝑓(2) ≤ 0.5 ∙ 1 + 0.5 ∙ 9 i.e. since 4≤5, the zero-order condition convexity 

holds. 
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Geometrically this mean that for each pair of points (𝑥, 𝑓(𝑥)) and 

(𝑥0, 𝑓(𝑥0)) that lying of the graph of 𝑓, the connecting line segment remains 

above the graph. 

In addition, it is possible to define convexity in terms of first and second-order 

conditions. Let function 𝑓: 𝑅𝑛 → 𝑅 be differentiable. The f is convex if and only 

if for every 𝑥, 𝑥0  ∈  𝑅
𝑛the inequality  𝑓(𝑥0) ≥ 𝑓(𝑥) + 𝛁𝑓(𝑥)

𝑇(𝑥0 − 𝑥) is 

satisfied. 

A twice differentiable function 𝑓: 𝑅𝑛 → 𝑅 is convex if the second derivative is 

always greater than 0. Let f be a function and 𝑥0 is a point in the domain of f.   

If 
𝑑2𝑓

𝑑𝑥0
2 > 0 the f is convex at 𝑥0 , if 

𝑑2𝑓

𝑑𝑥0
2 < 0 then f is concave T 𝑥0, if 

𝑑2𝑓

𝑑𝑥0
2 = 0, then 

𝑥0 is a candidate for a local maximum, a local minimum of an infection point 

(a point in which f changes from being convex to concave, also known as a 

saddle point).  

For example, the function 𝑓(𝑥) = 𝑥2 is convex since 𝑓′ = 2𝑥 is a 

monotonically increasing function and 𝑓′′ = 2 > 0.  

There are two important properties of the convex function:  

● Any local minimum is also a global minimum. Due to that, the local 

search algorithms are effective for optimization, and 

● For each pair of points (x, f(x)) and (𝑥0, f(𝑥0)) lying on the f, the 

connecting line segment must be above f everywhere. If a function is 

differentiable, this tangent is the linear function, i.e.   

𝑙(𝑥) = 𝑓(𝑥0) + 〈𝛁𝑓(𝑥0), 𝑥 − 𝑥0〉.   

Convex functions are desirable because they are easier to optimize, as any 

local minimum of a convex function is also a global minimum. For example, 

the squared error is a convex loss function. Many loss functions that are used 

in ML involve norms, and all norms are convex.  

Strong convexity: A function f is 𝛼-strongly convex for 𝛼 > 0 if for all 𝑥, 𝑥0  ∈

 𝛺  

𝑓(𝑥0) ≥ 𝑓(𝑥) + 𝛁𝑓(𝑥)
𝑇(𝑥0 − 𝑥) +

𝛼

2
||𝑥0 − 𝑥||

2
. 
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A strong convex function always lies above a quadratic approximation 

(parabola) that passes through the point (𝑥, 𝑓(𝑥)). If a function is strongly 

convex, then it has one global minimum. 

Lipschitzness: A differentiable function f is L-Lipschitz if the norm of the 

gradient is bounded by L, i.e. 

 ||𝛁𝑓|| ≤ 𝐿, implying |𝑓(𝑥0) − [𝑓(𝑥) + 𝛁𝑓(𝑥)
𝑇(𝑥0 − 𝑥)]| ≤

𝐿

2
||𝑥0 − 𝑥||

2
 for all 

𝑥, 𝑥0  ∈  𝛺.  

The function that satisfies a Lipschitz condition on 𝛺 is uniformly continuous 

on 𝛺. Geometrically, the graph of L-Lipschitz stays within a cone with slope 

±𝐿, i.e., if for all x the function never rises above or falls below the boundaries 

defined by this slope. This limits how quickly the function output can change: 

a smaller L means a slower change.  

Smoothness: A differentiable function 𝑓:𝛺 → 𝑅 is 𝛽-smooth if its gradient is 

𝛽-Lipschitz continuous, i.e. 

||∇𝑓(𝑥) − 𝛁𝑓(𝑦)||
2
≤ 𝛽||𝑥 − 𝑦||

2
 ∀𝑥, 𝑦 ∈  𝛺 

The 𝛽-smoothes ensures that the gradient cannot change too quickly and must 

be bounded by 𝛽 value. The smoothness implies a quadratic upper bound on 

the function, i.e., in a fixed point 𝑥0 the convex function lies above its tangent 

line, and the smooth convex function always lies below the parabola which 

passes through the point (𝑥0,f(𝑥0)) (Figure 53). 

The function 𝑓(𝑥) = 𝑥2 is 𝐿=2 smooth since 𝑓′ = 2𝑥. For the point 𝑥0 = 1 the 

tangent part (lower bound) is  

𝑓(1) + 𝑓′(𝑥 − 1) = 1 + 2(𝑥 − 1) = 2𝑥 − 1, while the upper band is 

𝑓(1) + 𝛁𝑓(1)(𝑥 − 1) +
𝐿

2
(𝑥 − 1)2 = 1 + 2(𝑥 − 1) + (𝑥 − 1)2 = 𝑥2 
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Figure 53 Convexity and smoothness of f(x)=x2. 

For a twice differentiable function, an equivalent condition for 𝛽-smoothness 

is 

0 ⪯ 𝛁2𝑓(𝑥) ⪯ 𝛽𝐼𝑑 

where 𝐼𝑑 is the identity matrix, the lower bound comes from convexity, and 

the upper bound comes from 𝛽-smoothness of function. Moreover if 𝑥∗ is the 

minimum point of a 𝛽-smooth function f, then for all 𝑥0  ∈  𝛺 ||𝛁𝑓(𝑥0)||2 ≤

𝛽||𝑥0 − 𝑥||2 , i.e., if point 𝑥0  is close to the 𝑥∗ then the gradient of 𝑥0  must also 

be small. This means that any algorithm following the gradient of the function 

should slow down as it approaches the minimum. Due to that, the smoothness 

of the function determines the simplicity and efficiency of minimization by 

using gradient descent. 

9.1.2 Chain rule 

The chain rule is essential in optimization, especially when working with deep 

learning and composite functions. The chain rule is often written as 
𝑑𝑓

𝑑𝑥0
=

𝑑𝑓

𝑑𝑔

𝑑𝑔

𝑑𝑥0
 where f is a function of g, which is itself a function of 𝑥0. It enables the 
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correct calculation of the gradient when a function is made up of layers of 

other functions.  

For example, suppose you want to monitor changes in the water level 

during the day. The water level 𝑊𝑙 depends on the amount of rainfall r, 

and they are related through a function 𝑊𝑙 = 𝑓(𝑟). The first derivative 
𝑑𝑊𝑙

𝑑𝑟
  

can be used to determine the rate of change of water level with respect to 

the rainfall. However, the rainfall changes over time t, and it can be 

modeled as a function of time, i.e., 𝑟 = 𝑔(𝑡). The derivative 
𝑑𝑟

𝑑𝑡
 represents 

the amount of rainfall accumulated over time. The change of the water 

level during the day is represented as a composite function 𝑊𝑙 = 𝑓(𝑔(𝑡)).  

To determine the derivation of the function, it is necessary to determine the 

derivation of the composite 𝑓 ∘ 𝑔. If f and g are functions such that g is 

differentiable at 𝑥0 and f is differentiable at 𝑔(𝑥0), then the composite  𝑓 ∘ 𝑔 is 

differentiable at 𝑥0 and  

𝐷(𝑓 ∘ 𝑔)(𝑥0) = 𝐷(𝑓)(𝑔(𝑥0)) ∘ 𝐷𝑔(𝑥0). 

If 𝐷(𝑓)(𝑔(𝑥0)) and 𝐷𝑔(𝑥0) are linear, their composition is also linear. The 

chain rule for invariant functions has a direct analogue in multivariate 

functions, and it can be written in the form of Jacobians as  

𝐷(𝑓 ∘ 𝑔)(𝑥0) = (𝐷𝑓)(𝑔(𝑥0))𝐷𝑔(𝑥0). 

The chain rule can also be directly applied to the inverse of a function f. Let f 

and 𝑓−1 be differentiable. Then for any 𝑥 ∈  𝑟𝑎𝑛𝑔𝑒(𝑓)  

𝐷𝑓−1(𝑥0) = (𝐷𝑓)
−1 (𝑓−1(𝑥0)) 

9.1.3 Extreme points  

Finding the extreme points of a function is of exceptional importance.  The 

minimum of the function f can be found between points that satisfy 𝑓′(𝑥) = 0 

(also known as stationary points). Assume that the function 𝑓: 𝛺 ⊆ 𝑅𝑛 → 𝑅, is 

convex and differentiable and defined on a subset 𝛺 of 𝑅𝑛. The 𝑥0 ∈  𝛺 is a 

local minimum of f if 𝑓(𝑥0) ≤ 𝑓(𝑥) for all x within a small neighborhood of 𝑥0. 

The 𝑥∗ is a global minimum of f if 𝑓(𝑥∗) ≤ 𝑓(𝑥) for all 𝑥 ∈  𝛺.  
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In optimization problems, the aim is to reach the global minima. However, in 

many cases, the problem can be so challenging that finding a local minimum 

is considered a successful outcome. 

If 𝑥0 ∈  𝑖𝑛𝑡(𝛺) is a local minimum, then 𝛁𝑓(𝑥0) = 0; therefore local/global 

minimum belong to the set of stationary points defined as {𝑥 ∈  𝛺 | 𝛁𝑓(𝑥) =

0}. 

As already mentioned, the derivative is the best linear approximation of a 

function. The first-order Taylor expansion can be used to formulate this 

concept rigorously as 

𝑓(𝑥) = 𝑓(𝑥0) + (𝛁𝑓(𝑥0), 𝑥 − 𝑥0) + 𝑜||𝑥 − 𝑥0||, i.e., the approximation error 

satisfies 𝑙𝑖𝑚
𝑥→𝑥0

𝜉(𝑥−𝑥0)

||𝑥−𝑥0||
= 0. The little-o notion 𝑜||𝑥 − 𝑥0|| is used to express that 

one function grows much more slowly than another. The first-order Taylor 

expansion is a linear function that approximates the function around a certain 

point. In 1D space, this is tangent to the curve, while in multidimensional 

space, it is a hyperplane that is tangent to the hypersurface at that point. 

However, to find local minima in multidimensional space, simply finding a 

point where the gradient is zero is not enough, and the Hessian matrix is 

needed. 

The Hessian matrix encodes how the gradient changes with respect to each 

input variable, i.e., it describes the curvature of the loss landscape function in 

every direction.  It is used to build the quadratic approximation of the 

function, enabling methods to find critical points efficiently, such as saddle 

points or flat regions.  

In order for a critical point 𝑥0 to be a local minima in multiple dimensions, the 

matrix of second derivatives 𝐷2𝑓(𝑥0) = 𝛁
2𝑓(𝑥0) (i.e., Hessian matrix) of the 

objective function f at the point 𝑥0 must be positive definite, that is all its 

eigenvalues are positive (Figure 54 (a)). A local maxima has the largest value 

in the neighborhood and a negative definite Hessian (Figure 54 (b)), If the 

Hessian is indefinite (eigenvalues of mixed sign) 𝑥0 is a saddle point (Figure 

54(c)), while the singular Hessian (zero determinant) indicates that the test is 

inconclusive. 

One of the most important features of convex function is that any local 

minima guarantees a global minimum. Although some convex functions have 
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flat regions rather than a single point, any point within that region is a suitable 

solution. On the other hand, nonconvex functions (which are very often in 

neural networks) have many local minima. The local minima that have a 

similar value of the cost function are not problematic for optimization. 

However, if local minima with a high cost in comparison with global minima 

are common, that can represent a challenge for gradient-based methods. 

Moreover, in high-dimensional space, saddle points are more common and 

more likely to have a higher cost than local minima. The large flat regions 

(plateau) in the loss landscape represent a major challenge for optimization 

since the gradient and the Hessian are all zero and this slows or stalls the 

optimization. 

 

Figure 54 (a) Hessian is positive defined, (b) negative defined, and (c) Hessian is indefinite. 

(d) The critical point is (0, 0) since ⛛f(x)=0. Since the Hessian is indefinite, the critical point 

represents the saddle point 
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9.2 Gradient Descent 
In Machine Learning, we aim to find the analytically set of parameters that 

minimize the loss function. In general, function minimization is performed 

under the structural assumptions that the function is convex and smooth. 

The gradient descent algorithm iteratively approaches the point at which the 

function f achieves its minimum by taking the steps in the direction of steepest 

descent. The gradient at the current position is scaled by a learning rate and 

subtracted from the value of the current position (makes a step). The gradient 

is subtracted because we want to minimize a function. This process can be 

written as: 

𝑤𝑛+1 = 𝑤𝑛 − 𝜂𝛁𝑓(𝑤𝑛) 

where 𝜂 is the learning rate that scales the gradient and thus controls the step 

size.  

The main steps of the gradient descent method are: 

1. Initialize weights randomly 𝑤0, 

2. Determine a descent direction by computing the gradient at this point, 

3. Along that direction, make a scaled step in the opposite direction of 

the gradient and update the weights with the objective to minimize 

the losses (Figure 55),  

4. Repeat steps 2 and 3 until either the maximum number of iterations is 

reached or the algorithm converges to a local minimum within a 

specified tolerance (threshold). 

For most functions, the gradient will not reach exactly 0 in a reasonable 

amount of time. Therefore, stopping criteria need to be defined. Ideally, the 

algorithm stops once the gradient is sufficiently close to 0 i.e. if the norm of 

the gradient is below some predefined threshold ||𝛁𝐿(𝑤)|| < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. 

Gradient descent involves 5 parameters: the starting point (is often an initial 

guess or randomly initialised), the gradient function (computes the gradient 

of the specified original loss function), the learning rate (which scales the step 

size), the maximum number of iterations and the tolerance (which 

conditionally stops the algorithm when convergence is achieved). 
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Figure 55 Gradient decent for function f(x)=x2 with learning rate η=0.4. The global minimum 

is at x=0. Since 𝑓′(𝑥) = 0 the gradient stops here. For x<0 the 𝑓′(𝑥) < 0 so we can decrease f by 

moving to the right. For  x>0 the 𝑓′(𝑥) > 0 so we can decrease f by moving to the left. The 

starting point is set to 𝑥0 = 2, the slope of the tangent line at that point is 4. The new point 

will have coordinates 𝑥1 = 2 − 0.4 ⋅ 2 ⋅ 2 = 2 − 1.6 = 0.4 and 𝑦1 = 0.4
2 = 0.16. 

9.2.1 Choosing the step size 

The learning rate determines the step size taken in the direction of the 

gradient.  There are several approaches that can be used to determine the step 

size (learning rate) based on characteristics of the loss function: fixed step size, 

exact line search, and backtracking line search. In the first, the fixed learning 

rate is selected. However, the learning rate has a strong influence on the 

algorithm performance since: 

● the smaller the learning rate, the slower the gradient descent 

converges. If the step size is small compared to the local curvature, the 

gradient direction 𝑤𝑛+1 is very similar to or the same as 𝑤𝑛. As a result, 

the algorithm takes more steps or may reach the maximum number of 

iterations before arriving at the optimal point (Figure 56 (a)). In 

addition, it could get stuck in the local minimum. 
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● If the learning rate is too big, the algorithm may not converge to the 

optimal point (jumping around) or even diverge completely to 

random locations on the curve. 

 

Figure 56 the gradient descent steps for minimizing the function f(x)=x2 with different 

learning rates. 

The best step size depends on the local curvature of the function. In gradient 

descent, the ideal learning rate is inversely proportional to the curvature. If 

curvature is high, the small step size should be used, while for wide curvature, 

the larger learning rate is preferable. Consequently, the optimal learning rate 

to ensure convergence is defined as  

𝜂 <
1

𝐿
 

where 𝐿 = 𝑚𝑎𝑥𝑓"(𝑥) is the Lipschitz constant.  
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For example, if the function is quadratic 𝑓(𝑥) = 𝑥2, the second derivative 

is constant across all x ( 𝑓" = 2) so the curvature is also constant. The safe 

learning rate in that case would be 𝜂 < 0.5. Figure 5 shows the trajectories 

and number of interactions for different learning rates and a given 

threshold (||𝛁𝑓(𝑤)|| < 10
−6

). 

In higher dimensions, things are more complicated since curvature is given 

by the Hessian matrix. The optimal learning rate is inversely proportional to 

the largest eigenvalue of the Hessian: 

𝜂 =
1

𝜆𝑚𝑎𝑥
 

where 𝜆𝑚𝑎𝑥 corresponds to the steepest curvature direction. Any smaller or 

slightly larger value will yield slower convergence (Figure), while the 

learning rate two times larger than optimal will cause divergence. However, 

computing and storing Hessian matrices in large learning models come with 

extreme computational costs. Fortunately, the Hessian-vector product can be 

approximated without computing the full matrix by using finite differences. 

The fixed-size method is commonly used for low-dimensional problems. 

In exact line-search, the best learning rate is resolved as a 1D optimization 

problem. Given a starting point and the direction of the gradient, the learning 

rate is chosen to minimize the function in that direction, i.e. 

𝜂𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜂≥0𝑓 (𝑥
𝑘 − 𝜂𝛁𝑓(𝑥𝑘)). 

Solving this equation exactly is very time-consuming since minimization 

problems need to be solved in each step. The main advantage of this method 

is that information about the function's smoothness is not needed in advance. 

On the other hand, an exact line search is not used very often since it is more 

computationally demanding and not much more efficient compared with 

backtracking. 

Backtracking line search is based on the idea of starting with a large step size 

and reducing it approximately. It starts by choosing two parameters 0 < 𝛽 <

1 and 𝛼 ≤ 1. At iteration k, starting from 𝜂 = 1,  while  

𝑓 (𝑥𝑘 − 𝜂⛛𝑓(𝑥𝑘)) > 𝑓(𝑥𝑘) − 𝛼𝜂 ||𝑓(𝑥𝑘)||
2

2
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i.e., the Armijo condition is not satisfied, shrink the step size by setting 𝜂 = 𝛽𝜂 

and repeat the step. Otherwise, perform the Gradient Descent update. This 

method is simple and is frequently used in practice. 

9.2.2 Convergence of gradient descent  

As already mentioned, gradient descent begins with a random initialization 

of parameters, followed by an an iterative optimization process aimed to 

trying to find the stationary point of the objective function. The convergence 

depends on the selected learning rate and the structural properties of function 

itself.  While establishing convergence is fundamental, the convergence rate 

is equally critical. Convergence rate quantifies how fast the algorithm reach a 

specific error tolerance and it is usually measured by the number of iterations 

needed to converge. In practice, guaranteeing efficient function minimization 

is only possible by making certain assumptions about convexity and 

smoothness. 

Let 𝑓: 𝑅𝑛 → 𝑅 be differentiable, convex, and 𝛽-smooth function with 𝛽>0, i.e.,  

||𝛁𝑓(𝑥) − 𝛁𝑓(𝑦)|| ≤ 𝛽||𝑥 − 𝑦||. 

Then, Gradient descent with fixed step size 𝜂 = 1/𝛽 satisfies 

𝑓(𝑥𝑘) − 𝑓(𝑥∗) ≤
||𝑥0 − 𝑥∗||

2

2

2𝜂𝑘
 

where 𝑓(𝑥∗) is the optimal value. The gradient descent is guaranteed to 

converge and it has a convergence rate of 𝑂(1/𝑘), where 𝑘 is the number of 

iterations.  

Reaching the global minimum may require too many iterations, so in practice 

we commonly aim to reach 𝜖-suboptimal point 𝑓(𝑥𝑘) − 𝑓(𝑥∗) ≤ 𝜖. The value 

of 𝜖 represent the tolerance (how close we want to be to global minimum 

𝑓(𝑥∗)), and it depends on the specific application. To reach 𝜖-suboptimal point 

we need  𝑂(1/𝜖) iterations. The very small 𝜖  will lead to a large number of 

iterations.  For example, if 𝜖 = 10−6 the 106 iteration is needed. 

If function f is differentiable, possibly non-convex and  𝛽-smooth, finding the 

global minimum under this assumption is not guaranteed. Under this 
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assumption, the aim is to reach 𝜖-stationary point x i.e. we want to find 𝑥∗ ∈ 𝑅 

such that 

||𝛁𝑓(𝑥∗)||
2
≤ 𝜖    where 𝜖 > 0 

Gradient descent with fixed step size 𝜂 = 1/𝛽 satisfies  

𝑚𝑖𝑛𝑡=0,..,𝑘||𝑓(𝑥
𝑡)||

2
≤ √

2𝛽

𝜂
(𝑓(𝑥0) − 𝑓(𝑥∗)). 

The gradient descent rate for the optimization of a nonconvex function is 

𝑂(1/√𝑘) or 𝑂(1/𝜖2). For example, if 𝜖 = 10−6, then the number of iterations is 

1012. This is the worst-case scenario, and convergence in practice is faster. 

However, there is no deterministic algorithm that can guarantee better 

performance. 

Additionally, if function f is differentiable, 𝛽-smooth and 𝛼-strong convex, 

then the gradient descent with fixed step size 𝜂 = 2/(𝛼 + 𝛽) or with 

backtracking line search satisfies  

𝑓(𝑥𝑘) − 𝑓(𝑥∗) ≤ 𝛾𝑘 ||𝑥0 − 𝑥∗||
2

2
 where 𝛾𝑘 = (1−

𝛼

𝛽
)
𝑘
⋅
𝛽

2
 0 < 𝛾 < 1. 

The ratio 𝜅 =
𝛽

𝛼
 represents the condition number of f. The condition number 

can be more precisely interpreted by using the Hessian matrix, i.e.,  𝜅 =
𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛
 

where 𝜆𝑚𝑎𝑥 is the largest and 𝜆𝑚𝑖𝑛 is the smallest eigenvalue of the Hessian. 

The smaller the condition number is, the faster the convergence. 

Consequently, the larger 𝛽 the slower the convergence. Geometrically, a high 

condition number produces elongated contour lines, a situation known as ill-

conditioning. As the contours become more elongated, gradient descent 

deviates more from the optimal direction toward the minimum. (Figure 57). 

As a result, gradient descent tends to bounce back and forth along directions 

of high curvature, producing a zig-zag pattern and slower convergence. For 

small condition numbers, the contours are well-rounded, and gradient 

descent moves more directly toward the minimum. The convergence rate 

under strong convexity assumption is exponentially fast  𝑂(𝛾𝑘). Therefore, 

the 𝜖-suboptimal point is reached in 𝑂(𝑙𝑜𝑔(1/𝜖)) iterations. For example, if 

𝜖 = 10−6 the 𝑂(𝑙𝑜𝑔(106)) ≈ 14 iteration is needed. So, the assumption of 
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strong convexity leads to much faster convergence and guarantees the 

reaching global optima. 

 

Figure 57 Diversion of gradient (orange) from optimal direction (dashed grey line) to the 

minima (blue dot) as countries get more elongated. 

9.3 Subgradient method 

A vector 𝑔𝑥  ∈  𝑅
𝑛 is subgradient of 𝑓: 𝑅𝑛 → 𝑅 at 𝑥 ∈  𝛺 if for all 𝑥0  ∈  𝛺 

𝑓(𝑥0) ≥ 𝑓(𝑥)  + 𝑔𝑥
𝑇 (𝑥0 − 𝑥) 

Any vector that satisfies the above condition is called a subgradient of f at x. 

If function f is differentiable at x, then its gradient is the only subgradient at 

that point. On another hand, if  f is a non-differentiable function, there exists 

a set of subgradients at point x. The set of all subgradients is known as the 

subdifferential of f at x.  A point x* is a minimum of a nondifferentiable 

function f if one of subgradients of f at x* is equal to 0 i.e. if the subdifferential 

contains zero. 

For example, the function 𝑓(𝑥) = |𝑥| at the point 𝑥 = 2: 𝑓(𝑥) = 𝑥 is 

differentiable and gradient 𝛁𝑓 = 1. However, at the point 𝑥 = 0 the function 

is non-differentiable (it is not possible to find a parabola that always lies above 

the function). Nevertheless, any 𝑔𝑥 ∈  [−1,1] satisfies inequation |𝑥0| ≥ 𝑔𝑥 ⋅ 𝑥0 

for all 𝑥0 ∈  𝑅. Therefore, the subdifferential of  f at x=0 are all values between 

-1 and 1, i.e., it is possible to draw many lines with slope in this range that will 

stay below the function.  

From an optimization point of view, a non-smooth function is one that is non-

differentiable everywhere. Consequently, if the function is not-smooth, i.e., 

non-differentiable, we cannot rely on gradients. Instead, we replace the 

gradient with a subgradient to perform iterative optimization:  
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𝑤𝑛+1 = 𝑤𝑛 − 𝜂𝑔𝑛. 

The subgradient is not a descent method in general since the update is not 

necessarily performed in the descent direction, i.e., in contrast to GD, it 

doesn’t guarantee that the objective function decreases at every iteration. 

Instead, the subgradient uses different directions and it ensures convergence 

by tracking the best iteration found, i.e.,  

𝑤𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑛∈{0,...,𝑘}𝑓(𝑤𝑛) 

9.4 Stochastic gradient descent 

Gradient descent is computationally expensive and demands a lot of effort 

(especially since only small steps are made in that direction). The stochastic 

gradient descent (SGD) can address those limitations by sampling the 

gradient. Rather than computing all gradients at each interaction, the SGD 

randomly pick a single instance (or a small batch of instances) and update the 

weights based on the gradient of the loss for that instance only 

𝑤𝑛+1 = 𝑤𝑛 − 𝜂𝛁𝑓(𝑤𝑛; 𝑥𝑖). 

 The instance is chosen uniformly at random, allowing SGD to provide an 

unbiased estimation of the gradient. Although the computation is much 

faster, it can introduce noise in the estimation of gradients and make a step in 

the wrong direction. However, if the learning rate is sufficiently small the 

errors tend to average out. Consequently, the gradient computed from one 

instance’s loss can be seen as an approximation of the true gradient. 

The SGD is not limited to a single instance. Instead, a a small subset of training 

data can be sampled randomly 𝐼𝑘 ⊂ {1, . . . , 𝑛}. The parameter update then 

becomes: 

𝑤𝑛+1 = 𝑤𝑛 − 𝜂
1

𝑚
∑𝛁𝑓(𝑤𝑛)

𝑖∈𝐼𝑘

 

approach known as mini-batch SGD. After processing one mini-batch, another 

randomly chosen subset of samples is used for the next update. This process 

continues until all training samples have been used once, completing one 

epoch of training. The procedure is then repeated for multiple epochs until 

convergence. 
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For example, suppose that the training dataset contains 16000 data 

samples and the mini-batch size is set to 16. Each gradient will use 16 data 

points instead of 16000. That speeds up the gradient computation 1000 

times. Although the resulting gradient estimate will be noisier, it provides 

a direction close enough to the true gradient according to the law of large 

numbers.  

The mini-batch has two main advantages: it reduces the noise in gradient 

estimation (lowers the variance) and enables the advantage of fast matrix 

operations and parallelism.  

In machine learning, parameters and hyperparameters refer to different types 

of model variables. Parameters are learned directly from the training data, 

and used to define the model's internal, adaptable state. They are not 

predefined but rather iteratively optimized during the training process, since 

learning them is the primary goal. For example, weights and biases in neural 

networks are parameters that are adjusted during model training: they 

encapsulate the model's knowledge and directly determine its prediction on 

unseen data.  

On the other hand, hyperparameters are manually selected before training 

begins and used to control the learning process and the models overall 

behavior. They influence crucial aspects such as convergence speed, stability, 

and generalization ability. Examples of hyperparameters include the 

regularization strength in a regression model, the learning rate, the number 

of layers in a neural network, the number of trees in Random Forest. Selecting 

appropriate hyperparameters often involves systematic search strategies such 

as grid search. 

The mini-batch size is one of the most important hyperparameters and it 

varies for different applications, architectures and available computing 

power. Large batches will result in less noisy estimation of gradient ensuring 

convergence in fewer epochs but it can lead to lower generalization and a 

higher risk of overfitting. On the contrary, small batches require less 

computation and perform more frequent weight updates. The batch size 

should be a power of 2 to fully exploit the potential of the GPU.  
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The SGD convergence behavior typically exhibits three stages. At higher 

levels, the SGD generally points in the same direction resulting in a positive 

gradient. In the stationary phase gradients are smaller but the noise level 

remains almost the same, causing updates to point in varying directions and 

sometimes yielding a negative inner product. gradients from different 

samples point in almost random directions, causing the parameters to bounce 

back and forth around the minima. As a result, convergence with a fixed 

learning rate is not guaranteed. To address it, a large learning rate is used 

early in the training to get close to the optimum, followed by a gradual decay 

in the learning rate to reduce the fluctuations (reducing the noise by reducing 

the step size). When SGD gets close to the optimum the learning rate needs to 

be small enough to average out noise and allows SGD to settle into a stable 

state. Batch size and learning rate are highly correlated: increasing the batch 

size reduces gradient variance, enabling the use of a larger learning rate. On 

the contrary, small batch size leads to noisy gradient estimation and a smaller 

learning rate needs to be used to prevent unstable updates. The small batches 

require less computation (since fewer samples are used), converse to flat 

minimum, and perform more weight update than large batches but 

parallelizing small-batch SGD is highly limited. The large batch enhances the 

computation parallelism and can speed up convergence. However, it typically 

leads optimizers to converge toward sharp minima, which can reduce 

generalization ability. Imagine a loss landscape as a 1D curve, a minimum is 

flat if the loss changes slowly in the wide region around the optimum 

(indicated by small eigenvalues of Hessian) (Figure 58). In contrast, a sharp 

minimum occurs where the loss increases rapidly around optimum (high 

eigenvalues of Hessian matrix). Models that converge to sharp minimum are 

more sensitive to small changes in the input data or model leading to the 

lower generalization ability.  

Let f be a 𝛽-smooth convex function. For SGD with fixed step size 𝜂 = 1/𝛽 , 

we have 𝐸[𝑓(𝑥𝑘)] − 𝑓∗ ≤
𝛽||𝑥0−𝑥

∗||
2

2𝑘
+

𝜎2

2𝛽
  

where 
||𝑥0−𝑥

∗||
2

2𝑘
 represents optimization term, and 

𝜎2

2𝛽
 represents a variance 

floor that is constant and cannot be reduced by continuing iterations with the 

same fixed step.  
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Figure 58 Visualization of flat and sharp minimum 

The optimization term converges as 𝑂(1/𝑘). Using the diminishing rate 𝜂 =

1/𝛽√𝑘 removes variance floor and lead to convergence rate of 𝑂(1/√𝑘). 

When f is 𝛼-strong convex and  𝛽-smooth, using the fixed step size 𝜂 < 1/𝛽  

we obtain 𝐸[𝑓(𝑥𝑘)] − 𝑓∗ ≤ 𝑂(𝑒−𝛼𝑘) + 𝑂(𝜂𝜎2) where 𝜎2 is gradient variance. 

The first term indicates that SGD converges rapidly to a neighborhood of the 

optimum but then it oscillates around it due to variance in the gradient. The 

common practice is to use a fixed learning rate until progress stalls and then 

reduce it by some factor. If the diminishing learning rate 𝜂 = 1/𝛼𝑘 is used than 

𝐸[𝑓(𝑥𝑘)] − 𝑓∗ ≤ 𝑂(1/𝑘), i.e., to get 𝜖-suboptimal solution the 𝑂(1/𝜖) is 

needed. 

The SGD reduces computational cost per iterations which is important 

especially for large training sets, but also it will make much slower 

convergence per iteration (increases the number of iterations) compared with 

the GD. The comparison of computational cost between GD and SGD for a 

strong convex function is given in Table 9. 

Table 9 Comparison of complexity of GD and SGD for strong convex function. The d 

represents the number of feature per sample 

 Number of 

iterations 

Cost per iteration Total cost 

GD 𝑂(𝑙𝑜𝑔(1/𝜖)) 𝑂(𝑛 ⋅ 𝑑) 𝑂(𝑛 ⋅ 𝑑 ⋅ 𝑙𝑜𝑔(1/𝜖)) 

SGD 𝑂(1/𝜖) 𝑂(𝑑) or 𝑂(𝑏 ⋅ 𝑑) for 

mini batch 

𝑂(𝑑/𝜖2) or 𝑂(𝑏 ⋅ 𝑑/𝜖2) 
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The SGD is more sensitive to the 𝜖-accuracy, while the GD is more sensitive 

to dataset size. For large n, the SGD results in lower computational cost. 

9.5 Accelerated SGD 
The accelerated versions of SGD can significantly improve the convergence 

speed and the quality of the obtained local minimum. One prominent 

example is the SDG with momentum. Momentum addresses two issues with 

the SGD: convergence speed and local minima. On a loss surface with narrow 

ravines, the gradient can oscillate across the steep directions, slowing progress 

towards the minimum. So, if the learning rate is too large relative to the 

curvature in one direction, updates may oscillate, effectively reducing the 

progress. However, in directions with shallow curvature, the gradients are 

more consistent in sign, leading to smoother and faster convergence. 

In the momentum method, the gradient oscillations are addressed by 

introducing the velocity vector that averages the past gradient updates. So 

instead of looking just at the current value of the gradient, the velocity vector 

memorizes the direction where the gradient has been consistent (low 

curvature direction) over interactions, i.e. 

𝑤𝑡+1 = 𝑤𝑡 + 𝑣𝑡+1 

𝑣𝑡+1 = 𝜇𝑣𝑡 − 𝜂𝛁𝑤𝑡𝑓 

where t is the number of interactions and 𝜇 is the momentum coefficient that 

controls how much of the velocity (previous gradient) is carried into the 

current update. In this way, the momentum tries to guide the gradient path 

toward the flat direction. The 𝜇 can have values between 0 and 1, the larger 

the coefficient, the greater the influence of the previous update, which means 

the “ball” keeps moving in the same direction longer. If 𝜇 = 0 that the plain 

SGD is recovered.  

The analogy of a rolling ball can be used to visualize how SGD with 

momentum behaves during optimization. Imagine a ball rolling down the 

hilly surface that represents the loose function. This surface has both local and 

global minima (Figure 59). Therefore, moving to the left or right around local 

minimum results in an increase in the loss. The SGD optimization can be 

visualized as if we release the ball at a certain point and let it roll on the loss 



Introduction to Geospatial Artificial Intelligence 

171 

 

curve.  In that case, the ball velocity is based only on the current acceleration 

during that step (i.e., current slope value). When the ball reaches a local 

minimum, the slope becomes flatter, the ball loses its velocity, and can be 

trapped in the local minimum, unable to escape the dip. If momentum is 

implemented, then the ball is not completely stopped at each point. Instead, 

it continues to roll along the loss curve, building some speed. In that case, the 

momentum of the ball will be equal to the current acceleration plus the current 

velocity resulting from past acceleration. Thus, even when the slope becomes 

flatter (like in local minima), the ball reduces velocity, but momentum enables 

escape from local minima and continues to move toward the global minimum. 

 

Figure 59  (a) SDG, (b) SGD with momentum 

So, the intuition behind momentum is that if we repeatedly move in the same 

direction, then we will become more confident and start to take bigger steps 

in that direction. However, on ill-conditioned surfaces (Figure 60 (a), (b)), 

momentum can build too much velocity, leading to overshooting and 

oscillating around minima.  

Nesterov’s momentum, also known as Nesterov Accelerated Gradient 

Descent (Figure 60 (c)), is an improved version of the traditional momentum 

introduced to reduce those oscillations by including a look-ahead feature into 

the update rule. The core intuition is to first anticipate where the accumulated 

momentum is leading—by taking a “peek ahead”—then compute the 

gradient at that estimated future position and adjust the update accordingly.  

Neserov momentum calculates the gradient at a position slightly ahead in the 

direction of the accumulated moment. This enables the optimizer to correct its 
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direction quicker than momentum-based methods and reduce the oscillations, 

i.e., 

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑣𝑡+1  

where 𝑣𝑡+1 = 𝜇𝑣𝑡 − 𝜂𝛁(𝑤𝑡 + 𝜇𝑣𝑡), 𝜇 is momentum coefficient that controls the 

decay of the velocity vector 𝑣, and has value 0 < 𝜇 < 1 (typically 0.9). 

Let f  be convex and 𝛽-smooth function in such a way that  𝑓(𝑥𝑘) − 𝑓(𝑥∗) ≤

2𝛽||𝑥0−𝑥∗||
2

2

𝑘2    , which means we reach 𝜖-suboptimal point after 𝑂 (
1

√𝜖
) iterations. 

The 𝑂 (
1

√𝜖
) represents a significant improvement compared with GD. For an 

𝛼-strong convex and 𝛽-smooth function, the Nesterov momentum needs 

𝑂(√𝜅 ⋅ 𝑙𝑜𝑔(1/𝜖)) iterations to achieve 𝜖-suboptimality. Nesterov is 

exponentially fast, reaches the optimal rate among first-order methods and 

can be applied to any convex problem. Nesterov momentum provides faster 

convergence (Figure 60 (c) and (d)).  

 

Figure 60 (a) Rosenbrock function - nonconvex function with global minima located in the 

narrow, curved valley (b) contour lines of Rosenbrock function (c) performance of Nesterov 

momentum and (d) performance of momentum (vanilla) on Rosenbrock curve 
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9.6 Newton’s method 
The Newton method is a second-order method used for smooth convex 

optimization. It minimizes a convex, twice differentiable function by 

iteratively minimizing its quadratic approximation since it uses more 

information about the function via the Hessian.  Therefore, Newton's methods 

move in the direction of the negative Hessian inverse to the gradient. By 

multiplying with the inverse Hessian, the optimizer takes larger steps along 

directions of low curvature and smaller steps along directions of high 

curvature.  This means the Newton method uses second-order information to 

“spherize” the contours in each step and moves in a direction orthogonal to 

the transformed contours, resulting in a more direct path:  it naturally takes 

bigger steps along flat directions and smaller steps along steep ones.  

Moreover, the Newton method is independent of linear scaling of the input, 

providing automatic adjustments for axis stretching. Set the initial point to an 

arbitrary value and update it by  

𝑤𝑡+1 = 𝑤𝑡 − ∇
2𝑓(𝑤𝑡)

−1∇𝑓(𝑤𝑡)  

until a stopping criterion is met.  

The vector −∇2𝑓(𝑤𝑡)
−1∇𝑓(𝑤𝑡) is called the Newton step. Notice that the above 

equation does not contain any learning rate hyperparameter, which 

theoretically represents a great advantage compared to first-order methods. 

This is the pure Newton method (equivalent to 𝜂 = 1). However, it does not 

always guarantee a descent direction. The dumped Newton method is used 

to ensure a descent direction by scaling the Newton's step, with learning rate 

typically determined through backtracking line search. 

Let f be  a twice differentiable, 𝛼-strong convex and 𝛽-smooth function. To 

reach an 𝜖-suboptimal point we need at most 𝑂 (𝑙𝑜𝑔 𝑙𝑜𝑔 
1

𝜖
) iterations. Notice 

that the rate of convergence is quadratic, and therefore much faster, compared 

with the linear convergence of GD under the same assumptions. A visual 

comparison of the Newton and quasi-Newton methods is shown at Figure 8. 

However, there are two main challenges with using Newton’s method: 

● It is sensitive to initial conditions, especially if the loss function is non-

convex. Unlike the GD that ensures a descent direction, Newton fits a 



Introduction to Geospatial Artificial Intelligence 

174 

 

paraboloid (second-order approximation) at the local curvature and 

proceeds to move to the stationary point of that paraboloid. 

Depending on the local behavior of our initial point, it can end up in a 

maximum or a saddle point instead of a minimum. Because of this, the 

Newton method has a local convergence guarantee that holds when 

the initial point 𝑥0 is sufficiently close to the optimum. This is because 

the accuracy of Newton depends on the accuracy of the second-order 

approximation and, since f is twice differentiable, the quadratic model 

of f will be accurate if the initial point is close to the optimum. If 𝑥0 is 

far from the optimum, the method may diverge. Achieving a global 

convergence guarantee is much harder to obtain but it is possible 

when the function is both 𝛼-strongly convex and 𝛽-smooth (Figure 

61). 

● Although Newton's method can significantly accelerate the 

optimization of moderate size problems where the quadratic 

approximation is accurate, often computing and inverting the Hessian 

can be computationally expensive. In contrast to computing the 

gradient that scales as 𝑂(𝑛), computing of the Hessian requires  

𝑂(𝑛(𝑛 + 1))/2) operations, since it is a symmetrical matrix, and 

inverting it scales as 𝑂(𝑛3).  

For example, in 100 dimensions, we have to calculate the 100 values for the 

gradient and 5050 values for the Hessian at each step, and additional 1003 

operations for inverting it. It is evident that the higher convergence rate 

will quickly be overweighted by large computational costs, especially 

when n is large. 

To keep the efficiency of the second-order optimization and avoid 

computational cost, the Quasi-Newton method is used. The main idea is to 

avoid a full computation of the Hessian matrix across iterations by just 

approximating it with a positively defined matrix B, which is updated in each 

step by using information from previous steps. As a result, the computation 

costs have been significantly reduced.  

Different quasi-Newton methods, such as Symmetric Rank-One (SR1), 

Davidon-Fletcher-Powell (DFP), or Broyden-Fletcher-Goldfarb-Shanno 

(BFGS), compute 𝐵𝑘+1 matrix by imposing additional constraints. However, 
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all these methods need to satisfy the quasi-Newton condition (also known as 

the secant equation) given as follows: 

𝐵𝑘+1𝑠𝑘 = 𝑦𝑘   or equivalent for inverse form 𝐻𝑘+1𝑦𝑘 = 𝑠𝑘 

where 𝑠𝑘 = 𝑤𝑘+1 − 𝑤𝑘 is the step taken in the parametric space and  

𝑦𝑘 = 𝛁𝑓(𝑤𝑘+1) − 𝛁𝑓(𝑤𝑘) represents the change of the gradient after taking the 

step 𝑠𝑘.  

In the Newton method, we use 𝑠𝑘 = −∇
2𝑓(𝑤𝑘)

−1𝛁𝑓(𝑤𝑘) to compute the 

update. In quasi quasi-Newton method, we just know the approximation of 

Newton 𝐵𝑘 and it is necessary to ensure that it behaves as Hessian, i.e. 𝑦𝑘 ≈

[−𝛁2𝑓(𝑤𝑘)
−1]𝑠𝑘. Therefore, the 𝐵𝑘 must predict that the moving in 𝑠𝑘 

direction causes the gradient to change by 𝑦𝑘.  

One of the most popular methods is the BFGS. In addition to ensuring the 

symmetry and positive-definiteness of B, the update of 𝐵𝑘+1 is obtained by 

minimizing the matrix norm of the difference between 𝐵𝑘+1 and 𝐵𝑘 , i.e.,  

𝑚𝑖𝑛𝐵𝑘+1
||𝐵𝑘+1 − 𝐵𝑘||𝑊 

subject to the symmetry condition 𝐵𝑘+1
𝑇 = 𝐵𝑘+1 and the quasi-Newton 

condition 𝐵𝑘+1𝑠𝑘 = 𝑦𝑘 

where ||⋅||
𝑊

 denotes the weighted Frobenius norm.  

The solution for 𝐵𝑘+1 is given by 

𝐵𝑘+1 = 𝐵𝑘 +
𝑦𝑘𝑦𝑘

𝑇

𝑦𝑘
𝑇𝑠𝑘

−
𝐵𝑘𝑠𝑘𝑠𝑘

𝑇𝐵𝑘

𝑠𝑘
𝑇𝐵𝑘𝑠𝑘

 

If f is twice continuously differentiable, the Hessian is positively defined and 

𝛽-smooth function around the optimum, then BFGS has a superlinear 

convergence rate, which lies between 𝑂(𝑙𝑜𝑔(1/𝜖)) and 𝑂(𝑙𝑜𝑔 𝑙𝑜𝑔(1/𝜖)) 
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Figure 61 Visual comparison of GD and Newton methods 

9.7 Adaptive learning rate 

In the optimization model, the scale invariance is very important. For 

example, consider a problem with two variables: elevation (measured in 

meters) and NDVI (a pure number ranging from -1 to 1). If we change the 

elevation unit to centimeters, the elevation variable becomes 100 times larger, 

making the objective function 100 times more sensitive to changes in 

elevation. Moreover, the curvature in that direction is scaled 1002, leading to 

poor conditioning (the condition number 𝜅 becomes too large) and an 

elongation of contour lines (Figure 62). Consequently, the cost function 

becomes very sensitive to some directions in the parameter space and almost 

insensitive to others. So, the gradient updates with respect to NDVI become 

inefficiently small, while the gradient update for elevation may explode, 

producing a net effect of slowing the convergence (moving very slowly in the 

flat direction and oscillating in the steep direction) if the same learning rate is 

applied.  

It is desirable for models to be invariant to this type of change. Although this 

is guaranteed by the Hessian preconditioning (due to the affine invariance 

property), it is not for gradient descent. This can be addressed by adjusting 
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the learning rate dynamically for each parameter at each iteration based on 

observed statistics of the historical gradient. 

 

Figure 62 (a) Elevation in meters - couture lines are circle, loss surface is well-conditioned, the 

gradient descent progress smoothly, (b) Elevation in centimeters - the contours are highly 

elongated, loss surface is ill-conditioned 

The Adaptive Gradient Algorithm (AdaGrad) adjusts the learning rate for 

each parameter individually by scaling it inversely proportional to the square 

root of the cumulative sum of past squared gradients (i.e., the sum of all 

previously observed squared values for that component).  

Algorithm AdaGrad 

Input: learning rate 𝜂, initial parameters 𝑤 

Initialize 𝑟 ← 0 

loop 

sample a stochastic gradient 𝑔 ← 𝛁𝑓𝑖𝑡(𝑤) 

accumulate the second momentum estimate 𝑟𝑗 ← 𝑟𝑗 + 𝑔𝑗
2 

update model 𝑤𝑗 → 𝑤𝑗 −
𝜂

√𝑟𝑗
𝑔𝑗 

end loop 

This means that parameters that are not frequently updated will have a large 

learning rate, while parameters that are frequently updated will have a 

smaller learning rate.  

The AdaGrad has great success when the gradient is sparse in nature (i.e. most 

gradient components are equal to 0) because it accumulates squared 

gradients. However, it may not work well in the nonconvex setting since the 
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learning rate depends on the whole history. As a result, the step size can be 

very small in certain directions, slowing down convergence. 

Root Mean Square Propagation (RMSProp) represents the modification of 

the AdaGrad algorithm for a nonconvex setting. Unlike AdaGrad, which uses 

a sum of square gradients, RMSProp uses an exponential moving average of 

the squared gradients. This ensures that the effective step size generally does 

not go to zero, allowing the optimizer to continue making progress. 

Algorithm RMSProp 

Input: learning rate 𝜂, decay rate 𝜌, initial parameters 𝑤 

Initialize 𝑟 ← 0 

loop 

sample a stochastic gradient 𝑔 ← 𝛁𝑓𝑖𝑡(𝑤) 

accumulate the second momentum estimate 𝑟𝑗 ← 𝜌𝑟𝑗 + (1− 𝜌)𝑔𝑗
2 

update model 𝑤𝑗 → 𝑤𝑗 −
𝜂

√𝑟𝑗
𝑔𝑗 

end loop 

It has proven to be an effective and widely used optimization algorithm in 

DL.  

Adaptive momentum (Adam): represents the variation of RMSProp that uses 

a moving average of momentum with exponential weighting and correction 

for bias to estimate the first-order (the mean) and second-order moments (the 

unscented variance) of the gradient. Recommended initial settings for ML are: 

𝜂 = 0.001, 𝜌1 = 0.9, 𝜌2 = 0.999 and 𝜖 = 10−8. Under the assumption that 

gradient magnitude is bounded and distance between any parameters 

generated by Adam is bounded, Adam achieves a 𝑂(1/√𝑘) convergence rate.  

Adam has several important properties: the updates are invariant to rescaling 

of the gradient, it performs well with sparse gradients and non-stationary 

objectives, it is straightforward to implement, efficient to compute, and 

requires little memory. Compared with SGD with momentum, Adam shows 

marginal improvements. 
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Algorithm Adam 

Input: learning rate 𝜂, exponential decay rate 𝜌1, 𝜌2  ∈  [0,1), initial 

parameters 𝑤 

Initialize 𝑠 ← 0 (first moment vector) 𝑟 ← 0 (second moment vector) 

Initialize timestep 𝑡 ← 0 

loop 
𝑡 ← 𝑡 + 1 

sample a stochastic gradient at time t 𝑔𝑡 ← 𝛁𝑓𝑖𝑡(𝑤) 

accumulate biased first momentum estimation 𝑠𝑡 ← 𝜌1𝑠𝑡 + (1− 𝜌1)𝑔𝑡 

accumulate second momentum estimate 𝑟𝑡 ← 𝜌2𝑟𝑡 + (1− 𝜌2)𝑔𝑡
2 

correct first momentum bias 𝑠̂ ←
𝑠𝑡

1−𝜌1
𝑡 

correct second momentum bias 𝑟̂ ←
𝑟𝑡

1−𝜌2
𝑡 

update parameters 𝑤𝑡 → 𝑤𝑡−1 −
𝜂⋅𝑠̂𝑡

√𝑟̂𝑡+𝜖
 

end loop 

9.8 Nonconvex optimization 
If f is nonconvex, it can have many local minima, saddle points, very flat 

regions, or widely varying curvature, making optimization hard. Gradient 

descent stops naturally when  𝛁𝑓(𝑥) = 0. When f is nonconvex, this happens 

not only when x is a minimum but also when it is a maximum or a saddle 

point. The saddle points are stationary points (𝛁𝑓(𝑥) = 0) but Hessian is 

undefined. In high dimensional spaces, saddle points are more frequent than 

local minima. Additionally, there can be some flat regions, where the gradient 

is very small or zero. The choice of the initial point and the step size 

determines the point the algorithm converges to. Therefore, to minimize the 

loss, the gradient-based methods need to efficiently avoid maxima, flat 

regions, and saddle points. Many convex optimization methods can be 

applied to nonconvex optimization problems. However, theoretical 

guarantees for global convergence are limited or non-existent. 

9.9 Loss function - review 
The loss function quantifies the prediction error that represents the difference 

between the model prediction and the actual ground truth data. The primary 
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objective in ML is to optimize the model parameters by minimizing the total 

loss. The loss function should enable ML models to effectively learn from 

training data, even in challenging situations such as class-imbalanced or noisy 

data.  

The choice of the loss function depends on the type of algorithm being 

optimized, the nature of the task, and the available dataset. Choosing a loss 

function that is closely aligned with the task objective is crucial, because the 

model will exploit the easiest way within the data and architecture to 

minimize the loss. As a result, a model may achieve low loss values yet still 

fail to solve the problem effectively in practical terms. For example, suppose 

we want an order to be delivered both quickly and accurately. We could train 

an AI model to select the best delivery services using a loss function that 

minimizes delivery time. However, the model will exploit the easiest way to 

reduce this loss, potentially favoring companies that deliver packages quickly 

but frequently make mistakes. This behavior would not align with our actual 

goal. Therefore, a loss function that fully reflects the objective should account 

for both on-time delivery and accuracy. 

As already mention, there are several desirable properties of a loss function 

that should be taken into consideration during selection process:  

● Differentiability - the loss function must have a derivative for each 

point within the domain and does not contain any breaks or gaps, 

● Convexity - the local minimum is the global minimum, 

● Robustness - it should be able to handle outliers and not be affected by 

a small number of extreme values, 

● Smoothness - the function doesn’t have sharp transitions, ensuring 

stable and efficient training, and  

● Monotonicity - if loss function values decrease as the predicted output 

approaches the true output. It ensures that the optimization process is 

moving toward the correct solution. 

These properties directly affect the rate of convergence, which measures by 

how fast the algorithm reaches a predefined threshold.  A lower bound 

enables estimation of the best possible upper band for the class of problem 

under consideration, while an upper bound on the convergence rate allows 

the estimation of the number of steps that are needed to reach a predefined 
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threshold. If the loss function is only Lipschitz continuous, gradient descent 

takes cautious steps, but if the loss function is also smooth, the gradient will 

converge faster compared with only L-Lipschitz. Additionally, the 

assumption of strong convexity and smoothness leads to exponential fast 

convergence, also known as linear convergence. Influence of loss function 

assumptions on convergence rate and optimal step size is shown at Table 10. 

Table 10 Influence of loss function assumptions on convergence rate and optimal step size 

Function 

assumption 

Convergence rate Optimal step size 

convex + L-Lipschitz 𝑂(1/√𝑘) ||𝑥0 − 𝑥
∗||

2

𝐿√𝑘
 

convex + 𝛽-Smooth 𝑂(1/𝑘) 1/𝛽 

𝛼-strong convex +  

L-Lipschitz 

𝑂(1/𝑘) 2

𝛼(𝑘 + 1)
 

𝛼-strong convex +𝛽-

Smooth 

𝑂(𝑒−𝑘) 2

𝛼 + 𝛽
 

The loss functions are categorized based on the type of the task, such as 

regression, classification, or object detection. In addition to that, the 

performance metrics are used to evaluate how well the model generalizes to 

new data and how accurate the prediction is. The most commonly used loss 

function and performance metrics, depending on the task's characteristics, is 

presented in the Table 11. 

Table 11 Review of the most commonly used loss functions and performance metrics for 

different tasks 

Task Loss function Performance metrics 

Regression Mean Squared Error 

(MSE) 

Mean Squared Error (MSE) 

Mean Absolute Error 

(MAE) 

Mean Absolute Error (MAE) 
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Huber Loss Root Mean Squared Error 

Quantile loss Mean Absolute Percentage 

Error 

 𝑅2 

 Adjusted 𝑅2 

Binary 

classification 

Binary Cross-Entropy Accuracy 

Weighted Cross-Entropy Precision 

Focal Loose Recall 

Hinge Loss F1-score 

 Kappa coefficient  

Multi-class 

classification 

Categorical Cross-Entropy Accuracy 

Weighted Cross-Entropy Precision 

Focal Loss Recall 

 F1- score 

 Kappa coefficient 

 Intersection over Union 

(IoU) 

Semantic 

segmentation 

Pixel-wise Cross-Entropy IoU 

Focal Loss F1- score 

Dice Loss  

Object 

detection 

Focal Loss Average precision 

IoU loss Average recall 

GIoU Loss  
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9.9.1 Loss function in regression 

The regression model aims to predict the continuous variable, so popular loss 

functions are error-based, i.e., they measure the residuals to optimize model 

parameters. 

Mean Absolute Error (MAE, also known as L1 loss) (Figure 63 (a)) measures 

the average of the absolute difference between predicted and true value, i.e. 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖̂|

2 

𝑛

𝑖=1

 

where 𝑦𝑖̂ = 𝑓𝑤(𝑥𝑖). Since MAE is an absolute value, it is always positive, and 

errors follow a linear behavior, so it is less sensitive to outliers. It is not 

differentiable at 0 i.e., when 𝑦𝑖 = 𝑦𝑖̂. Due to that, the optimization of MAE can 

be done by using the subgradient 

Mean Squared Error (MSE, also known as L2 loss) (Figure 63 (b)) represents 

the average of the squared difference between predicted and true value, i.e. 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1 . 

It is derived under the assumption that residuals have a Gaussian 

distribution. Due to the squared error, it is always positive, but also sensitive 

to outliers. In neural networks, large errors have a larger impact on the 

computed gradient, leading to suboptimal weight updates. The MSE is 

differentiable for both parameters and prediction, enabling optimization by 

using gradient-based methods. However, it is scale-dependent. 

Root Mean Squared Error (RMSE) is defined as the square root of MSE. For 

a dataset with n samples, predictions 𝑦𝑖̂ and true values 𝑦𝑖 , RMSE is given as: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑛

𝑖=1

 

Due to squaring, RMSE is always positive and penalizes large errors heavily. 

It is sensitive to outliers, since a few large errors can significantly increase its 

values. RMSE has the same unit and scale as the target values, making it easier 

to interpret. However, due to scale dependency, comparison between datasets 
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with very different scales is difficult. To address this limitation, the 

Normalized RMSE can be used (see Section 9.17.1.).  

Huber loss (Figure 63 (c)) combines the advantages of MAE and MSE, i.e., it 

is less sensitive to outliers than MSE but smoother than MAE. It is defined as 

𝐿𝐻𝑢𝑏𝑒𝑟(𝑦𝑖, 𝑦̂𝑖) = {

1

2
(𝑦𝑖 − 𝑦̂𝑖)

2,            𝑖𝑓|𝑦𝑖 − 𝑦̂𝑖| ≤ 𝛿

𝛿 (|𝑦𝑖 − 𝑦̂𝑖| −
1

2
𝛿) ,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where 𝛿 is a user-defined threshold, which is critical, and it can be adjusted 

dynamically during the training process. If 𝛿 → 0 the function behaves more 

like MAE, while for large 𝛿 it behaves more like MSE.  The method is robust 

to outliers because it applies a linear penalty for errors larger than the 

threshold, while a quadratic one for small errors. The function is differentiable 

everywhere except in |𝑦𝑖 − 𝑦𝑖̂| = 𝛿 so subgradients can be implemented. 

Quantile loss (Figure 10 (d)) is frequently used to estimate the conditional 

quantiles in regression. The main idea is that minimization of asymmetrical 

weighted absolute residuals (asymmetrical error penalties, i.e., giving 

different weights to positive and negative residuals) will lead to quantiles. If 

the model underestimates (𝑦 ≥ 𝑦̂), the residuals are weighted by 𝜏 while for 

the overestimations (𝑦 < 𝑦̂) the residuals are weighted by (1− 𝜏) i.e. 

𝐿𝜏(𝑦,  𝑦̂𝑖) = {
𝜏 ∙ |𝑦 −  𝑦̂|,            𝑖𝑓 𝑦 ≥  𝑦̂

(1 − 𝜏) ∙ |𝑦 −  𝑦̂|,         𝑖𝑓 𝑦 < 𝑦̂
 

where 𝜏 is quantile level (0 < 𝜏 < 1). Based on the previous equation, it can be 

concluded that for lower quantiles (𝜏 = 0.25) the overestimations are 

penalised more. Consequently, for higher quintiles, the underestimations are 

penalised more. If 𝜏 = 0.5, the quantile loss reduces to the mean absolute error 

(MAE), corresponding to the solution that minimizes the conditional median 

of y. The function is not differentiable at residual 0. The overview of the 

benefits and limitations of the most frequently used loss function in regression 

is presented in Table 12. 
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Table 12 The overview of the benefits and limitations of the most frequently used loss 

functions in regression 

Loss 

function 

Best use case Strength Limitations 

MSE No outliers, 

Gaussian noise 

Efficient, 

differentiable 

Highly sensitive to 

outliers, scale-

dependent 

RMSE Data with 

moderate outliers 

Same unit and 

scale as the 

target, penalizes 

large error 

Sensitive to outliers, 

does not distinguish 

error types 

MAE Outliers, skewed 

distribution 

Robust, 

interpretable 

Non-differentiable 

at 0, not scale 

invariant 

Huber Mixed noise, 

gradient descent 

Convex and 

differentiable 

Need tuning 

parameter 𝛿, not 

scale-dependent 

Quantile Predicting 

quantiles, 

intervals, and 

risk-sensitive 

applications 

Handles 

asymmetry, 

robust to 

outliers 

Need to choose 

quartile values, 

Non-differentiable 

at 0, harder for 

interpretation 
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Figure 63 Illustration of the most commonly used loss functions in regression (a) MAE, (b) 

MSE, (c) Huber loss, and (d) Quantile loss 

 

9.9.2 Loss function in classification 

In classification tasks, models map input features to the labels that correspond 

to dataset classes. Based on the number of classes, the classification task can 

be categorized into: binary classification (data classified into two classes) and 

multiclass classification (data classified into K classes).  For classification 

tasks, the probabilistic loss functions are commonly used. Let q be the 

probability distribution of the dataset, and 𝑝(𝑦ⵏ𝑥;  𝑤) is the distribution of the 

model that predicts outputs. Probabilistic loss functions measure how the 

prediction probability distribution matches the true distribution. Usually, 

models trained with this type of function provide a measure of how likely a 

sample is labeled with one class compared to another, providing margin-

based information.  
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Most neural networks are trained by using maximum likelihood estimation 

(MLE).  Formally, given a dataset dataset D, we are maximizing the likelihood 

of the observed data: 

𝑝(𝐷 | 𝑤) =∏𝑓𝑤(𝑥𝑖)
𝑦𝑖 ⋅ (1− 𝑓𝑤(𝑥𝑖))

1−𝑦𝑖

𝑛

𝑖=1

 

or equivalently, to maximize the log-likelihood: 

𝑙𝑜𝑔(𝑝(𝐷 | 𝑤)) =∑(𝑦𝑖𝑙𝑜𝑔𝑓𝑤(𝑥𝑖) + (1− 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑓𝑤(𝑥𝑖)))

𝑛

𝑖=1

 

The loss function is obtained then by taking the negative of the log-likelihood 

𝐿 = −∑(𝑦𝑖𝑙𝑜𝑔𝑓𝑤(𝑥𝑖) + (1− 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑓𝑤(𝑥𝑖)))

𝑛

𝑖=1

 

This is also known as cross-entropy loss. One of the main advantages of using 

cross-entropy is that we are training models that best explain the dataset 

under a known or assumed probabilistic model. That means that the loss 

function does not need to be specifically designed for each model. Rather, 

specifying a model 𝑝(𝑦 | 𝑥) automatically a cost function 𝑙𝑜𝑔𝑝(𝑦 | 𝑥)is 

determined. 

Binary cross-entropy (BCE also known as Log loss) (Figure 1 (a)) is frequently 

used for binary classification. Since binary classification involves two classes 

(e.g.: cat vs dog, spam vs not spam), the maximum likelihood approach is 

based on the Bernoulli distribution. The Bernoulli distribution is a discrete 

distribution with two possible outcomes  

𝑃(𝑦 = 1 | 𝑥) = 𝑝 and 𝑃(𝑦 = 0 | 𝑥) = 1 − 𝑝 

If we have a dataset where each label is 𝑦𝑖 ∈ {0, 1}, then the BCE loss for a 

single instance is given by 

𝐿(𝑦𝑖 , 𝑝̂𝑖) = −[𝑦𝑖𝑙𝑜𝑔(𝑝̂𝑖) + (1− 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑝̂𝑖)] 

where 𝑝̂𝑖 is the model's predicted probability that 𝑦𝑖 = 1. The loss value is 

inversely proportional to the probability of the sample being correctly 

predicted, meaning that the greater the probability, the smaller the loss. The 

model prediction 𝑝̂𝑖 must belong to the interval [0, 1] to be a valid probability. 
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If a simple linear output 𝑤𝑇𝑥 + 𝑏 is used, the predicted probability can be 

outside [0, 1], and the gradient of the model output would be 0. This is 

challenging for optimization because learning algorithms lack guidance on 

how to optimize the parameters. In order to ensure that the output is between 

0 and 1, a sigmoid activation unit is applied to the linear output. A sigmoid 

output unit is given as 

𝑦̂ = 𝜎(𝑤𝑇𝑥 + 𝑏) 

where 𝜎 is the logistic sigmoid function, defined as  𝜎(𝑦) =
1

1+𝑒−𝑦
 . This 

function maps any real-valued input to the range [0, 1], making it suitable for 

modeling probabilities in binary classification. 

Hinge loss function (Figure 64 (b)) represents an alternative to binary cross-

entropy, which is frequently used in margin-based classifiers such as Support 

Vector Machine (SVM), but it can also be applied effectively to neural 

networks. This approach defines a soft-margin m (usually set to 1) around the 

decision boundary and enforces that the prediction score for the correct class 

is at least m units higher than for incorrect classes. The hinge loss function 

penalises both incorrect (𝑦𝑖𝑝̂𝑖 ≤ 0) or not confident enough predictions (where 

the resulting argument is lower than the margin 𝑦𝑖𝑝̂𝑖 < 𝑚). It is defined as 

𝐿𝐻𝑖𝑛𝑔𝑒(𝑦𝑖 , 𝑝̂𝑖) = 𝑚𝑎𝑥(0, 𝑚 − 𝑦𝑖𝑝̂𝑖) 

where 𝑦𝑖 is the ground truth class label and 𝑝̂𝑖 is the predicted output from 

the neural network, which is often mapped to a value in the range {−1, 1} 

using a suitable activation function, such as hyperbolic tangent (tanh). If a 

prediction is both correct and confident enough (i.e., outside the margin) the 

loss is zero. 

Also, it can be used for multi-class classification, by implementing a one-

versus-all or one-versus-one approach. The Hinge loss is convex but non-

differentiable at the hinge point 𝑦𝑖𝑝̂𝑖 = 1. To address this limitation, a 

frequently used variant is the squared Hinge loss, defined as  

𝐿𝐻𝑖𝑛𝑔𝑒 = 𝑚𝑎𝑥(0, 1 − 𝑦𝑖𝑝𝑖)
2. 

This allows its usage in higher-order optimization algorithms and also 

penalizes predictions more strongly as they approach the margin. 
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Categorical Cross-Entropy Loss (Figure 64 (c)) is often used for multi-class 

classification tasks where we need to classify an instance into one of K classes 

𝑦  ∈  {1, . . . , 𝐾}. It is defined as  

𝐿(𝑦𝑖 , 𝑝̂𝑖)  = −∑𝑦𝑖,𝑗𝑙𝑜𝑔𝑝̂𝑖,𝑗

𝐾

𝑗=1

 

where 𝑝̂𝑖,𝑗 = [𝑝̂𝑖,1, . . . , 𝑝̂𝑖,𝐾] is the predicted probability distribution for sample 

i. 

A one-hot encoded vector is a way of representing categorical data (like class 

labels) as a binary vector, where only one element is 1 (indicating the correct 

class) and all other elements are 0. 𝑦𝑖,𝑗 is a one-hot encoder vector (1xK) 

representing the true class label for sample i (for example, if K=3 and the true 

class of sample i is class 2, then 𝑦𝑖 = [0,1,0] ). 

In neural networks, to extend the cross-entropy loss to multi-class 

classification problems, the softmax activation function must be applied to the 

output layer. The softmax function transforms the raw output of a classifier 

(logit) into a probability distribution over K classes. Given a vector of logits 

𝑧 = [𝑧1, . . . , 𝑧𝐾]  ∈  𝑅
𝐾, the softmax activation function computes the 

probability that the input belongs to each class:  

𝑦̂𝑖 = 𝑃(𝑦 = 𝑖 | 𝑧) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝐾
𝑗=1

 

This ensures that each output value 𝑦̂𝑖 belongs to the interval [0, . . . , 1] and that 

the vector sum is equal to 1, satisfying the properties of a valid probability 

distribution. 

To maximize the likelihood, we need to maximize the predicted probability 

for the true class, which is equivalent to minimizing the negative log-

probability. Given:  

𝑃(𝑦 = 𝑖 | 𝑧) = 𝑙𝑜𝑔 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)𝑖, 

the categorical cross-entropy with softmax is defined as   

𝐿 = −𝑧𝑖 + 𝑙𝑜𝑔∑𝑒𝑧𝑗 .

′

𝑗
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Applying softmax is essential since the categorical cross-entropy measures the 

dissimilarity between the true distribution (typically one-hot encoder) and the 

predicted probability distribution 𝑦̂𝑖.  

The first term represents the score for the correct class, i.e., it penalizes the 

model if it assigns a low logit to the correct class (if −𝑧𝑖 is small, the loss will 

be low).  

The second term penalizes overconfidence in the wrong class, ensuring the 

model does not assign high probability to incorrect classes.  Therefore, when 

the loss is small, the logit corresponding to the correct class 𝑧𝑖 is high while 

the logits for all other classes 𝑧𝑗 are low. Conversely, the loss becomes large 

when the correct class logit 𝑧𝑖 is low, and one or more of the incorrect class 

logits 𝑧𝑗 are high. 

The categorical cross-entropy is continuous, differentiable, and convex with 

respect to the model outputs and this makes it suitable for gradient-based 

optimization methods.  

Weighted cross-entropy (WCE) (Figure 64 (d)) is a modification of the cross-

entropy loss created to address the class imbalance by assigning higher 

weights (greater importance) to minor classes. In standard cross-entropy, all 

classes are treated equally. However, in tasks where classes are imbalanced 

(some classes appear more frequently than others), the gradient of the loss 

function will be dominated by the majority class, leading to poor model 

performance on minority classes.   

For binary classification, the overall WCE loss is given by: 

𝐿𝑊𝐶𝐸 = −
1

𝑛
∑𝑤1𝑦𝑖𝑙𝑜𝑔(𝑝̂𝑖) + 𝑤0(1− 𝑦𝑖)𝑙𝑜𝑔(1− 𝑝̂𝑖)

𝑛

𝑖=1

 

where 𝑤1 and 𝑤0 are weights for the positive and negative classes, 

respectively. The following expression can be easily expanded for multi-class 

classification, i.e. 

𝐿𝑊𝐶𝐸 = −
1

𝑛
∑∑𝑤𝑗𝑦𝑖,𝐾𝑙𝑜𝑔(𝑝̂𝑖)

𝐾

𝑗=1

𝑛

𝑖=1
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where 𝑤𝐽 represents the weight for class 𝑗 = {1, . . . , 𝐾}, 𝑝̂𝑖 = [𝑝̂𝑖,1, . . . , 𝑝̂𝑖,𝐾] is the 

predicted probability distribution over classes for sample i, and 𝑦𝑖  is the one-

hot encoded true label.  

The weights can be determined based on the: 

● Inverse class frequency, i.e. 𝑤𝐾 ≈ 1/𝑓𝐾 where 𝑓𝐾 is the relative 

frequency of class K. Consequently, less frequent classes will have 

higher weights. 

● Weight normalization - helps stabilize gradients when some weights 

are very large. 

Dice loss has been widely used in image segmentation tasks to handle class 

imbalance. It is based on the Dice coefficient maximization. The Dice 

coefficient measures overlap between the predicted segmentation and ground 

truth annotation. It is defined as: 

𝐿𝐷𝑖𝑐𝑒 = 1− 𝐷𝑖𝑐𝑒 = 1−
2∑ 𝑝𝑖𝑦𝑖 + 𝜖

𝑛
𝑖=1

∑ 𝑝𝑖
𝑛
𝑖=1 + ∑ 𝑦𝑖

𝑛
𝑖=1 + 𝜖

 

where 𝑝𝑖 is the predicted probability for pixel i, and 𝑦𝑖 is the corresponding 

ground truth while 𝜖 is a small constant added to ensure loss function stability 

by preventing division by zero. For multi-class segmentation, Dice loss can be 

computed per class and averaged, i.e. 

𝐿𝐷𝑖𝑐𝑒 = 1−
1

𝐾
∑

2∑ 𝑝𝑖,𝑗𝑦𝑖,𝑗
𝑛
𝑖=1 + 𝜖

∑ 𝑝𝑖,𝑗
𝑛
𝑖=1 + ∑ 𝑦𝑖,𝑗

𝑛
𝑖=1 + 𝜖

𝐾

𝑗=1

 

where 𝑝𝑖,𝑗 and 𝑦𝑖,𝑗 are the predicted probability and ground truth for class j at 

pixel i.  

Dice loss is continuous and differentiable but not convex.  

Focal loss (Figure 64 (e)) is a variant of the cross-entropy loss designed to 

address class imbalance by down-weighting the contribution of easy 

examples and focusing more on hard misclassified examples. The focal loss is 

defined as  

𝐿𝑓𝑜𝑐𝑎𝑙 = −(1− 𝑝𝑖)
𝛾𝑙𝑜𝑔(𝑝𝑖) 

where 𝑝𝑖 is the predicted probability for the true class, and 𝛾 ≥ 0 is the 

focusing parameter that controls the strength of the modulation. When 𝛾 = 0, 
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the Focal Loss reduces to the standard binary cross-entropy loss. It is Lipschitz 

continuous and convex for the predicted probabilities, making it suitable for 

gradient-based optimization. 

 

Figure 64 Loss function in classification (a) BCE, (b) Hinge, (c) CCE, (d) WCE, (e) Focal and (f) 

Smooth L1 loss 

Object detection includes both the classification of the object type and the 

accurate prediction of the coordinates of a bounding box around the object of 

interest. Because of this dual objective, a composite loss function is typically 

used, containing both a classification component (measuring classification 

errors, such as CE) and a regression component (measuring prediction errors 

in the precise location and dimension of the boundary-box, such as Smooth 

L1 or IoU loss). Jointly, they analyze the misclassification and boundary-box 

inaccuracy, enabling accurate and robust detection across various data 

distributions. 

Smooth L1 (Huber-like) (Figure 64 (f)) is commonly used in bounding-box 

regression, combining the benefits of both L1 (Mean Absolute Error) and L2 

(Mean Squared Error)  functions.  
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For a single coordinate, it is defined as  

𝐿𝐿1𝑠𝑚𝑜𝑜𝑡(𝑦𝑖 , 𝑦̂𝑖) = {

1

2
(𝑦𝑖 − 𝑦̂𝑖)

2,    𝑖𝑓|𝑦𝑖 , −𝑦̂𝑖| ≤ 𝛽

|𝑦𝑖 , −𝑦̂𝑖| −
1

2
𝛽,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where 𝛽 controls the transition between L1-like (linear) and L2-like 

(quadratic) regions. Typical value of the hyperparameter 𝛽 is between 0.5 and 

1. If 𝛽 = 0 Smooth loss is equivalent to L1 loss. The smooth L1 is equivalent to 

𝐻𝑢𝑏𝑒𝑟 𝑙𝑜𝑠𝑠/𝛽. Due to that, the difference can be defined as: 

●  for 𝛽 → 0 Smooth L1 converges to L1 loss, while Huber loss converges 

to a constant 0, 

● for 𝛽 → ∞ Smooth L1 loss converges to a constant 0 loss, while Huber 

loss converges to MSE. 

When the absolute error is small, the function behaves like L2 loss to ensure 

smooth optimization, while for large errors are penalized like L1 loss.  It is 

less sensitive to outliers than MSE. 

Intersection over Union loss (IoU loss) (Figure 65 (a)) is based on the 𝐼𝑜𝑈 

metric. 𝐼𝑜𝑈 (also known as Jaccard similarity index) measures the overlap 

between the predicted bounding box (𝐵𝑝) and the ground truth box (𝐵𝑡) i.e. 

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎(𝐵𝑝 ∩  𝐵𝑡)

𝐴𝑟𝑒𝑎 (𝐵𝑝  ∪  𝐵𝑡)
 

where (𝐵𝑝 ∩  𝐵𝑡) is the intersection area of the predicted and ground-truth 

boxes and (𝐵𝑝  ∪  𝐵𝑡) is their union. 

If 𝐼𝑜𝑈 = 1 the two boxes are perfectly overlapped. Compared with L1/L2 

losses, 𝐼𝑜𝑈 considers all shape properties, including location, size, and 

orientation at the same time, encodes relationships between all parameters, 

and it is scale invariant. On the other hand, it is non-differentiable if there is 

no overlap between the ground-truth and predicted bounding box (i.e. 𝐼𝑜𝑈 =

0). In that case,  𝐼𝑜𝑈 does not reflect if two boxes are close or far from each 

other, i.e., the model doesn’t learn when boxes do not overlap, making 

optimization challenging. Additionally, if boxes partially overlap, the  𝐼𝑜𝑈 

changes slowly. 

The  𝐼𝑜𝑈 loss is given by  
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𝐿𝐼𝑜𝑈 = 1− 𝐼𝑜𝑈 

Since 0 < 𝐼𝑜𝑈 < 1, then the 𝐿𝐼𝑜𝑈 is also bounded between 0 and 1.  

 

Figure 65 (a) IoU, (b) GIoU, (c) example of poor alignment, (d) example of good alignment, (e) 

example of excellent alignment 

Generalized IoU (𝑮𝑰𝒐𝑼) (Figure 65 (b)) is introduced to address the 

limitations of  𝐼𝑜𝑈. Let 𝐵𝑝, 𝐵𝑡  ⊆  𝑆 ∈  𝑅 be two arbitrary convex shapes. The 

𝐶 ⊆ 𝑆 ∈  𝑅𝑛 is the smallest convex shape that encloses both 𝐵𝑡 and 𝐵𝑝 and 

have the same shape type. The  𝐺𝐼𝑜𝑈 is calculated as follows: 

𝐺𝐼𝑜𝑈 = 𝐼𝑜𝑈 −
𝐴𝑟𝑒𝑎 (𝐶/(𝐵𝑝 ∪  𝐵𝑡))

𝐴𝑟𝑒𝑎(𝐶)
 

The  𝐺𝐼𝑜𝑈 loss is defined as: 

𝐿𝐺𝐼𝑜𝑈 = 1− 𝐺𝐼𝑜𝑈 

The 𝐿𝐺𝐼𝑜𝑈 penalizes the boxes that do not overlap by emphasizing the empty 

area/volume outside the 𝐵𝑡 and 𝐵𝑝 but inside the smallest enclosing box. Due 

to that, it provides the gradient updates in all stages, improving the 
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convergence. It is non-negative, symmetrical, and scale invariant. The 𝐺𝐼𝑜𝑈 

always represents the lower bound for 𝐼𝑜𝑈.  

The comparison of the advantages and disadvantages of the loss function 

commonly used in classification and object detection tasks is presented in 

Table 13. 

Table 13 The overview of the benefits and limitations of the most frequently used loss 

functions in classification and object detection 

Loss Usage Advantages Disadvantages 

BCE Binary tasks, 

logistic 

regression 

Probabilistic, 

strong penalty 

for confident 

mistraces 

Sensitive to imbalance, 

overconfident if not 

regularized 

Hinge Margin-based 

classification 

Zero loss 

beyond margins, 

simple 

Not probabilistic, non-

differentiable at the 

margin 

CCE Multi-class 

classification 

Differentiable, 

strong penalty 

for 

misclassification 

Sensitive to class 

imbalance, requires 

more memory (due to 

one-hot encoder) 

WCE Binary/Multi-

class 

Imbalanced 

datasets 

Address the 

imbalance by 

introducing 

weights, suitable 

for a cost-

sensitive context 

Weight tuning can be 

challenging. Large 

weights destabilise 

training. Fixed weight 

may not be optimal if 

class distribution 

changes (new data 

source)  

Focal Binary/Multi-

class, Address 

severe 

imbalance 

Imbalanced 

data, 

Hard samples in 

detection, minor 

classes are better 

characterized 

Tuning the parameter 𝛾 

can be challenging 
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Dice Semantic 

segmentation, 

an imbalanced 

data set 

Robust for 

imbalanced 

datasets 

Overconfident 

prediction 

Smooth 

L1 

Boundary-box 

regression 

Robust to 

outliers, less 

sensitive to the 

MSE, sensitive 

to small errors  

Requires 𝛽 tuning 

IoU Segmentation, 

object detection  

Scale invariant,  Non-differentiable, 

sensitive to partial 

overlap, hard to 

optimize 

GIoU Object 

detection when 

partial overlap 

is frequent, box 

regression 

Scale invariant, 

differentiable, 

and more stable  

gradient,  

Don't handle centroid 

distance or aspect 

ratios, non-overlap 

sensitive, more 

computationally 

intensive 

 

9.10 Activation functions 
Deep neural networks are often used to approximate complex, non-linear 

relationships between input and output. However, the output of neurons is 

linear despite having several layers. Due to that, non-linearity needs to be 

introduced in the network.  

Activation functions are predefined mathematical functions that introduce 

non-linearity to the output of individual neurons in each layer of the neural 

network before passing it to the next layer. Activation functions should satisfy 

several important properties.  They must add non-linear curvature into the 

loss surface to improve convergence, they must be computationally cheap 

since they are calculated millions of times in deep neural networks, and avoid 
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saturation. Different types of activation functions, including sigmoid, Tanh, 

ReLu, etc., can be used. 

Logistic sigmoid (Figure 66 (a)) function and tanh activation functions have 

been widely used for shallow networks. The sigmoid function (defined in 

Section 9.10) converts the neuron output into the interval [0, 1]. The main 

drawback of the sigmoid function is that it is saturated for both low and high 

inputs, which causes the gradient with respect to parameters to approach 

zero, a mechanism known as the vanishing gradient. Hence, the update 

during training with SGD is very low, leading to slow convergence.  

Moreover, the sigmoid function is not zero-centred, and it is a bit 

computationally intensive. 

The hyperbolical tangent (Tanh) (Figure 66 (b)) activation function is defined 

as follows 

𝑇𝑎𝑛ℎ(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

It outputs zero-centred values between -1 and 1. It can be regarded as an 

extended sigmoid function, and it has the same drawbacks as the sigmoid. 

ReLU [34] (Figure 66 (c)), the rectified linear unit has become a state-of-the-

art activation function in DL. It is a piecewise-linear function  𝑅𝑒𝐿𝑢(𝑥) =

𝑚𝑎𝑥(𝑥, 0) that outputs 0 for all negative inputs, while for positive inputs, it 

returns their value. The derivative in the active region is equal to 1, and 

therefore, the gradient is unscaled and consistent. Moreover, the second 

derivative is equal to 0 (except for x=0, where it is undefined), making the loss 

landscape simpler and easier for optimization. It addresses the limitations of 

sigmoid and Tanh functions as it does not saturate for positive values; it is 

more computationally effective, and enables faster convergence. However, its 

output for all negative values is 0, meaning that there is no gradient flow 

through those inactive neurons, leading to the problem of “dead ReLu”. This 

problem is addressed by several variants of ReLu. 

Leaky ReLu (LReLu) (Figure 66 (d)) adds small fixed positive gradients for 

negative inputs to prevent saturation. It is given by 𝐿𝑅𝑒𝐿𝑢(𝑥) =  𝑚𝑎𝑥(𝑥, 0.01 ⋅

 𝑥). One of the main drawbacks of LReLu is finding the right slope in a linear 

function for negative inputs, since different slopes can be suited for different 

problems and networks.  
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The parametric ReLU (PReLu) (Figure 66 (e)) represents an extension of 

LReLu by making the slope for negative inputs as a learnable parameter, i.e. 

𝑃𝑅𝑒𝐿𝑢(𝑥) = 𝑚𝑎𝑥(𝑥, 𝛼 ⋅ 𝑥) where 𝛼 is slope for inputs less than zero; however, 

it can quickly overfit. 

The Maxout (Figure 66 (f)) [35] can be used to further generalize both ReLu 

and LReLu. Instead of applying a fixed nonlinearity (such as ReLu, sigmoid, 

tanh), Maxout divide input vector x into 𝑘 groups and outputs the maximum 

value within each group. This allows network to learn piecewise linear 

function, partitioning input space into several regions with local linear 

behavior. Mathematically it is given by 

𝑧𝑖 = max
𝑗∈{1,...,𝑘}

(𝑥𝑇𝑤𝑖𝑗 + 𝑏𝑖𝑗) 

where 𝑘 is the number of linear pieces, 𝑤𝑖𝑗 and 𝑏𝑖𝑗 are learnable parameters of 

the 𝑗 − 𝑡ℎ component of the 𝑖 − 𝑡ℎ neurone. This allows Maxout to 

approximate any approximate. If 𝑘 = 2 the maxout is defined as 𝑀𝑎𝑥𝑜𝑢𝑡(𝑥) =

𝑚𝑎𝑥(𝑤1
𝑇𝑥 + 𝑏1, 𝑤2

𝑇𝑥 + 𝑏2 ) and both ReLu and LReLu are special case of 

Maxout. However, Maxout is parameterized differently, i.e., each maxout unit 

is parametrized by a k-weight vector. The intersection point and slopes on 

each side are learned rather than fixed, like in ReLu (intersection point in 0, 

slope on positive side 1, and slope on negative side 0). The maxout does not 

saturate or die, but it doubles the number of parameters and therefor increases 

computational and memory cost. Maxout pairs particularly well with dropout 

regularization. 

Exponential linear units (ELU) (Figure 66 (g)) [36] address the vanishing 

gradient effect seen in  ReLu and LReLu. It is defined as 

𝐸𝐿𝑈(𝑥) = {
𝑥,                     𝑖𝑓 𝑥 > 0

𝛼(𝑒𝑥 − 1),   𝑖𝑓 𝑥 ≤ 0
 

where 𝛼 is a hyperparameter that controls the saturated values for negative 

inputs (i.e. controls the level of nonlinearity for those values). ELU uses an 

exponential function to smooth negative values and asymptotically 

approaches to −𝛼. When 𝛼 = 0, the network behaves like ReLu, while higher 

values allow more negative activations. 
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Figure 66 Activation functions in deep learning (a) sigmoid, (b) Tanh, (c) ReLu, (d) LReLu, (e) 

PReLu, (f) maxout, (g) ELU, (h) SELU, and (i) Swish activation function 

 The negative values push the mean of the activation function closer to 0, 

which helps to reduce bias shift and enables faster convergence during the 

training. ELU also becomes saturated for small inputs and decreases the 

information passed to the next layer, resulting in a noise-robust and low-

complex representation. 

The Scaled Exponential Linear Unit (SELU) (Figure 66 (h)) [37] represents an 

improvement of ELU by introducing self-normalization which ensures that 

the output remains normalized. It is defined as 

𝑆𝐸𝐿𝑈(𝑥) = 𝜆 {
𝑥,                     𝑖𝑓 𝑥 > 0

𝛼(𝑒𝑥 − 1),   𝑖𝑓 𝑥 ≤ 0
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where 𝜆 > 1 is a scaling constant and 𝛼 is a hyperparameter.  It has an output 

range in [−𝜆,∞]. The values of  𝜆, 𝛼 can are chosen in such a way that 

activations automatically normalize to have zero mean value and unit 

variance. This can prevent vanishing gradients or exploding gradients, 

stabilizing the learning process and enabling faster convergence. However, it 

is sensitive to initialization. 

Swish is an adaptive activation function (Figure 66 (i)) introduced by [38]. It 

is defined as follows  

𝑆𝑤𝑖𝑠ℎ(𝑥) = 𝑥 ⋅ 𝜎(𝛽𝑥) =
𝑥

1− 𝑒−𝛽𝑥
 

where 𝛽 is a learnable parameter that controls the amount of non-linearity 

based on the dataset and network architecture complexity. If 𝛽 = 0 Swish 

becomes a linear function 𝑓(𝑥) = 𝑥, while for large values it becomes like 

ReLu. Swish is smooth, differentiable, non-monotonic, and one-sidedly 

bounded at zero, properties that often lead to superior performance compared 

to ReLU and other standard activation functions in deep neural networks. 

However, it is more computationally expensive and less interpretable than 

ReLU. 

9.11 Normalization 
In ML, normalization is a crucial preprocessing step, especially when input 

features have different scales. For example, one column has values from 0 to 

1, and another has values from 1000 to 5000; the learning algorithm may 

become biased to the input with higher magnitudes. Normalization 

eliminates this issue by rescaling all features to a common scale (for example, 

0 to 1 or -1 to 1) without losing the discriminative strength while maintaining 

the general data distribution. In addition to increasing the model training 

speed and generalization ability, it improves overall model stability. It can be 

done at the function level or the batch level.  

The most widely used normalization method if the input data are normally 

distributed, is z-score normalization, given as 

𝑧 =
𝑥 − 𝜇

𝜎
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where 𝜇 is the mean and 𝜎 represents the standard deviation computed for 

each feature. It rescales the data to have zero mean and unit variance. The 

method is often used in logistic regression, PCA, and SVM. 

The MinMax normalization rescales every feature to the interval [0, 1] using 

the following formula 

𝑧 =
𝑥 −𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
 

It is sensitive to outliers, which can significantly affect the scaling. 

As already mentioned, deep neural networks consist of multiple layers of 

neurons that apply piecewise linear/non-linear functions, enabling models to 

learn complex non-linear mappings between input and output. However, due 

to increased learning capacity, training of DL models is difficult due to the 

highly non-convex nature of optimization. In contrast to ML, where the 

normalization is a data preprocessing step applied to input features, in DL, it 

is mostly performed inside the network itself. Normalization techniques in 

DL can be broadly categorized into batch-based, layer-based, instance-based, 

group-based, and weight-based normalization. The layer normalizations are 

commonly used in language applications, while Batch Normalization (BN) 

has been extensively used for computer vision tasks. 

When training deep neural networks, the inputs are passed through multiple 

layers, and each layer applies transformations. After each transformation, the 

activations may vary widely in magnitude. Additionally, the distribution of 

inputs to each layer can change during training—a phenomenon known as 

covariate shift—which often necessitates a lower learning rate and careful 

parameter initialization. When using the stochastic gradient descent SGD, 

training proceeds in steps, and each step considers a mini-batch of size m, 

allowing better gradient estimation and parallel computation. BN [39] deals 

with the reduction of covariate shift by normalizing the internal activations of 

the network. It is typically applied per feature dimension before applying the 

activation function to the outputs of a layer. The BN transformation applied 

over activation is presented in the algorithm.  
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Algorithm BN 

Input: values of x over a mini-batch 𝐵 = {𝑥1, . . . , 𝑥𝑚} 

             learnable parameters 𝛾, 𝛽 

Output: 𝑦𝑖 = 𝐵𝑁𝛾,𝛽(𝑥𝑖) 

 

compute mini-batch mean 𝜇𝐵 ←
1

𝑚
∑ 𝑥𝑖
𝑚
𝑖=1  

compute mini-batch variance 𝜎𝐵
2 ←

1

𝑚
∑ (𝑥𝑖 − 𝜇𝐵)

2𝑚
𝑖=1  

normalize 𝑥𝑖 ←
𝑥𝑖−𝜇𝐵

√𝜎𝐵
2+𝜖

 

scale and shift 𝑦𝑖 ← 𝛾𝑥𝑖 + 𝛽 ≡ 𝐵𝑁𝛾,𝛽(𝑥𝑖) 

 

The 𝛾 and 𝛽 are learnable parameters and 𝜖 is a constant added for numerical 

stability.  BN normalizes the inputs so that, within every mini-batch, they 

have zero mean and unit variance.  

BN improves gradient descent by stabilizing the distribution of layer inputs, 

enabling the use of higher learning rates and reducing sensitivity to weight 

initialization. It can also act as a form of regularization. Furthermore, it 

significantly accelerates training because it allows larger learning rates and, 

in some cases, can partially replace dropout without increasing overfitting. 

However, BN is sensitive to the mini-batch size. During inference, i.e. the 

testing or prediction phase, the mean and standard deviation are not 

computed from the batch; instead, fixed empirical values calculated from the 

training phase are used to normalize the activations. 

9.12 Training, Validation, and Testing dataset  
In DL and ML, the most common practice regarding the use of available 

datasets is to split each dataset into three datasets: 

● training dataset - data used for model fitting with multiple model 

parameters. It contains the larger portion of the data with both input 

features and output labels. In each interaction, performance measures 

are used to assess the errors of the model when applied to the training 

dataset (training error). The training error is used to optimize model 
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parameters (such as weights in neural networks or coefficients in 

linear regression), 

● validation dataset - used to rank and select the best-fitted model. It is 

usually created by splitting the training set; it contains samples with 

known labels, but the label is not exposed to the model; instead, they 

are used to evaluate the model's performance. Based on the errors on 

the validation set (validation error), the optimal architecture and 

model hyperparameter set (the hyperparameters are not learned 

during training) are selected as those that achieve the lowest 

validation error, and 

● test dataset - the unseen data used to assess the generalization ability 

of the final trained model. It is not used in any part of the training 

process. Notably, the accuracy estimated using this unseen test dataset 

provides an unbiased estimate of the model’s performance on any new 

samples drawn from the same distribution as the training and test sets. 

The split ratio between those sub datasets depends on the size of the available 

dataset and the complexity of the model. Typically, 70% of available data is 

used for training, 15% for validation, and 15% for testing, but ratios can vary. 

As the size of the available dataset increases, the percentage between the 

training and validation datasets can be smaller. The created test set cannot be 

too small since a small test dataset may not provide a reliable estimation of 

generalization abilities. However, a larger test set means a smaller training 

dataset, which can have a negative impact on model performances, especially 

for small datasets.  

9.13 Capacity, overfitting, and underfitting 
ML models must not only achieve low training error, but they also need to 

perform well on new, unseen data. The ability of algorithms to perform well 

on data that are not used during the training process is called generalization. 

The generalization ability reflects models' predictive capacity on unseen data. 

It is typically assessed using the test dataset (also known as test error).  

Take linear regression as an example: the model is trained by minimizing the 

training loss 
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1

𝑚𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
||𝑥𝑡𝑟𝑎𝑖𝑛𝑤 − 𝑦𝑡𝑟𝑎𝑖𝑛||2

2
 . 

However, the test error is more important for evaluating the model’s 

generalization: 

1

𝑚𝑡𝑒𝑠𝑡
||𝑥𝑡𝑒𝑠𝑡𝑤 − 𝑦𝑡𝑒𝑠𝑡||2

2
 . 

The low training error does not guarantee good performance on unseen data, 

which is why the test error is the key measure of a model’s predictive 

capability. 

To relate training error to performance on a test dataset, we assume that the 

training and test data are independent and drawn from the same underlying 

probability distribution, often called the data-generating distribution D. 

Importantly, we do not assume any specific form for this distribution; we only 

require that the datasets are identically distributed.  Let's say that we have a 

probability distribution 𝐷 and every data point (𝑥, 𝑦) in the dataset is 

independently drawn from the distribution, i.e. (𝑥𝑖, 𝑦𝑖) ∼ 𝐷.  By repeatedly 

sampling from D, we can generate both a training set and a test set. Because 

both sets come from the same distribution, the patterns learned from the 

training data are expected to generalize to the test data. Typically, the training 

error—computed on the dataset used to optimize the model parameters—will 

be equal to or slightly lower than the test error. Therefore, a machine learning 

algorithm should aim to achieve both low training error and low test error to 

ensure good generalization. These two properties of the ML algorithm 

represent the two central challenges: underfitting and overfitting (Figure 14). 

Underfitting occurs when the model cannot achieve a low error rate even on 

the training set. Overfitting occurs when the model achieves very low training 

error but much higher test error (i.e., the gap between the training error and 

test error is large). 

Underfitting and overfitting can be controlled by adjusting a model’s 

capacity, which roughly corresponds to the number of trainable parameters. 

Capacity reflects the model’s ability to capture complex relationships between 

input and output data. A model with low capacity may struggle to fit the 

training data, leading to underfitting. Conversely, a model with high capacity 

can overfit, memorizing details of the training set that do not generalize to the 

test set. Essentially, more trainable parameters allow the model to store more 
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information, which can include noise or patterns irrelevant for unseen data. 

In machine learning, capacity can be controlled by selecting the hypothesis 

space—the set of functions the model is allowed to use. 

Consider the problem of predicting y from x. In a linear regression problem, 

we want to decide whether to fit the simple model, such as the linear 

regression model, i.e. 𝑦̂ = 𝑏 + 𝑤𝑥 or a mode complex model such as the 5-

degree polynomial 𝑦̂ = 𝑤1𝑥 + 𝑤2𝑥
2+. . . +𝑤5𝑥

5 (Figure 67). ML models 

perform best when their capacity is well-matched with the true complexity of 

the task and the size of the available dataset.  

The figure compares three types of models: linear, quadratic, and 5-degree 

polynomial estimators. The linear model, having very low capacity, is unable 

to capture the curvature inherent in the true relationship between x and y. As 

a result, it underfits, producing predictions that are systematically off across 

the dataset.  

On the other end of the spectrum, the 5-degree polynomial model has high 

capacity and is capable of perfectly predicting y for all examples in the 

training dataset. While this may seem ideal at first glance, it comes at a cost: 

the model essentially memorizes the training data, including any noise or 

idiosyncrasies present. Consequently, it fails to generalize to unseen data 

points, producing poor predictions on the test set. This phenomenon is known 

as overfitting. The difficulty arises because when a model has such high 

flexibility, there exist many wildly different functions that can fit the training 

data exactly, making it hard to select one that performs well on new data.  

In contrast, the quadratic model strikes the right balance. Its capacity matches 

the true underlying structure of the task, allowing it to capture the essential 

curvature without memorizing irrelevant details. This enables the quadratic 

model to generalize well, producing accurate predictions not only on the 

training set but also on unseen data. In other words, the quadratic function 

exemplifies a model that avoids both underfitting and overfitting, achieving 

strong generalization. 

Although simpler models are generally more likely to generalize well, a 

model must also have sufficient complexity to achieve a low training error. 

As model complexity increases, the training error typically decreases, 

eventually approaching the minimum possible error.  
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Figure 67 The fitted models to the training set 

However, the effect of model capacity on test error is non-monotonic: initially, 

increasing complexity improves generalization and reduces test error, but 

beyond a certain point, further increases in capacity lead to overfitting, 

causing test error to rise. This phenomenon results in the familiar U-shaped 

curve of generalization error as a function of model capacity, where the 

optimal model lies somewhere in the middle—complex enough to capture the 

underlying patterns but not so complex that it memorizes the training data. 

 

 

Figure 68 The relationship between model capacity and error 

As model capacity increases, the training error decreases; however the gap 

between training and generalization error also increases (Figure 68). When 

this gap becomes larger than the gains from reduced training error, the model 

begins to overfit. 
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Moreover, the model trained on a larger dataset tends to generalize better. 

This is due to the fact that it is easier for a model to memorize a small dataset, 

including noise and sample quirks. Larger datasets contain fewer accidental 

patterns relative to their size, allowing the model to focus on learning the true 

underlying patterns in the data. 

The high-performing ML algorithm should have sufficient capacity to learn 

true data patterns, but not too much to memorize the training dataset and 

accidental patterns. 

Because the relationship between model capacity and test error is non-

monotonic, one strategy to control model capacity is to tune hyperparameters 

using a validation dataset. Grid search and manual search are the most widely 

used strategies for hyperparameter optimization. In manual search, the users 

use hand-tuned hyperparameters based on intuition or experience and a trial-

and-error approach to determine appropriate hyperparameter values. The 

trial and error approach refers to training multiple models by using a random 

model configuration and choosing one with the lowest validation error. In 

grid search, the search space is a regular grid created by defining the set of 

possible candidate values for each hyperparameter. The model is trained by 

using all possible combinations, and the one with the lowest validation error 

is selected.  The grid search is easy to understand and implement; it enables 

repetition of experiments with the same settings, but it is computationally 

intensive when the number of parameters is high. 

9.14 Regularization 
Regularization is a key technique in machine learning and deep learning, as it 

helps reduce a model’s generalization error without increasing the training 

error. Regularization encompasses techniques designed to reduce a model’s 

tendency to overfit the training data, thereby improving its accuracy on 

unseen data. 

In traditional ML, the regularization refers to constraining the loss function of 

the training model. In DL, regularization includes several techniques that can 

be divided into: loss-based regularization, data-based regularization, and 

architecture-based regularization. For example, let x be an independent 

variable and y be a dependent variable. The linear regression will provide 



Introduction to Geospatial Artificial Intelligence 

208 

 

high accuracy if the relationship between variables is linear. The linear 

regression has a hyperspace that contains a set of functions that can be used 

for this problem. Regularization is used to introduce desirable preferences 

into training, i.e., it constrains the type of function that can be used for the 

solution. 

9.14.1 Loss-based methods 

Loss-based methods work by modifying the loss function to include an 

additional term that penalizes excessive model complexity. 

𝐿𝑟𝑒𝑔(𝑤) = 𝐿(𝑤) + 𝜆𝑅(𝑤) 

where 𝐿(𝑤) is a loss function designed for a specific objective, 𝑅(𝑤) is a 

regularization term that is independent of the target and 𝜆 ≥ 0 is a scalar that 

represents the importance of the regularization term that penalizes the 

model's trainable parameters. If 𝜆 = 0 the regularization term is removed and 

weights are close to their initial solution, while for large 𝜆 the regularization 

strongly penalizes the large weights, i.e., the loss term is insignificant, and the 

regularization term forces weights to be close to 0.  

Minimization of the 𝐿𝑟𝑒𝑔(𝑤), leads to the choice of weights that balance 

between model underfitting and overfitting and therefore improve the 

generalization ability of algorithms. Training the model using a modified loss 

function will result in model parameters with desirable properties that are 

defined by the regularization term. The two most commonly used types of 

regularization are L1 norm (also called Lasso - Least Absolute Shrinkage and 

Selection Operator) and L2 norm (also called ridge) regularization.  

The L1 norm regularization encourages sparse solutions by setting the 

network weights to zero, effectively reducing overall network complexity. ( 

let us remind that a sparse solution is one where most of the parameters - 

weights - are zero, and only a small number of them remain nonzero) .It is 

defined as 

𝐿𝑙𝑎𝑠𝑠𝑜(𝑤) = 𝐿(𝑤) + 𝜆||𝑤||1 

where ||𝑤||
1
= ∑ |𝑤𝑖| 𝑖  is the L1 norm of the weight vector w. The higher the 

value of 𝜆 is, the more likely L1 regularization will drive additional weights 



Introduction to Geospatial Artificial Intelligence 

209 

 

to zero. Lasso is often used for feature selection, because it tends to assign zero 

weights to irrelevant features, effectively removing them from the model. 

L2 norm, also known as weight decay, encourages large weights to shrink 

toward zero and can be interpreted as performing maximum a posteriori 

(MAP) estimation with a Gaussian prior on the weights. In linear regression, 

using MSE as a loss function, we often wish to reduce extreme values of model 

parameters. This can be achieved by modifying the loss function to include 

the weight decay. The regularized loss function becomes 

𝐿𝑟𝑖𝑑𝑔𝑒(𝑤) =
1

𝑛
∑(𝑦𝑖 −𝑤

𝑇𝑥𝑖)
2

𝑛

𝑖=1

+ 𝜆∑𝑤𝑗
2

𝑑

𝑗=1

 

where the ∑ 𝑤𝑗
2 = ||𝑤||

2

2𝑑
𝑗=1  is the L2 norm of the weight vector. Finding the 

model weights that minimize the L2 regularized loss is also known as ridge 

regression. Ridge regression is solved in three steps: select 𝜆, minimize the 

ridge cost function 𝑤 = (𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑌 and record 𝑅2 on the test set, and 

find the 𝜆 that gives the largest 𝑅2. Selecting optimal 𝜆  is hard, and usually 

cross-validation is used.  

From the Bayesian perspective, we start with a prior distribution over the 

model parameters (or hypotheses). As data are incorporated into the model, 

this prior is updated to form a posterior distribution. Specifically, L1 norm 

regularization corresponds to assuming a Laplace (double exponential) prior 

on the weights, which encourages sparsity, while L2 norm regularization 

corresponds to a Gaussian (normal) prior, which encourages smaller but 

nonzero weights. 

9.14.2 Data-based regulation 

The success of ML and DL models depends on the training data. The easiest 

way to increase the generalization ability of the modes is to train them on a 

large dataset. However, the creation of a training dataset is time-consuming 

and financially demanding, and the available trained data are always limited. 

This challenge, especially in computer vision and medical image analysis 

domains, can be addressed by augmenting the available datasets.  

In classification, the model maps a high-dimensional input x into a single 

output y. To provide high generalization, the trained model needs to be 
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invariant to a wide variety of transformations. The easiest way to enlarge the 

dataset is to generate the new (x, y) pairs by transforming the existing input 

data. This approach is known as data augmentation. 

Let us consider a simple example:  we want to perform a satellite image 

classification task where the goal is to classify land cover types (e.g., forest, 

water, urban) from high-resolution images. Each image patch is an input 𝑥, 

and the corresponding land cover label is the output 𝑦. 

To help the model generalize well, we want it to be invariant to 

transformations such as rotation, translation, or changes in lighting — for 

example, a forest looks like a forest whether the image is slightly rotated or 

shifted. 

Data augmentation can help by generating new training samples from the 

existing images. For example: 

• Rotate an image of a forest by 90 degrees corresponds still to a forest; 

• Flip a river image horizontally corresponds still to a river; 

• Slightly adjusting the brightness of an urban area image 

corresponds still to an  urban. 

 
These transformations create new (x, y) pairs without manually collecting 

more data. The augmented dataset is larger and more varied, which helps 

the model learn robust features and generalize better to unseen satellite 

images. 
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Data augmentation applies stochastic transformations to modify original 

training samples, creating new ones that enlarge and introduce variability 

into the dataset. So, the main aim is for a given dataset D consisting of 𝑥𝑖 

training samples with corresponding labels 𝑦𝑖 apply the transformation T to 

create new training data 𝑥′𝑖 without altering the corresponding label i.e. 

𝑇(𝑥𝑖, 𝑦𝑖) → (𝑥′𝑖, 𝑦𝑖). Different transformation operations, such as geometric or 

radiometric transformation, can be used. 

Geometrical transformations change the geometrical structure of an image by 

mapping pixels to new positions without altering the pixel value. The most 

commonly used geometrical methods are affine transformation, including 

rotation, translation, scaling (zooming and cropping), horizontal or vertical 

flipping, and mirroring. The same geometric transformations can be applied 

to entire point clouds or specific instances (such as vehicles). Moreover, non-

affine transformations, like projective or perspective ones can be used. The 

geometrical transformations are simple, computationally effective, and 

usually used as primary data augmentation models in computer vision.  

Returning to the previous example, the geometric transformations work well 

for creating more training data only if the new, transformed images still look 

realistic and represent the kinds of data the model will see in the real world. 

Moreover, translation or rotation suffers from a padding effect, i.e., new pixels 

need to be added to fill in the empty areas created by the transformation, 

which can lead to the omission of the target objects and loss of information.  

Another type of data augmentation is introducing random noise into inputs 

to increase the robustness of the models. In the case of images, new data can 

be for instance generated by randomly perturbing the RGB information of the 

pixels. Commonly used noise types in remote sensing include Gaussian noise, 

salt and pepper noise, Jittering (for instance adding small spatial variation in 

point cloud data), and speckle noise. New training data can be generated by 

modifying the image sharpness. In remote sensing, this can involve: 

sharpening, which reduces blur by enhancing high-frequency components 

and making edges more distinct; blurring, which smooths the image by 

averaging the values of surrounding pixels, reducing noise and fine details. 

Sometimes parts of objects in images are hidden (occluded), which makes it 

harder for models to learn. This challenge can be addressed by using the 
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cutout that removes contiguous sections of input images. This forces the 

model to rely on the surrounding context and learn to recognize objects even 

when parts are missing. Introducing these modified images into the training 

dataset helps the model become better at handling occlusions and encourages 

it to use more image context during decision-making. Also, Mixup [40], which 

randomly selects two images and mixes them in a certain ratio to form a new 

image, is used. This encourages the model to generalize better because it 

learns from blended examples instead of just single images. The same idea is 

applied for point clouds on the instance level (individual objects or samples 

in the dataset) by randomly selecting two samples and mixing them to create 

a new training sample. 

The point cloud augmentation often includes randomly dropping out some 

data points, enabling the model to become more robust to missing or 

incomplete representations.  

In recent years, the Generative Adversarial Network (GAN) [16] has become 

the most popular model for artificially generated image data. It consists of a 

generator that tries to create realistic data so that the discriminator that 

distinguishes between real and generated data cannot tell the difference. 

Competition between these two sub-models (the generator and the 

discriminator) continuously optimizes and enables the generation of high-

quality data. For example, GAN can be used to transform the visual 

appearance of an image taken under one set of conditions (sunny) to a 

different set of conditions (haze). The conditional GAN (CGAN) is an 

extension of GAN where both generator and discriminator are conditioned on 

additional information, such as reference images or labels. This guidance 

encourages the model to generate data with specific desired features rather 

than purely random samples. 

However, generative models are difficult to train on a limited dataset and they 

often require data augmentation to perform effectively. Additionally, they can 

suffer from mode collapse, a phenomenon in which the generator fails to 

produce diverse outputs and instead generates limited or repetitive samples. 
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9.14.3 Network-based regularization 

Early stopping is one of the most used regularization methods in deep 

learning. It is considered a training strategy since it does not require changes 

of loss function or training procedures. During network training, the training 

error and validation error are interactively reduced. If a model has sufficient 

capacity to overfit, the validation error starts to increase once the network 

begins to memorize the training data. The main idea behind early stopping is 

to halt training when the validation error reaches its minimum, thereby 

improving the network’s generalization ability. To implement this, early 

stopping stores the model parameters each time the validation loss decreases. 

Once training is complete, the parameters corresponding to the lowest 

validation error are restored and used, rather than the parameters from the 

final training iteration. 

Early stopping controls model capacity by limiting the number of iterations 

used to fit training data. The number of iterations is determined based on 

monitoring the validation error, i.e., the algorithm is terminated when there 

are no at least minimal improvements in the validation error over a 

predefined number of iterations. Therefore, the two hyperparameters must be 

specified empirically: the delta hyperparameter, which represents the 

minimal change in validation loss to be considered as an improvement, and 

the patience hyperparameter, which defines the number of iterations with no 

improvements after which the training will be stopped. 

Early stopping is a simple and effective regularization method that reduces 

training time by limiting the number of iterations. It can be used alone or in 

combination with other regularization techniques. However, early stopping 

has some limitations. It requires a validation set, which can be challenging 

when the available dataset is small. The size of the validation set also 

introduces a bias–variance trade-off: a small validation set may lead to 

unreliable stopping decisions, while a larger validation set reduces the data 

available for training. Additionally, running periodic evaluations on the 

validation set increases computational cost. Early stopping also requires 

storing a copy of the model parameters corresponding to the lowest validation 

error, although this storage cost is typically negligible. 
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Generally, the use of deeper neural networks, with a high number of units, 

enables models to learn very complicated patterns in input data. However, 

large and more complex architectures are prone to overfitting. One of the most 

frequently used regularization methods to prevent network overfitting is 

Dropout.  

Dropout [41] randomly drops units from the network during each forward 

pass. Dropout can be observed as a way of reducing the model complexity by 

randomly setting individual neurons’ output to 0. The probability of dropping 

each unit in a network is estimated using the fixed Bernoulli probability p. In 

that way, the unit and all its connections are temporarily removed from the 

network, and a new “thinned” architecture is sampled and trained (Figure 

69).  

 

Figure 69 (a) Standard neural network architecture, (b) “thinned” network architecture by 

dropping orange neurons and all their connections. 

Dropout can be interpreted as training 2ⁿ “thinned” networks, each with a 

distinct, randomly selected subset of neurons, while sharing weights 

extensively. It leverages the well-established strategy of reducing model 

variance and overfitting by effectively averaging the predictions of multiple 

models. Consider a neural network with 𝑙 = [1, . . . , 𝐿] hidden layers, where the 

input of each lth layer is denoted by 𝑥𝑖 while 𝑦𝑙 represents the vector of 

outputs from the layer l. The feedforward operation is given by 

𝑦𝑙
𝑖 = 𝑤𝑙

𝑖𝑥𝑙 + 𝑏𝑙
𝑖 

𝑥𝑙+1
𝑖 = 𝑓(𝑦𝑙

𝑖) 

where 𝑓 is the activation function;  
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𝑦𝑙
𝑖 represents the linear transformation of the input 𝑥𝑙 based on the trainable 

weights 𝑤𝑙
𝑖 and bias 𝑏𝑙

𝑖 associated with hidden unit i in the layer l;  

𝑥𝑙+1
𝑖  is the output of the hidden unit which forms a part of the input to the 

subsequent (l+1)-th layer in the network and which is given by the application 

of the activation function to the pre-activation output 𝑦𝑙
𝑖.  

With Dropout, the same feedforward operation may be expressed as follows: 

𝑟𝑙 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝)  

𝑥𝑙 = 𝑟𝑙⊙𝑥𝑙 

𝑦̂𝑙
𝑖 = 𝑤𝑙

𝑖𝑥𝑙 + 𝑏𝑙
𝑖 

𝑥𝑙+1
𝑖 = 𝑓(𝑦̂𝑙

𝑖) 

where 𝑟𝑙 is a vector of independent Bernoulli random variables, each having 

a probability p of being 1 and 1-p of being 0. This vector is sampled and 

multiplied elementwise (the operation is denoted with ⊙) with the outputs 𝑥𝑙 

of that layer to create the thinned inputs 𝑥𝑙. The thinned outputs 𝑥𝑙+1
𝑖  are then 

used as inputs to the next (l+1)th layer. This process is repeated for each layer, 

creating sub-networks. For learning, the weights are backpropagated through 

the sub-network. For testing, the full neural network is used without dropout. 

To account for the neurons that were dropped during training, the outgoing 

weights of each unit are scaled by the dropout probability p, i.e., 𝑤𝑙
𝑡𝑒𝑠𝑡 = 𝑝𝑤𝑙. 

The probability p is a user-specified hyperparameter that needs to be tuned. 

The 𝑝 = 1 means no dropout, and a small p leads to more dropout. It is 

typically set between 0.5 and 0.8.  Dropout is relatively easy to implement, it 

provides a trade-off between overfitting and training time, and improves the 

performance of the neural networks in different domains. However, it also 

increases the training time and needs careful tuning of p. 

9.15 Cross-validation 
When the available dataset is too small to create a representative 

training/validation dataset for accurate estimation of generalization error, an 

alternative approach can be used. This approach is based on repeating the 

training and testing computation on different randomly chosen subsets of the 

original datasets.   
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The k-fold cross-validation is most commonly used. In k-fold cross validation, 

the original dataset is randomly splitter in k disjoint subsets. For each 

iteration, one subset is used as a validation set, and the rest k-1 subsets are 

combined and used as training sets. This process is repeated k times, so each 

subset is used as a validation set. The approximation of validation error is 

estimated as the average validation error across k iterations. The algorithm is 

shown below. 

Algorithm k-fold 

Input: dataset 𝐷 with 𝑧𝑖 = (𝑥𝑖 , 𝑦𝑖) elements, A learning algorithm, L loss 

function, k - number of subsets, learning algorithm and  

Split 𝐷 into k disjoint subsets 𝐷𝑖 whose union is D 

Return: vector of errors e 

for i from 1 to k: 

     𝑓𝑖 = 𝐴(𝐷/𝐷𝑖) 

for 𝑧𝑗 in 𝐷𝑖: 

     𝑒𝑗 = 𝐿(𝑓𝑖, 𝑧𝑗) 

end 

end 

return e 

The parameter k is chosen in such a way that the resulting subgroup is a 

representative sample of the data set, and based on the available computation 

resources. Usually, 10-fold or 5-fold is used. Once the k-fold cross-validation 

is done, the best model or hyperparameters are selected as the one that had 

the lowest averaged validation error. Then the final model is trained on the 

full training data and then evaluated once on the test set. 

Although the k-fold provides a more reliable estimation of validation 

performance, in the case of imbalance, it can lead to unstable performance. 

The stratified k-fold is used to address that limitation by ensuring that each 

of the k subgroups has the same class distribution as the full dataset. The 

process can be parallelized to speed up the model evaluation.  
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9.16 Bias-variance trade-off 
Let 𝜃𝑚 be an estimator where m is the size of the dataset. For example, in the 

case of the linear regression, 𝜃𝑚 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦. The distribution of the 𝜃𝑚 is 

called the sampling distribution. The bias and variance of the estimator 𝜃𝑚 

correspond to the first and second moments of this sampling distribution. 

They quantified two different sources of error in the estimator. 

The bias measures how the average model prediction over the entire dataset 

differs from the true value of the function or parameter. The bias of an 

estimator is defined as  

𝑏𝑖𝑎𝑠(𝜃𝑚) = 𝐸(𝜃𝑚) − 𝜃 

where  𝐸(𝜃𝑚) is the expected value (mean) of the model and 𝜃 is the true 

underlying value of 𝜃 used to define the data-generating distribution. An 

estimator 𝜃𝑚 is unbiased if the bias is equal to 0 (i.e. 𝐸(𝜃𝑚) = 𝜃). An estimator 

𝜃𝑚 is asymptotically unbiased if 𝑙𝑖𝑚
𝑚→∞

𝑏𝑖𝑎𝑠(𝜃𝑚) = 0. 

The variance (𝑉𝑎𝑟(𝜃𝑚)) reflects the extent to which estimators for individual 

data sets vary around their expected value. Therefore, it measures the extent 

to which the estimator is sensitive to the particular sampling of the data.  

Alternatively, the standard error (𝑆𝐸(𝜃𝑚)) that represents the square root of 

the variance can be used. When we estimate statistics using a finite number of 

samples, our estimation of the true underlying population parameter (such as 

the mean) is uncertain. This is due to the fact that we may obtain different 

results if different samples have been used. The expected degree of variation 

in any estimator is a source of error that needs to be quantified. Under MSE, 

the bias and variance are related as 

𝑀𝑆𝐸(𝜃𝑚) = 𝐸 [||𝜃̂𝑚 − 𝜃||
2
] = 𝐵𝑖𝑎𝑠(𝜃𝑚)

2
+ 𝑉𝑎𝑟(𝜃𝑚) + 𝜎

2 

where 𝜎2 is an irreducible error caused by inherent noise in the dataset, which 

cannot be eliminated. The aim is to minimize the expected loss, so it is 

preferable that estimators exhibit low bias and have relatively low variance. 

The bias and variance of an estimator are not necessarily directly related. In 

practice, many techniques used to reduce variance tend to increase bias, and 

techniques that reduce bias can increase variance. This phenomenon is called 
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the bias-variance trade-off. In Figure 70 this concept is represented with four 

target diagrams that resemble shooting at a bullseye, where each shot 

represents a model’s prediction and the center of the target represents the true 

value. The balance between bias and variance is essential for building a well-

generalized estimator. 

 

Figure 70 Graphical representation of Bias and Variance 

In the case of two estimators, one may have low bias but high variance, and 

the other may have low variance but high bias. Which one should be selected? 

The most common approach to balancing between bias and variance is to use 

cross-validation. Alternatively, it is possible to compare the MSE of the 

estimators since it captures the overall expected prediction error, 

incorporating both the bias and variance. Desirable estimators have the lowest 

MSE, i.e., they manage to keep both bias and variance low.  

The relationship between bias and variance in ML is tightly related to 

underfitting and overfitting. This is due to the fact that increased model 

capacity tends to increase variance and decrease bias, i.e.: 
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● Overfitting - the model or estimator has a high variance, i.e., the model 

is too complex (it memorizes training data but fails to generalize). To 

reduce overfitting, it is necessary to reduce the variance of the 

estimator by regularization, using more training data, reducing the 

number of features, or simplifying the model, etc. 

● Underfitting - models/estimators have a high bias, i.e., the model is too 

simple to capture complex patterns in the data.  So, reduction of 

underfitting is based on reducing bias by: reducing regularization, 

adding more relevant features, and increasing model complexity.  

When evaluating a model, it is essential to take into account the training error 

and the cross-validation error simultaneously. The training error can be 

viewed as the measure of the bias in the model. If the model is unable to fit 

the training data accurately, then it is likely that the model has high bias 

(underfitting) (Figure 71). The gap between validation and training error 

provides an indicator of the model variance. The low training error and higher 

validation error indicate high variance (the model is overfitting the training 

data)(Figure 71).  

 

Figure 71 Validation error as a function of model complexity 
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9.17 Performance metrics 
Performance metrics are used to assess the predictive power of the developed 

models. In ML, the selection of appropriate metrics is an important step. 

Various metrics can be used but they need to be chosen carefully depending 

on the type of application. The list of performance metrics used in different 

tasks is presented in Figure 71. 

9.17.1 Performance metrics in regression 

Selecting appropriate metrics is crucial for the accurate evaluation of 

regression models. Most commonly used metrics in regression are: RMSE, 

MSE, MAE, MAPA,  𝑅2, and 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2. 

RMSE is defined as the square root of the MSE. For n data points, the RMSE 

is given by 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 

where 𝑦𝑖 is the true value and 𝑦̂𝑖 is the predicted value. In general, the smaller 

the value, the better the model's performance. RMSE is easy to interpret; it has 

the same unit as the target y. As already mentioned, the main drawback of 

this metric is sensitivity to outliers (a few outliers can produce a significant 

increase in RMSE), and it does not differentiate between error types 

(underestimation or overestimation). 

The normalized RMSE (NRMSE) represents the non-dimensional form of the 

RMSE that has been widely used for comparison of the regression models and 

algorithms of different scales. It is defined as follows 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
 

where 𝑦𝑚𝑎𝑥 is the maximum of the target true values and 𝑦𝑚𝑖𝑛 is the minimum 

of true target values. 

Mean Absolute Percentage Error (MAPE) represents the average relative 

error of prediction, expressed in percentages. It is given by 
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𝑀𝐴𝑃𝐸 =
1

𝑛
∑(

|𝑦𝑖 − 𝑦̂𝑖|

𝑦𝑖
⋅ 100)

𝑛

𝑖=1

 

MAPE is scale invariant, enabling the comparison between different tasks or 

datasets. Moreover, the percentages are a very intuitive interpretation of 

relative error. On the other hand, it is sensitive to zero and near-zero values 

(if 𝑦𝑖 is 0 or close to zero the MAPE is undefined), and the presence of outliers. 

Additionally, over- and under-prediction of the same magnitude do not have 

the symmetrical impact on MAPA; for instance, +50% and -50% are both 

treated as 50% by MAPA, but their absolute effect is not the same.  

For example, if NDVI goes from 100% to 150% it is a 50% increase in value, 

but if it reduces from 150% to 100% it is a decrease of -33.3% not -50%. This 

asymmetry occurs because relative change is calculated with respect to the 

original value, so increases and decreases of the same magnitude do not 

produce equal percentage changes. Consequently, metrics like MAPE, 

which rely on absolute percentage differences, can misrepresent the 

impact of over- versus under-prediction, potentially leading to misleading 

interpretations in remote sensing analyses. 

The 𝑅2 (coefficient of determination), It is the statistical measure of the 

goodness of fit of the regression line to the actual data, i.e., the portion of total 

variance in the dependent variable that is caused by the variation of the 

independent variables. 

𝑅2 = 1−
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦𝑖̅)
2𝑛

𝑖=1

 

It quantifies the predictive power of a regression model. The values range 

between 0 and 1, where 1 represents the perfect fit and 0 indicates that the 

model explains no variability of the dependent variable.  

For example, the 𝑅2 = 0.65 for biomass prediction based on NDVI means 

that 65 % of the variance is explained by independent variables (i.e., 

NDVI). The remaining 35 % is due to the variance of the dependent 

variable (𝑦𝑖 has variance 𝜎2), i.e., 35% of the variation is due to the variance 

of biomass, which is unexplained and arises from other factors or noise in 

the data. 
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Adding more variables to the model will always decrease ∑ (𝑦𝑖 − 𝑦𝑖̂)
2𝑛

𝑖=1 and 

therefore increase the coefficient of determination. So, trusting blindly to 𝑅2 

will always lead to the largest model and possible overfitting. Moreover, it 

does not detect bias, is sensitive to outliers, and can provide misleading values 

for small datasets due to unstable variance estimation. 

The adjusted 𝑅2 represents the modified version of 𝑅2 by introducing the 

penalty for unnecessary prediction. The adjusted 𝑅2 will only add new 

independent variables to the model if it improves the prediction accuracy. It 

is defined by 

𝑅𝐴𝐷𝐽
2 = 1−

(1− 𝑅2)(𝑛 − 1)

𝑛 − 𝑁 − 1
 

where n is the sample size and N is the number of independent variables in 

the model. The values range between -1 and 1. A high value of 𝑅𝐴𝐷𝐽
2  indicates 

that the model fits well the data and that the chosen variables contribute to 

explaining the dependent variable. The low or negative value suggests that 

model performance is not improved by adding more independent variables. 

The 𝑅𝐴𝐷𝐽
2  reduces the risk of overfitting and enables fair comparison for the 

model trained on the same datasets but using different parameters (nested 

models). However, its application in complex and nonlinear models is 

limited.  

9.17.2 Performance metrics in classification 

A confusion matrix is a fundamental tool for the assessment of classification 

accuracy for both binary and multi-class classification. The confusion matrix 

represents counts of each combination of predicted and true values with 

respect to test data. There are four possible combinations: 

● True Positive (TP) - indicates the number of instances that are 

correctly classified, 

● True Negative (TN) - indicates the number of instances that are 

correctly rejected, 

● False Positive (FP) - represents the number of instances that are 

incorrectly classified (type I error), and  

● False Negative (FN) - number of intances that are incorrectly rejected 

(type II error). 
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The diagonal element of the confusion matrix (Table 14) represents the 

elements that are correctly classified, while the elements off the diagonal 

indicate the misclassification. The elements 𝑛𝑖𝑗 in the confusion matrix, 

indicate the instances belonging to i that had been classified as j. The size of 

the confusion matrix is equal to the number of classes, i.e., for a binary 

classification, the confusion matrix is 2x2, while for a multi-class classification, 

it is kxk, where k represents the number of classes. 

Table 14 Confusion matrix 

 Predicted positive Predictive negative 

Actual positive TP FN 

Actual negative FP TN 

Once the confusion matrix is created for a trained algorithm, the following 

metrics can be calculated: accuracy, recall, precision, f1-score, and kappa-

coefficient. 

Overall accuracy (OA) is used to reflect how often the model predicts the 

correct output. It is expressed in percentages, and it is given by 

𝑂𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
=

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

Although OA provides insights into overall model performance, it can be 

misleading in the case of data imbalance.  

For example, let's say that we want to classify water/non-water and that 

water only represents 3% of pixels. If the model completely omits minor 

classes, the overall accuracy will be 97%. This high value is misleading, 

as the model entirely neglects the minority class.  

Precision quantifies the fraction of predicted positives that are actually 

correct. It is defined as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖
 

In multi-class classification with K classes, Macro-Precision is calculated on a 

per-class basis and then averaged, i.e. 
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𝑀𝑎𝑐𝑟𝑜 − 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

𝐾
∑

𝑇𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑃𝑖

𝐾

𝑖=1

 

Macro-Precision treats all classes equally, while Micro-Precision weights the 

classes by their frequency, and it is given as 

𝑀𝑖𝑐𝑟𝑜 − 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑ 𝑇𝑃𝑖
𝐾
𝑖=1

∑ (𝑇𝑃𝑖 + 𝐹𝑃𝑖)
𝐾
𝑖=1

 

Precision is also known as User accuracy in classification terms. User’s 

Accuracy reflects the viewpoint of the map user, who relies on the classified 

map to make decisions. It measures commission error, showing how reliable 

a mapped class is.  

For example, if a user looks at a pixel labeled as “water,” User’s Accuracy 

tells them the probability that this pixel truly corresponds to water on the 

ground. 

The Precision can have values from 0 to 1. Perfect precision of 1 means that all 

objects identified as positive are indeed positive and no false positive exists. 

Recall (also known as TP rate) quantifies the portion of actual positives 

correctly classified by the model. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
 

Similarly to precision, Macro-Recall and Micro-Recall are defined as: 

𝑀𝑎𝑐𝑟𝑜 − 𝑅𝑒𝑐𝑎𝑙𝑙 =
1

𝐾
∑

𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖

𝐾
𝑖=1  and 𝑀𝑖𝑐𝑟𝑜 − 𝑅𝑒𝑐𝑎𝑙𝑙 =

∑ 𝑇𝑃𝑖
𝐾
𝑖=1

∑ (𝑇𝑃𝑖+𝐹𝑁𝑖)
𝐾
𝑖=1

 

Recall is essentially equal to the Producer’s accuracy in classification terms. 

Producer’s Accuracy represents the perspective of the map producer, 

assessing how accurately the classified map reflects the reference (ground 

truth) data. It quantifies omission error, indicating the proportion of real-

world instances of a class that were correctly mapped.  

For instance, if some actual water areas are omitted and incorrectly 

classified as urban, the producer’s accuracy for water decreases. 
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Macro-Recall is also known as balanced accuracy. The Recall of 1 means that 

the model correctly identifies all positive cases as such, and no positive cases 

were ignored. However, both Precision and Recall can be influenced by class 

imbalance. The easiest way to maximize only Precision is to be very 

conservative in predicting positives, i.e., the model will only label an instance 

as positive when it is very confident, resulting in fewer positives and therefore 

reducing the Recall. On the other hand, maximization of recall can only be 

done by overpredicting a positive class, increasing the number of FP, and 

reducing Precision. Due to that, the Precision and Recall are analyzed together. 

True Negative Rate (TNR) measures the proportion of actual negatives 

correctly classified as negative. It is given by the following 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

It ranges between 0 and 1, the higher values are preferred. TNR is often used 

when the cost of FP is high, and in combination with Recall, provides a 

complete picture of model performance. 

False Positive Rate (FPR) represents the proportion of actual negatives that 

are incorrectly predicted as positive, i.e. 

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

It ranges between 0 and 1, and lower values indicate fewer false alarms. The 

relationship between FPR and TNR is given by 𝐹𝑃𝑅 = 1− 𝑇𝑁𝑅. FPR has been 

extensively used when the cost of FP can be high, and also as the x-axis of a 

ROC curve. 

F1-score balances Precision and Recall by taking their harmonic mean, given 

as 

𝐹1 = 2 ⋅
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

A higher value of F1-score indicates a more balanced classification, i.e., in 

order for an F1-score to be high, both Precision and Recall need to be high. It is 

very insightful for imbalanced datasets when the positive class is rare; 

however, it completely ignores how models classify the negative class (TN). 
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Cohen’s Kappa Coefficient [42] is used in multi-class classification. It 

evaluates how well the model performs compared to just randomly assigned 

values, i.e., it measures agreement between prediction and ground truth, 

correcting for the agreement that could occur purely by chance. It is given by 

𝜅̂ =
𝑝𝑜 − 𝑝𝑒
1 − 𝑝𝑒

 

where 𝑝𝑜 represent the observed agreement, and it is given as 𝑝𝑜 =
∑ 𝐷𝑖𝑖
𝐾
𝑖=1

𝑛
 and 

𝑝𝑒 represents expected agreement 𝑝𝑒 = ∑
𝑅𝑖⋅𝐶𝑖

𝑛2
𝐾
𝑖=1  where K is the number of 

classes, n is the total number of samples, ∑ 𝐷𝑖𝑖
𝐾
𝑖=1  sum of diagonal elements of 

the confusion matrix, 𝑅𝑖 - row total for class i and 𝐶𝑖 is the column total for 

class i. 

The Kappa Coefficient ranges from -1 to 1. The negative value indicates that 

trained models perform worse than random classification. The interpretation 

of positive Kappa coefficients is shown in Table 15. 

Table 15 Interpretation of Kappa statistics 

Kappa Interpretation 

0.00 - 0.20 Poor agreement 

0.21 - 0.40 Fair agreement 

0.41 - 0.60 Moderate agreement 

0.61 - 0.80 Substantial agreement 

0.81 - 1.00 Almost perfect agreement 

Although Kappa coefficients have been frequently used, they only measure 

the exact agreement and treat approximate agreements as disagreement. This 

limitation can underestimate the performance of models when small spatial 

or semantic deviations occur, which is common in geospatial and remote 

sensing applications where class boundaries are often uncertain or mixed. 

The receiver operating characteristic curve (ROC) is a graph of the tradeoff 

between the TPR (on the y-axis) and FPR (on the x-axis) using different 

probability thresholds. The ROC curve provides a single measure of the 
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overall performance of the model across a full range of possible thresholds, 

allowing averaging their effect on accuracy. Due to that, it is a threshold-

independent measure.  

The area under the ROC curve (AUROC) (Figure 72Figure 1 (a)) is used to 

determine scores, enabling the comparison of different ML algorithms. The 

score ranges between 0 and 1, with 1 being the perfect classifier. The 0.5 score 

indicates random guessing. So the classifiers with a curve close to the upper 

left corner are desirable, while classifiers with curves below the diagonal line 

perform worse than random. An AUROC of 0.935 means that the model has 

excellent discriminatory abilities, i.e., if we randomly choose one positive and 

one negative example, the model will score the positive one higher about 

93.5% of the time. ROC curves can be misleading in the case of highly 

imbalanced datasets. That limitation can be addressed by using the Precision-

Recall curve. 

Precision-Recall Curves (PRC) (Figure 72 (b)) visualize the tradeoff between 

Recall (x-axis) and Precision (y-axis). It is created by plotting the Precision-

Recall pairs that are obtained using different thresholds on a continuous or 

probabilistic classifier. It is most often used for binary classifications, 

especially in imbalanced datasets.  

Area under Precision-Recall Curve (AUPRC) has been used as a summary 

statistic when comparing the performance of different algorithms. The perfect 

model will have a PRC that passes through the upper right corner that 

corresponds to both Recall and Precision equal to 1. The closer the classifier is 

to this corner, the higher the Precision and Recall are. AUPRC score ranges 

from 0 to 1, a higher value indicates better overall performance on a positive 

class. In contrast to the ROC curve, where the baseline is fixed to 0.5, the 

baseline value for AUPRC is defined as 

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 =
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠 + 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠
 

If AUPRC is lower than baseline, the model is doing worse than random 

guessing for positive classes. Since AUPRC does not use TN, it will not be 

affected by the large proportion of TN in the data. 
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Although it is primarily used for binary classification, it can be extended to 

multi-class problems by using a One-vs-All approach for each class (Class 1 

vs Not Class 1, Class 2 vs Not Class 2, etc.). 

 

Figure 72 (a) ROC curve for two models on the same dataset. The dashed red line indicates the 

random performance. (b) PRC curve for two models on the same dataset. The AUPRC is 

indicated in the legend. 
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Consider the semantic segmentation of a satellite image into three classes: 

water, forest, and urban, and we want to evaluate the model performance. 

The table shows a confusion matrix created based on the test set. 

 Water Urban Forest Total Producer’s 

accuracy  

Water 21 6 1 28 0.75 

Urban 8 51 3 62 0.82 

Forest 2 7 44 53 0.83 

Total 31 64 48 143  

Users 

Accuracy  

0.68 0.79 0.92   

On Table 8, the rows of the matrix indicate the ground truth while the 

columns represent the classification results. Diagonal matrix elements 

represent the number of pixels that are correctly classified. In the above 

example, the 21 pixels of water in the test set are correctly classified. Off-

diagonal elements represent the misclassified pixels, i.e., the classification 

errors. Off-diagonal row elements represent the ground truth pixels of a 

certain class that are excluded from that class during classification (FN). 

On the other hand, the off-diagonal column represents the true pixels of 

the other class that are included in a certain class (FP). For example, 6 

ground truth pixels of water were excluded from the water class in the 

classification and ended up in the urban class, while 8 ground truth pixels 

of the urban class were included in the water class.  

Recall (Producer’s accuracy) represents the probability that any pixel in 

that class has been correctly classified. It is calculated for the water class 

as 

𝑅𝑒𝑐𝑎𝑙𝑙𝑤𝑎𝑡𝑒𝑟 =
21

21+ 6+ 1
=

41

48
= 0.75 
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𝑀𝑎𝑐𝑟𝑜 − 𝑅𝑒𝑐𝑎𝑙𝑙 =
0.75+ 0.82+ 0.83

3
= 0.80 

𝑀𝑖𝑐𝑟𝑜 − 𝑅𝑒𝑐𝑎𝑙𝑙 =
21+ 51+ 44

28+ 62+ 53
= 0.87 

Therefore, the water class has a producer accuracy of 0.75, meaning that 

75% of the water ground truth pixels also appear as water pixels in 

classified images. 

Precision (User’s accuracy) is defined as the portion of correctly classified 

positive pixels among all positive predictions made by the model, i.e., the 

reliability of classes in the classified image. For the water class, it is 

calculated as 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑊𝑎𝑡𝑒𝑟 =
21

21+ 8+ 2
=

21

31
= 0.68 

Meaning that approximately 68% of the water pixels in the classified 

image actually represent the water on the ground. 

The overall accuracy of the classified image is calculated as 

𝑂𝐴 =
21+ 51+ 44

143
= 0.81 

meaning that 81% of samples were correctly classified. 

The F1-score for the water class is 𝐹1− 𝑠𝑐𝑜𝑟𝑒 =
2∗0.75∗0.68

0.75+0.68
= 0.71. 

Taking into account the metrics for water class, it can be concluded that 

the model effectively detects water class while maintaining a moderate 

rate of FP. Since the precision is less than the recall, the model tends to 

overestimate the water class. 

9.17.3 Performance metrics in object detection 

As already mentioned, object detection algorithms need to exactly localize an 

object and assign it to the correct class. To evaluate the object classification the 

TP, FP and FN are used. However, they are defined based on the IoU. 

TP represents instances that are correctly identified and localized by the 

model, and the IoU score between the predicted boundary box and ground 
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truth box is higher than or equal to the predefined threshold. The threshold 

depends on specific applications. A low threshold is more flexible, while 

values close to 1 are more restrictive, demanding almost perfect overlap 

between predicted and true boundary box. Commonly used thresholds are: 

● 0.25 - when a task is recall sensitive, such as medical images. Although 

due to a lower threshold value, even a small overlap between the 

predicted and ground truth boundary box will be considered as a 

correct prediction. This can lead to more FP and lower precision. 

However, in a medical context, this is desirable since FN is much 

riskier, 

● 0.50 - when moderate localization precision is required, and  

● 0.75 - when precise localization is crucial, such as in autonomous 

driving.  

FP are instances that the model incorrectly identifies as an object that does not 

exist in the ground truth, or the IoU score is below the threshold. 

FN represents instances where the model fails to detect an object that is 

presented in the ground truth. 

Average Precision (AP) measures per-class performance and then averages 

over all classes (also known as mean Average Precision (mAP)). mAP 

measures the accuracy of object identification and classification. It can be used 

to compare different models or the different setups of the same model. For a 

dataset that contains the K classes, the mAP at an IoU threshold t is defined as 

𝑚𝐴𝑃 =
1

𝐾
∑ 𝐴𝑃𝑖
𝐾
𝑖=1 . 

The AP for a specific class i represents the area under the precision-recall 

curve. To create the precision-recall curve General steps to calculate the AP 

includes: for each detected object calculate IoU with ground-truth objects, 

match objects if 𝐼𝑜𝑈 ≥ 𝑡 for each class, sort predictions by confidence score 

from highest to the lowest, forming the precision-recall pairs as threshold 

changes, employ interpolation methods to gain more detailed analysis of 

precision-recall behavior and calculate the area under the interpolated curve. 

Most often, 11-point interpolation, which uses 11 equally spaced recall levels 

(r) between 0 and 1 [0.1, 0.2, …, 0.9, 1] and calculates interpolated precision as 

the maximum precision for any Recall>r, or all point interpolation is used.  
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mAP uses both precision and recall, providing a balanced measure of the 

model's performance. Moreover, it is non-threshold dependent, providing a 

more comprehensive assessment. It ranges from 0 to 1. The values close to 1 

indicate a reliable model that has a low number of FN and FP.  

Average Recall represents the model's ability to successfully detect all 

ground-truth objects across different thresholds. General steps include: 

computation of IoU for each detected box, matching detection with ground 

truth if IoU is higher than a threshold, computing the recall, averaging the 

recall over various IoU thresholds, averaging over different maximum 

numbers of detected objects per image, and aggregating across all images in 

the dataset. 
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10 REGRESSION 

In the following, we will introduce standard linear regression, in which we 

assume that the stochastic component of the model—the errors—is 

independent and identically distributed with constant variance 

(homoscedasticity). This implies that each observation is independent and 

equally precise, with no correlation between errors and the same level of 

uncertainty across all data points. The theory and properties described here 

hold under these assumptions. 

The regression is a statistical technique used to assess the relationship 

between two or more variables. In the machine learning context, regression 

attempts to model the relationship between input variables (the independent) 

and labels (the target variable).  Regression can be used for prediction, 

estimation, hypothesis testing, and modeling relationships. 

Let y denote the output variable, which depends on several independent 

variables denoted by x. In the regression, it is assumed that the model (i.e., 

mathematical function) maps the input features (x) to the output (y), by using 

some parameters 𝛽 in the following form 

𝑦 = 𝑓(𝑥, 𝛽) 

The function y is called the regression function. The machine learning 

algorithm optimizes the set of unknown parameters such that the 

approximation error is minimized, i.e., the difference between predicted and 

true values given in the training set is minimal. In regression, the output 

variable is written as a function of independent variables, i.e., y represents the 

sum of a function of the input variable 𝑓(𝑥) and random errors 𝜀  i.e. 

𝑦 = 𝑓(𝑥) + 𝜀. 

The function 𝑓(𝑥) is unknown and it is approximated by an estimator 𝑔(𝑥, 𝜃) 

containing a set of parameters 𝛽. It is assumed that errors are random and 

follow a normal distribution with a mean of 0. The model can be expressed in 

a formula 

𝑦̂𝑖 = 𝛽1𝑥𝑖1+. . . +𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖 
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where 𝛽𝑗;  𝑗 = 1, . . . , 𝑝 is a vector of unknown parameters (also called weights) 

which characterize the role and contribution of independent variables 

(𝑥𝑖𝑗;  𝑖 = 1, . . . , 𝑛 ). The 𝜀𝑖 is the error vector, n is the number of observations, 

and p is the number of independent variables.  The value of the desired 𝜃 

minimize the following expression 

𝐸(𝜃) =∑(𝑦𝑖 − 𝑔(𝑥𝑖, 𝛽))
2

𝑛

𝑖=1

 

where 𝛽 is a vector of p parameters 𝛽1, . . . , 𝛽𝑃. There are various types of 

models that can be used for regression. Those models are mostly categorized 

by using the following aspects:  

● Number and types of independent variables - when there is only one 

independent variable, the model is known as a simple regression 

model, while multiple regression models involve more independent 

variables, and  

● The shape of the regression line - linear regression fits a straight line 

while polynomial regression fits a polynomial equation to represent a 

non-linear relationship between input and output.  

10.1 Linear regression 
Simple linear regression contains only one independent variable. It defines 

the relationship between input and output by using the straight line (Figure 

73) defined by 

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜀 

where 𝛽0 represents an intercept term and 𝛽1 represent the slope of the fitted 

line (i.e. 𝑝 = 2).  
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Figure 73 Linear regression model 

10.2 Simple Linear Regression 
To determine the optimal regression coefficients, the Ordinary Least Squares 

(OLS) method is used. In OLS, the intercept and slope are optimized to 

minimize the sum of the squares of the vertical distances between predicted 

and actual values, i.e. 

𝐸 =∑(𝑦𝑖 − 𝑦𝑖̂)
2

𝑛

𝑖=1

=∑(𝑦𝑖 − (𝛽0 + 𝛽1𝑥𝑖)
2

𝑛

𝑖=1

 

The values can be determined by differentiating the loss with respect to each 

parameter and setting it equal to zero 

𝜕𝐸

𝜕𝛽0
= −2∑ (𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖) = 0 

𝑛
𝑖=1 and 

𝜕𝐸

𝜕𝛽1
= −2∑𝑥𝑖(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)

𝑛

𝑖=1

= 0 

Thus 𝛽0 and 𝛽1 are the solution of the system of two equations  

∑ 𝑦𝑖
𝑛
𝑖=1 − 𝑛𝛽0 − 𝛽1∑ 𝑥𝑖

𝑛
𝑖=1 = 0 and 
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∑𝑥𝑖𝑦𝑖

𝑛

𝑖=1

− 𝛽0∑𝑥𝑖

𝑛

𝑖=1

− 𝛽1∑𝑥𝑖
2

𝑛

𝑖=1

= 0 

the means of x and y are given by 

𝑥̅ =
1

𝑛
∑𝑥𝑖  and  𝑦̅ =

1

𝑛
𝛴𝑦𝑖 and variance of x is given by 

𝑉𝑎𝑟(𝑥) =
1

𝑛−1
∑(𝑥𝑖 − 𝑥̅)

2 while the covariance of x and y is defined as 

𝐶𝑜𝑣(𝑥, 𝑦) =
1

𝑛 − 1
∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅) 

Then the values of 𝛽0 and 𝛽1 can be calculated using the following equations 

𝛽1 =
𝐶𝑜𝑣(𝑥, 𝑦)

𝑉𝑎𝑟(𝑥)
 

𝛽0 = 𝑦̅ − 𝛽1𝑥̅ 

 

Example: The values of the crop coefficient (𝐾𝑐) and corresponding NDVI 

values are provided in Table. Estimate the 𝐾𝑐 in the plot if the NDVI value 

is equal to 0.82.  

Plot 1 2 3 4 5 6 7 

𝐾𝑐 0.479 0.552 0.540 0.643 0.745 0.830 1.027 

NDVI 0.730 0.739 0.760 0.767 0.786 0.798 0.845 

The first step is to examine whether a linear relationship exists between 

independent and dependent variables either through visual inspection of 

scatter plots or by applying statistical tests. As figures show, they lie 

approximately along a straight line, indicating that the crop coefficient 

tends to increase as NDVI increases. This suggests a clear linear 

relationship between variables. The next step is to fit the regression model. 

n=7 

𝑥̅ = 0.775, 𝑦̅ = 0.688, 𝑉𝑎𝑟(𝑥) = 0.001, 𝐶𝑜𝑣(𝑥, 𝑦) = 0.006 
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𝛽1 =
18.85

0.197
= 4.86, 𝛽0 = 0.688 − 4.86 ⋅ 0.775 = −3.08 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 =  4.86 ⋅ 𝑁𝐷𝑉𝐼 − 3.08 = 4.86 ⋅ 0.82 − 3.08 ≈ 0.91  

 

 

The Simple Linear regression model is based on a few assumptions that need 

to be fulfilled in order model to provide valuable results: 

1. Linearity - the relationship between the independent and target value 

needs to be linear. If the relationship is non-linear, the model will show 

a poor performance., 

2. The errors are uncorrelated - there should not be correlation or 

patterns between errors., 

3. The independent variables 𝑥𝑖 are exactly known - if 𝑥𝑖values contain 

measurement errors, the estimated regression coefficient 𝛽 will be 

biased, 

4. Errors should follow a normal distribution, and  

5. Errors should have constant variances (homoscedasticity) across all 

values of the independent variable. If homoscedasticity is not met, the 

method of least squares becomes imprecise. 

Assumptions 2, 3, 4, and 5 can be checked by using statistical tests. To test 

whether a linear relationship exists between independent and dependent 
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variables, the t-test or F-test can be used. The t-test examines an individual 

coefficient, i.e. 

𝐻0: 𝛽1 = 0 versus 

𝐻1: 𝛽1 ≠ 0 

So, the t-test checks whether the slope is significantly different from zero. If 

the p-value is below the chosen significance level (usually 0.05), the 𝐻0 is 

rejected, the is rejected and the relationship is linear. In contrast to the t-test, 

which is limited to two variables, the ANOVA test can handle multiple 

variables. It tests the whole model, i.e., it checks whether all slopes together 

in multiple regression are zero: 

𝐻0: 𝛽1 = 𝛽2 = . . . = 𝛽𝑃 = 0 vs 

𝐻1: 𝐴𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝛽𝑗 ≠  0 

The 𝐻0 states that all regression coefficients are 0, meaning that there is no 

predictive relationship between the x and y variables. On the other hand, the 

𝐻1 claims that at least one of the regression coefficients is not 0, i.e., there is at 

least one independent variable that affects y. The ANOVA uses the F-test that 

is define: 

𝐹 =
∑ (𝑦𝑖̂ − 𝑦)

2
𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦𝑖̂)
2𝑛

𝑖=1

⋅
𝑛 − 𝑁 − 1

𝑁
=
𝑆𝑆𝑅

𝑆𝑆𝐸
⋅
𝑛 − 𝑁 − 1

𝑁
 

where the SSR is the regression sum of squares, SSE is the sum of square 

errors, n is the total number of measurements, N is the number of independent 

variables, 𝑦𝑖̂ is the predicted value for observation i,  𝑦 is the mean of the 

observed dependent variable. If the computed F value is larger than the F-

statistic for the desired level of significance, the null hypothesis is rejected, 

meaning that the variables (all together) have a significant linear relationship 

with the dependent variables. 

10.3 Multiple linear regression 
A multiple linear regression is an extension of simple linear regression. The 

model defines the relation between N independent variables and the target 

variable by using the following equation: 
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𝑦 = 𝛽0 + 𝛽1𝑥1+. . . +𝛽𝑁𝑥𝑁 

The optimal values of the parameters 𝛽0, 𝛽1, . . . , 𝛽𝑁 is estimated by using the 

ordinary least squares method. The matrix notation of the above model is 

𝑌 = [

𝑦0
𝑦1
⋮
𝑦𝑖

] , 𝑋 = [

1 𝑥11 …
1
⋮
1

𝑥12
⋮
𝑥1𝑖

…
⋮
…

     

𝑥𝑁1
𝑥𝑁2
⋮
𝑥𝑁𝑖

] , 𝛽 = [

𝛽0
𝛽1
⋮
𝛽𝑁

]  

The simple least squares estimation of regression coefficients can be defined 

as 

𝛽̂ = (𝑋𝑇𝑋)−1𝑋𝑇𝑦 

Example: Estimate the soil moisture based on multiple spectral bands. 

The results of field measurement of soil moisture and spectral reflectance 

for corresponding bands are available in Table 

Sample 1 2 3 4 5 

NIR 0.30 0.40 0.35 0.25 0.33 

SWIR 0.25 0.22 0.20 0.28 0.26 

Soil moisture 

[%] 

12 15 14 10 13 

Using the samples, fit the multiple linear regression model to estimate 

fore regression coefficients. 

𝛽0 = 5.65, 𝛽𝑁𝐼𝑅 = 29.44,  𝛽𝑆𝑊𝐼𝑅 = −10.13 

The final mode is 𝑦 = 𝛽0 + 𝛽𝑁𝐼𝑅𝑥𝑁𝐼𝑅 + 𝛽𝑆𝑊𝐼𝑅𝑥𝑆𝑊𝐼𝑅 = 5.65 + 29.44 ⋅ 𝑥𝑁𝐼𝑅 −

10.13 ⋅ 𝑥𝑆𝑊𝐼𝑅 

In multiple linear regression, the regression model is a hyperplane in a 

space with dimension N+1. In this case, the regression model is a plane in 

3D space. 
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10.4 Polynomial regression 
Polynomial regression is used for modeling non-linear relationships between 

independent and target variables by using the Nth-degree polynomial (the 

highest exponent in the polynomial).  The polynomial regression model can 

be represented as follows 

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥
2+. . . +𝛽𝑁𝑥

𝑁 

Although the highest order of polynomials that can be fit with n data points 

is n-1. However, the polynomial curve will pass through all data points, 

providing a perfect fit with the training data and low generalization ability. 

This is interpolation not regression. Moreover, each new term (𝑥2, 𝑥3, 𝑥4) adds 

a coefficient, and more data is needed. Additionally, from a mathematical 

perspective, the hierarchy principle needs to be followed since only 

hierarchical models are invariant under the linear transformations. The model 
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is hierarchical if it contains all lower-order terms (i.e., if the highest order of 

the polynomial function is 𝑥4 the model should include the 𝑥, 𝑥2, 𝑥3 in a 

hierarchy). In practice, the degree of the polynomial model is kept as low as 

possible. The degree higher than 4 is rarely used.   

The optimal value of regression parameters is determined by applying 

ordinary least squares by minimizing the sum of squared errors 

𝐸 =∑[𝑦𝑖 − (𝛽0 + 𝛽1𝑥 + 𝛽2𝑥
2+. . . +𝛽𝑁𝑥

𝑁)]
2

𝑛

𝑖=1

 

By differentiating the loss with respect to each parameter and setting it equal 

to zero  

𝜕𝐸

𝜕𝛽𝑖
= 0, ∀𝑖 = 0, 1, . . . , 𝑁 

the system of N+1 linear equations is created 

∑𝑦𝑖 = 𝛽0𝑛 + 𝛽1 (∑𝑥𝑖)+. . . +𝛽𝑁 (∑𝑥𝑖
𝑁) 

∑𝑦𝑖𝑥𝑖 = 𝛽0 (∑𝑥𝑖
2) + 𝛽1 (∑𝑥𝑖)+. . . +𝛽𝑁 (∑𝑥𝑖

𝑁+1) 

∑𝑦𝑖𝑥𝑖
2 = 𝛽0(∑𝑥𝑖

2) + 𝛽1(∑𝑥𝑖
3)+. . . +𝛽𝑁(∑𝑥𝑖

𝑁+2)… 

∑𝑦𝑖𝑥𝑖
𝑁 = 𝛽0 (∑𝑥𝑖

𝑁) + 𝛽1 (∑𝑥𝑖
𝑁+1)+. . . +𝛽𝑁 (∑𝑥𝑖

2𝑁) 

The matrix representation of a linear system 𝑦⃗ = 𝑋𝛽, where 

𝑦⃗ = [

𝑦0
𝑦1
⋮
𝑦𝑖

] , 𝑋 =

[
 
 
 
1 𝑥1 𝑥1

2 …

1
⋮
1

𝑥2 𝑥2
2

⋮ ⋮
𝑥𝑖 𝑥𝑖

2

…
⋮
…

     

𝑥1
𝑁

𝑥2
𝑁

⋮
𝑥𝑖
𝑁]
 
 
 

, 𝛽 = [

𝛽0
𝛽1
⋮
𝛽𝑁

]  than 

𝛽̂ = (𝑋𝑇𝑋)−1𝑋𝑇𝑦 

where 𝛽̂ is an unbiased estimation of 𝛽. The assumptions of the multiple 

regression model are similar to the simple linear regression, i.e.: 

● The errors follow the normal distribution with a mean of zero and a 

standard deviation 𝜎. The errors are uncorrelated with each other 

and independent of the errors associated with all other observations. 
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● The independent variables x are assumed to be measured correctly. 

There are several strategies that can be used to build a polynomial regression 

model. The forward selection procedure successively fits the model with 

increasing order to test the significance of the regression coefficient at each 

step of model fitting. The order increases until the t-test for the highest order 

term is nonsignificant. On the other hand, the backward elimination starts 

with the highest order model and then deletes the highest terms one at a time.  

Example. The values of the field measurement of biomass and NDVI are 

presented in Table. Build the biomass estimation model. 

NDVI Biomass NDVI Biomass NDVI Biomass 

0.15 12.0 0.38 80.0 0.58 195.0 

0.16 12.5 0.37 95.0 0.48 197.0 

0.18 25.0 0.40 110.0 0.48 212.0 

0.20 40.0 0.45 115.0 0.52 212.0 

0.22 48.0 0.45 130.0 0.58 250.0 

0.22 50.0 0.42 142.0 0.59 300.0 

0.30 62.5 0.50 148.0   

0.31 65.0 0.49 160.0   

0.33 70.0 0.45 175.0   

0.34 75.0 0.43 175.0   

Using the measurements, fit the polynomial regression model to estimate 

three regression coefficients. 
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𝛽0 = 8.13, 𝛽1 = −48.78, 𝛽3 = 801.90 

The final mode is 𝑦 = 801.90 ⋅ 𝑥2 − 48.78 ⋅ 𝑥 + 8.13 

The model is shown in the figure below. 

 

 

10.5 Polynomial piecewise  
In some situations, low-order polynomials don't provide a good fit. One 

possible solution is to use the higher-order polynomial. However, the use of 

a single high-degree polynomial may produce large errors if the function has 

different behavior in different regions of the independent variables. This type 

of problem can be solved by piecewise polynomials, where instead of using 

one global polynomial function that fits the entire data range, the range is split 

into sections and separate polynomials are fitted to each section. So, piecewise 

regression includes the two phases: divide the domain of independent 

variables into pieces and fit a polynomial function separately for each region. 

The join points of sections are called knots. However, fitted functions are not 

continuous. To force the continuity, the restriction on the parameter 

estimation is introduced, i.e., for the polynomial of order k, the function 

values and derivatives up to 𝑘 − 1 are equal at each knot. The piecewise 

polynomials with continuity constraints are called splines. To create a spline, 

it is necessary to determine the knots and to select the order of the polynomial.  
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The cubic spline, which uses the cubic function within each region, is often 

used. The cubic spline with K knots (𝑡1 < 𝑡2 < . . . < 𝑡𝑘) is defined by 

𝐸(𝑦) =∑𝛽0𝑗𝑥
𝑗

1

𝑗=0

+∑𝛽𝑖(𝑥 − 𝑡𝑖)+
3

𝐾

𝑖=1

 

where  

(𝑥 − 𝑡𝑖)+
3 = {(𝑥 − 𝑡𝑖)

3,   𝑥 > 𝑡𝑖 0,                   𝑥 ≤ 𝑡𝑖   

The four parameters are needed to describe each region, leading to a total 4 ⋅

𝐾 degrees of freedom. It assumes that the position of knots is known. 

The number and position of the knots have a significant influence on the fit. 

If a small number of knots are used, the regression is underfitted, and with 

too many knots, the regression is overfitted. Similarly, knot position is also 

important since uniformly distributed knots can lead to overfitting in regions 

with a low number of points or underfitting in regions with a high number of 

points. The position of knots can be determined by using equidistant knots, 

quantile-based knots, domain knowledge, and visual inspection of plots. On 

the other hand, the number of knots is determined by using a penalty 

approach such as the B-spline, smoothing spline, P-spline, or regularized 

spline. 

The smoothing spline presents the solution of the minimization problem 

𝑎𝑟𝑔 𝑚𝑖𝑛∑(𝑦𝑖 − 𝑓(𝑥𝑖))
2

𝑛

𝑖=1

+ 𝜆∫ 𝑓′′(𝑥)2𝑑𝑥
1

0

 

the first part represents the goodness of fit of 𝑓 while the second term 

represents a penalty for the roughness of the function. The smoothing spline 

starts by putting the knot at each data point, and the overfitting is controlled 

by the penalty on the integral of the squared second-order derivative (second 

term). 
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10.6 Model building  
A simple strategy for building of regression model consists of five basic 

steps: 

1. Data collection and preparation, 

2. Preliminary model investigation, 

3. Reduction of independent variables, 

4. Model refinement and selection, and  

5. Model validation. 

The data collection includes the field measurement of variables (forest 

biomass, water quality parameters, air quality measurements, information 

about classes, etc.) and integrating them with corresponding remote sensing 

data. It usually includes steps to verify that the assumptions of regression 

analysis are met, such as creating scatter plots, checking data distribution, 

identifying of outliers, encoding of categorical variables, normalizing  data , 

etc. Preliminary model investigation includes identification of functional form 

for predictor variables based on statistics’ prior knowledge or state-of-the-art 

studies to perform data transformation (such as logs). 

The regression analysis depends on the independent variables that are present 

in the model.  

Usually, a large set of potentially explanatory independent variables is 

available. However, some variables may not be fundamental for the problem, 

some may contain errors, or represent the duplication of another variable. 

Therefore, it is crucial to detect and use the variables that play a consistent 

role.   

The aim of reduction is to select a subset of variables that are significant for 

the outcome to improve model accuracy and interpretability. The variable 

selection is performed assuming that the functional form of the independent 

variable (𝑥2,
1

𝑥
, 𝑙𝑜𝑔(𝑥)) is known, and that data contains no outliers or 

influential observations. Many methods have been proposed for the selection 

of suitable variables in regression, such as forward test-based, criterion-based, 

or screening-based procedures. Test-based methods, such as stepwise or 

autometrics, rely on statistical tests to select informative variables.  
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The stepwise procedure is the simplest and most straightforward approach to 

variable selection, in which forward selection or backward elimination is 

performed using the F-value as a criterion.  

The F-value (or F-statistic) is a number to test whether a group of variables (or 

a single variable in the partial case) significantly improves the model. It 

compares two sources of variation: the variation explained by the model and 

the unexplained variation, contained into the residuals. A high F-value 

indicates that the variable(s) being tested contribute significantly to 

explaining the outcome, while a low F-value suggests they do not. 

In forward selection, variables are added one by one to the model. At each 

step, the partial F-value is calculated to assess if that variable significantly 

improves the model. The process is repeated until the F-statistics are 

significant for a given significance level (i.e. the remaining variable does not 

improve the model significantly). The backward elimination starts with all 

variables (full model). At each step, the variable with the lowest F-value in the 

comparative test is removed. The process continues until all variables are 

significant. In practice, the stepwise selection combines both the forward 

(adding the best variable) and the backward (checking if any variable should 

be removed) selection procedures. It  is intuitive and easy to understand but, 

it is poorly data-driven and can be unstable if variables are highly correlated. 

Autometric represents a robust automated general-to-specific model selection 

procedure that starts with a general model and systematically eliminates 

insignificant variables using backward elimination and diagnostic tests. 

If there are N independent variables, then it is possible to create 2𝑁 models. In 

a criteria-based procedure, the best model is selected according to certain 

criteria. The the Mallows’ CP, the Adjusted 𝑅2Akaike Information Criterion 

(AIC) and the Bayesian Information Criterion (BIC) are most commonly used.  

The Mallows’ 𝐶𝑝 statistics is an estimation of the total mean squared 

prediction error (bias+variance) of fitted models, which is averaged over the 

independent variables. It is used to compare models with different numbers 

of parameters. In addition to measuring goodness of fit, it explicitly considers 

bias (since leaving out important variables can lead to a biased model), which 

helps to detect the underfitting and introduces a penalty for adding 

unnecessary variables, discouraging overfitting. 𝐶𝑝 is given by 
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𝐶𝑝 =
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1

𝜎2 − 𝑛 + 2𝑁 

where 𝜎2 is external estimation of the variance calculated for the full model 

(using all variables) or from prior knowledge of the measurement errors.  For 

the full model 𝐶𝑝 is exactly equal to N. The models with low bias and 

appropriate complexity have small 𝐶𝑝 value or value close to N. If the 𝐶𝑝 value 

is much greater than the number of independent variables; the bias is 

substantial.  

The AIC the model that balances the goodness of fit with model size, i.e., it 

penalizes a model for adding variables that do not significantly improve the 

model performance. The primary aim is to find a model that best explains the 

dependent variable with a minimum number of independent variables.  The 

suitability of the model is measured by maximizing the log likelihood of the 

predictor coefficient and error variance, i.e.   

𝐴𝐼𝐶(𝛼) = −2𝑙𝑜𝑔𝐿 +  𝛼 ⋅ 𝑁 

where L is the likelihood, and  𝛼 is constant in the penalty term, typically set 

to 2. AIC decreases with an increase in model performance, i.e., the model that 

minimizes AIC should be chosen. AIC is efficient when the sample size n is 

large relative to the number of variables N; in contrast, it can lead to 

overfitting, favoring the complex models. [9] suggested the bias-corrected 

version 𝐴𝐼𝐶𝐶 by calculating the Kullback–Leibler information for normal 

distributions, assuming the true model is among the candidate models. It is 

defined as  

𝐴𝐼𝐶𝐶 = 𝐴𝐼𝐶 +
2𝑁(𝑁 + 1)

𝑛 − 𝑁 − 1
 

it is clear that for a large sample size (n) the 𝐴𝐼𝐶𝐶 will converge to 𝐴𝐼𝐶. 

Similar to AIC, BIC is a criterion used for model selection from a finite set of 

models. It combines the goodness of fit with a penalty for model complexity. 

The BIC is defined as  

𝐵𝐼𝐶 = −2𝑙𝑜𝑔𝐿 + 𝑛𝑙𝑜𝑔𝑁 

In contrast to AIC, which has a fixed penalty, in BIC, the penalty grows with 

the number of variables. Due to that, for a large sample size, the BIC favors 

the simpler model, while for a small n, it will pick the model with a similar 
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level of complexity as AIC. The model with the lowest BIC is considered to 

have the best balance from a Bayesian perspective.  

10.7 Linear classifier 
As already mentioned, the goal of classification is to assign the input vector x 

to one of the discrete classes y. Consider independent and identically 

distributed data (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) ∼ 𝑃 where 𝑥𝑖 ∈ 𝑅 are features and 𝑦𝑖 ∈

{0, 1, . . . , 𝐾 − 1}. The discriminant is a function ℎ: 𝜒 → {0, 1, . . . , 𝐾 − 1} that takes 

the feature vector and assigns it to the one class. Since x can belong to one and 

only one class, the input space 𝜒 is disjointed into K class labelled decision 

regions. The border of each region is a decision boundary that represents the 

surface that separates different classes in classification models.  

The Linear Discriminant Analysis (LDA) is a supervised algorithm used for 

both dimensionality reduction and classification. Let's consider the binary 

classification problem. In LDA, we assume that: discriminant functions are 

linear, features of each class follow a Gaussian distribution, and all classes 

have equal covariance matrices.  

The simplest linear discriminant function is obtained by taking the linear 

function of the input vector as follows 

𝑦𝑖 = 𝑤
𝑇𝑥𝑖 + 𝑏 

where 𝑤 is the weight vector and b is the bias. The negative of the bias is also 

known as the threshold. A feature vector x belongs to a positive class if its 

discriminant function is 𝑤𝑇𝑥 ≥ −𝑏. Otherwise, it belongs to the negative class. 

Geometrically, the weight vector determines the orientation of the decision 

boundary, while the threshold b determines where along the decision 

boundary the split between classes occurs. The weight vector can be adjusted 

using least square methods, Fisher criterion, or perceptron. 

The least squares classifier fits a linear model by minimizing the squared 

errors between the true class y and the predicted class 𝑦̂ i.e. 𝑤̂ =

𝑎𝑟𝑔𝑚𝑖𝑛𝑤̂(𝑦 − 𝑤
𝑇𝑥)2. The squared error is a convex function and has a unique 

and simple closed-form solution. It guarantees to achieve a global minimum; 

however, this is not necessarily the best solution. For example, in the presence 
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of outliers, the least squares method tends to shift the decision boundary 

toward the outliers. 

The Fisher linear discriminant represents the simplest linear discriminant 

function that projects the D-dimensional feature vector x down to one 

dimension (for binary classification) using 𝑦(𝑥) = 𝑤𝑇𝑥 (Figure 74).  

The corresponding decision boundary is defined by the relation 𝑦(𝑥) == 0 

which corresponds to a D-1 dimensional hyperplane (in 2D it is a line, in 3D 

it is a plane …) and each subspace represents a class (+1 or −1). So, an input 

vector x is assigned to the class +1 if 𝑦(𝑥) > 0, and to -1 otherwise.  

 

Figure 74 FLD finds a linear projection of data and classifies the projected values by checking 

against the threshold 

The projection onto one dimension can lead to sustainable data loss, so classes 

that are well separated in the original D dimension can significantly overlap 

in one dimension. Therefore, we should select the weight vector that 

maximizes the class separation. Geometrically, the separation between classes 

is maximized if the distance between their centroids is larger and the scatter 

within classes is smaller. So, a hyperplane is created based on simultaneously 
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maximizing the between-class variance and minimizing the within-class 

scatter, i.e., by maximizing the Fisher criterion. The Fisher criterion is defined 

as 

𝐽(𝑤) =
(𝜇−1 − 𝜇1)

2

𝑠−1
2 + 𝑠1

2
 

where 𝜇𝑖 = 𝑤
𝑇 1

𝑛
∑ 𝑥𝑛
𝑛
𝑖=1  are the mean values of two classes after the projection 

along 𝑤 i.e.   

𝑦𝑖 = 𝑤
𝑇𝑥𝑖 and 𝑠𝑘

2 = ∑ (𝑦𝑖 − 𝜇𝑖)
2𝑛

𝑖=1  is the kth within-class variance. 

So Fisher's criteria try to find the linear combination of parameters 𝑤 that 

maximizes the between-class variance (𝑆𝐵) relative to the within-class 

variance (𝑆𝑤). The 𝑤 is determined by setting the derivative of J to 0, i.e. 

𝜕𝐽

𝜕𝑤
= 0 ⇒

𝜕 (
𝑤𝑇𝑆𝐵𝑤
𝑤𝑇𝑆𝑤𝑤

)

𝜕𝑤
= (𝑤𝑇𝑆𝑤𝑤)𝑆𝐵𝑤 − (𝑤

𝑇𝑆𝐵𝑤)𝑆𝑤𝑤 = 0 ⇒ 𝑆𝑤
−1𝑆𝐵𝑤 = 𝐽(𝑤) 

Therefore, the projection vector 𝑤 is the eigenvector of 𝑆𝑤
−1𝑆𝐵 so we need to 

choose the eigenvector that corresponds to the maximum eigenvalue to 

maximize class separability. Geometrically, in order to divide the feature 

space into k different classes, at most k-1 equations are needed. Due to that, 

the number of created components is equal to the number of classes - 1. 

Similar to PCA, the Fisher Linear Discriminant can be used for dimensionality 

reduction. As already mentioned, the PCA finds the most accurate data 

representation in a lower-dimensional space (it projects the data in the 

direction of maximum variance). The direction of maximum variance may be 

useless for classification features. On the other hand, in LDA, features are 

reduced by projecting data onto directions that maximize class separability.  

The linear classification can be used for multi-class classification problems. 

LDA is simple to implement, especially for binary classification, easy to 

interpret, and provides good accuracy in the classification of linearly 

separable data.  

In contrast, there are a few drawbacks, such as: insufficient robustness against 

outliers and small sample size (high number of features and low number of 

samples), inapplicable for multi-model (more than one mode, i.e., more than 
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one distinct peak suggesting different subgroups within class) datasets, and 

the singularity of the within-class scatter matrix. 

Algorithm Fisher Linear Discriminant 

Input: dataset 𝐷 with (𝑥𝑖, 𝑦𝑖) elements 𝑖 = 1, . . . , 𝑛 and 𝑦𝑖 ∈ {1,2} 

Return: weight vector w, threshold b, prediction 𝑦̂ 

1. Compute the class mean as 𝜇1 = 𝑚𝑒𝑎𝑛(𝑥𝑖, 𝑦𝑖 = 1) and                           
𝜇−1 = 𝑚𝑒𝑎𝑛(𝑥𝑖, 𝑦𝑖 = −1) 

2. Compute within-class variance 
𝑆𝑤 = 0 

for 𝑖 in 𝑟𝑎𝑛𝑔𝑒(0, 𝑙𝑒𝑛(𝐷) − 1): 

      if 𝑦𝑖 = 1: 
           𝑆𝑤+= (𝑥𝑖 − 𝜇1)(𝑥𝑖 − 𝜇1)

𝑇 

      else:           

           𝑆𝑤+= (𝑥𝑖 − 𝜇2)(𝑥𝑖 − 𝜇2)
𝑇 

3. Compute projection vector 𝑤 = 𝑆𝑤
−1 ⋅ (𝜇1 − 𝜇2) 

4. Normalize projection vector 𝑤 =
𝑤

||𝑤||
 

5. Compute threshold 𝑏 =
𝑤𝑇𝜇1+𝑤

𝑇𝜇2

2
 

6. Make a prediction 

if 𝑤𝑇𝑥 ≥ 𝑏: 
    𝑦̂ = 1 

else: 
  𝑦̂ = −1 

10.8 Logistic regression 
Logistic regression represents the baseline supervised ML tool for 

classification and the foundation of neural networks. The classification 

problem is similar to the regression model but the output is a discrete value. 

The linear regression can be generalized to the classification problem by 

defining a different family of probability distributions. Let's consider a binary 

classification. The goal of binary classification is to train a classifier that can 

make a binary decision on new input data.  

Consider a single input observation x represented by N independent variables 

𝑥 = {𝑥1, . . . , 𝑥𝑁} and a predicting outcome is categorical variable y that can be 

1 (positive class) or 0 (negative class). We want to know the probability 
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𝑝(𝑦 = 1|𝑥) that x is a member of the class. In the case of binary classification, 

the probability of one class defines the probability of the second class since 

their sum must be equal to 1. Therefore, if p is the probability of the positive 

class, then 1-p is the probability of the negative class, i.e. 

𝑝(𝑦|𝑥; 𝛽) = {
𝑝(𝑥)     𝑖𝑓 𝑦 = 1

1 − 𝑝(𝑥)  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The ration 𝑝/(1− 𝑝) is known as odds, and logit is the logarithm of odds, i.e.  

𝑦 = 𝑙𝑜𝑔𝑖𝑡𝑝 = 𝑙𝑛
𝑝

1− 𝑝
 

We assume that the relationship between input and output is linear, i.e.  

𝑦 = 𝛽0 +∑𝛽𝑖𝑥𝑖

𝑁

𝑖=1

= 𝛽0 + 𝛽
𝑇𝑥  

where 𝛽 = {𝛽1, . . . , 𝛽𝑁} represents regression coefficients that reflect the 

strength of the relationship between independent variables and outcome. 

However, in contrast to normal distribution in linear regression, which is 

parameterised by mean, the distribution of binary variables is binomial (the 

output must be between 0 and 1). The linear function is unbounded, and 

nothing forces 𝑦 to be between 0 and 1. This is solved by passing 𝑦 through a 

logistic sigmoid function that squashes the output of the linear function into 

the interval 0 to 1 and interprets these values as a probability 𝑝(𝑦 = 1|𝑥; 𝛽) =

𝜎(𝑦) i.e. 

𝑝(𝑦 = 1) = 𝜎(𝑦) =
1

1+ 𝑒−(𝛽0+𝛽1𝑥1+ ...+𝛽𝑁𝑥𝑁)
 

The sigmoid function is also called the logistic function, and therefore, this 

regression is also known as logistic regression. This creates the logit 

𝑙𝑛
𝑝(𝑥)

1 − 𝑝(𝑥)
= 𝛽0 +∑𝛽𝑖𝑥𝑖

𝑁

𝑖=1

 

The regression coefficients are estimated by maximum likelihood. For one 

instance (𝑥𝑖,  𝑦𝑖) the probability can be written as 

𝑝(𝑦|𝑥; 𝛽) = 𝑝(𝑥)𝑦(1− 𝑝(𝑥))1−𝑦. 
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For n training data points {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑛  that were generated independently, the 

likelihood is defined as 

𝐿(𝛽) =∏𝑝(𝑦𝑖|𝑥𝑖; 𝛽)

𝑛

𝑖=1

=∏𝑝(𝑥𝑖)
𝑦𝑖(1 − 𝑝(𝑥𝑖))

1−𝑦𝑖

𝑛

𝑖=1

 

The aim is to select a coefficient that will predict a high probability of positive 

class samples and a low probability for negative class samples. We can define 

the loss function by taking the negative logarithm of the likelihood, which 

gives the cross-entropy loss function given as 

𝑙(𝛽) = −𝑙𝑜𝑔𝐿(𝛽) = −∑[𝑦𝑖𝑙𝑜𝑔𝑝(𝑥𝑖) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑝(𝑥𝑖))]

𝑛

𝑖=1

 

The gradient of the loss function with respect to 𝛽𝑗 is given by 

𝛁𝛽𝑙(𝛽) =
𝜕𝑙

𝜕𝛽𝑗
=∑(𝑦𝑖 − 𝑝(𝑥𝑖))𝑥𝑖𝑗

𝑛

𝑖=1

 

The updates will be given by 𝛽𝑡+1:= 𝛽𝑡 − 𝜂𝛁𝛽𝑙(𝛽𝑡) 

Another way to solve the maximum likelihood equation is by using the 

Newton-Raphson approach. So we want to maximize the log-likelihood 𝑙(𝛽). 

The maximum occurs when the gradient is zero 𝛁𝛽𝑙(𝛽) = 0. The Newton-

Raphson approaches solve this equation by iteratively updating 𝛽 using both 

the gradient and the Hessian, i.e. 

𝛽𝑡+1 = 𝛽𝑡 −𝐻(𝛽𝑡)
−1𝛁𝛽𝑙(𝛽𝑡) 

where 𝐻 is Hessian. The Newton-Raphson approach automatically rescales 

the gradient by the curvature, so it does not require manual tuning of the 

learning rate, enabling faster convergence. It is a standard procedure used in 

logistic regression.  

So the outcome of the logistic regression model is a probability, and we want 

to classify new points as 1 or 0 by checking which of those classes has a higher 

probability. If 𝑝(𝑦 = 1|𝑥) ≥ 𝑝(𝑦 = 0|𝑥) then the new sample is classified as 1, 

otherwise it is classified as 0. This is the same as using the prediction threshold 

𝑡 > 0.5 𝑖. 𝑒. ℎ𝛽 > 0.5. Mathematically, the probability threshold 0.5 

corresponds to 
1

1+𝑒−𝑧
= 0.5 ⇒ 𝑧 = 0 i.e., input to sigmoid is 0. 
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Therefore, if the input to the sigmoid function is negative, logistic regression 

predicts a negative class; otherwise, it predicts a positive class. However, the 

classification thresholds should be adjusted in case of imbalanced data sets or 

cost-sensitive classification. If the positive class is rare, the lower threshold 

may increase sensitivity. Consequently, if the cost of predicting a false 

positive class is much higher than predicting a false negative class, a threshold 

greater than 0.5 should be used to reduce the number of false positives. 

Logistic regression can be seen as the simplest form of a feedforward neural 

network that consists of one neuron and a sigmoid activation function. More 

complex neural networks extend this concept by stacking multiple layers of 

neurons to model nonlinear relationships. 

Despite the name, logistic regression is a simple and effective classification 

method. It achieves high accuracy if the classes are linearly separable. Logistic 

regression is useful for identifying the most discriminative variables in a 

dataset where there are many variables to consider. It is less robust than more 

sophisticated models such as ANN, but it is easier to interpret the outputs and 

understand how decisions are made. 

10.8.1 Multi-class logistic regression 

Multi-class logistic regression, also known as multinomial logistic, is a 

generalization of standard logistic regression for classification that involves 

more than two classes. So the output variable y is still discrete, but now it can 

take the K different values (classes), so 𝑦 ∈ {1, . . . , 𝐾}. The classes are 

represented as a one-hot encoder vector. The multinomial problem is 

parameterized by the K-1 parameter by fixing one class to the referent, and 

the model estimates the logits of each other class relative to the referent. So 

for each observation 𝑥 we will output a K-dimensional vector representing the 

estimated probabilities for each class, i.e. 𝑝(𝑥) = (𝑝1(𝑥), . . . , 𝑝𝐾(𝑥)) with 

𝑝𝑘(𝑥) = 𝑝(𝑦 = 𝑘|𝑥) and ∑ 𝑝𝑥(𝑥)
𝐾
𝑘=1 = 1 

In multinomial regression, the sigmoid logistic function is replaced by the 

softmax function, which is defined as  

𝑝𝑘(𝑥𝑖) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖𝑘) =
𝑒𝑧𝑖𝑘

∑ 𝑒𝑧𝑖𝑗𝐾
𝑗=1
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where 𝑧𝑖𝑘 = 𝛽𝑘
𝑇𝑥𝑖 + 𝑏𝑘  is a linear score for sample i and class k, 𝑥𝑖 is the feature 

vector for data point i, and 𝑏𝑘 is the offset for class a. The softmax regression 

algorithm (Figure 75) applies binary logistic regression to multiple classes at 

once. It uses a score to compute the probability that the training sample 𝑥𝑖 

belongs to class k.  

To determine the regression parameter vector 𝛽𝑘 we use the maximum 

likelihood. The likelihood function is given by 

𝐿(𝛽) =∏∏𝑝(𝑥𝑖𝑘)
𝑦𝑖𝑘

𝐾

𝑘=1

𝑛

𝑖=1

 

We define the cost function by taking the negative logarithm, which gives  

𝑙(𝛽, 𝑏) = −∑∑𝑦𝑖𝑘𝑙𝑜𝑔𝑝𝑘(𝑥𝑖)

𝐾

𝑘=1

𝑛

𝑖=1

 

which is known as the cross-entropy error function for the multi-class 

classification problem (also known as categorical cross-entropy). In order to 

determine the model parameters, the gradient of the cost function with 

respect to all of the parameter vector 𝛽 . The derivative of the softmax function 

for class k is given by 

𝛁𝑤𝐿(𝛽𝑘 , 𝑏) =
𝜕𝑙

𝜕𝛽𝑘
=∑(𝑦𝑖𝑘 − 𝑝𝑘(𝑥𝑖))𝑥𝑖

𝑛

𝑖=1

 

where 𝛽𝑘 is the vector of regression coefficients of x for the kth class of y. The 

gradient descent is used to update the weight with a learning rate 𝜂 i.e. 

𝑤𝑘:= 𝑤𝑘 − 𝜂𝛁𝑤𝐿(𝛽, 𝑏) for each class 𝑗 = 1, . . . , 𝐾. 

The softmax function will output the estimated probability for each class per 

sample (𝑝𝑖𝑘) and the class with the highest probability is assigned to the 

sample, i.e.  

𝑦𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘 𝑝𝑖𝑘 

Multinomial logistic regression is harder to interpret because there are several 

regression coefficients associated with each independent variable. It does not 

consider statistical independence between features, and it is not suitable for a 

very large number of classes for learning. 
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Figure 75 Softmax regression for K classes 
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11 PROBABILITY BASICS FOR MACHINE 

LEARNING 

Probability theory is one of the central foundations in ML, since the 

algorithms often rely on probabilistic assumptions of the data. The probability 

theory represents the mathematical study of uncertainty. The uncertainties 

rise from both the noise of measurement and the finite size of the dataset. 

The probability space is defined by the triple (𝛺, 𝐹, 𝑃) where: 

●  𝛺 is a sample space of all possible outcomes. Those possible outcomes 

need to be distinguishable from each other. They are mutually 

exclusive, i.e., either one happens or other happens, but not both, and 

they are collectively exhaustive (no matter what happens, the result 

will be an element of the sample space). Consider rolling a six-sided 

die. The sample space represents 𝛺 = {1, 2, 3, 4, 5, 6}. 

● Event space 𝐹 ⊆ 2𝛺 is the subset of a sample space that represents the 

collection of all allowed events. For example, we want to get a number 

greater than 3 in our rolling die experiment. There are 3 numbers 

greater than 3, so the event space is 𝐹 = {4, 5, 6}. And,  

● 𝑝 is the probability assigned to a subset of the sample space (what we 

believe is likely to happen or not likely to happen). The probability 

that the event 𝐸 ∈ 𝐹 to a real value between 0 and 1, i.e. 𝑝: 𝐹 → [0, 1]. 

The probability characteristics are: 

○ It is not negative 𝑝(𝑋) ≥ 0,  

○ The probability of the overall sample space is equal to 1 𝑝(𝛺) =

1, and  

○ If we have two events (two subsets) X and Y that are disjoint, 

the probability that one or another happens is equal to the sum 

of their individual probabilities 𝑝(𝑋 ∪ 𝑌) = 𝑝(𝑋) + 𝑝(𝑌) 

Random variables are actually functions that map the outcomes in outcome 

space to real values. The random variables allow us to provide more uniform 

treatment of probability theory. The probability of a random variable X taking 

on the value of 𝑥𝑖 is donated by 𝑝(𝑋 = 𝑥𝑖) or more compact 𝑝(𝑋). If the sample 
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space consists of n possible outcomes, which are equally likely, then the 

probability of any event 𝑋 is given by 

𝑝(𝑋) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑋

𝑛
 

Then, in the above example, the probability of rolling greater than 3 is 
3

6
= 0.5.  

Consider two random variables 𝑋 that can take any of the values 𝑥𝑖 where 𝑖 =

1, . . . , 𝑀 and 𝑌 can take the values 𝑦𝑗 where 𝑗 = 1, . . . , 𝐿.  

Let N be the total number of trials in which we sample both variables 𝑋 and 

𝑌, and let the number of trials in which 𝑋 = 𝑥𝑖 and 𝑌 = 𝑦𝑗 is 𝑛𝑖𝑗. Moreover, let 

the number of trials in which  𝑋 = 𝑥𝑖 irrespective of the value of 𝑌 is donated 

by 𝑐𝑖 and 𝑌 = 𝑦𝑗 is 𝑟𝑗. The information of multiple discrete random variables 

is summarised in the contingency table.   

The contingency table (Table 16) where 𝑛𝑖𝑗 represents the number of points 

in the corresponding cell of the array, and the sum of column i corresponds to 

𝑋 = 𝑥𝑖 regardless of 𝑋, and the sum of row j represents 𝑌 = 𝑦𝑗  regardless of 

𝑋.  

Table 16 Contingency table 

X/Y 𝑦1 … 𝑦𝐿 Row sum 𝑟𝑗 

𝑥1 𝑛11 … 𝑛1𝐿 
𝑟1 =∑𝑛1𝑗

𝐿

𝑗=1

 

… … … … … 

𝑥𝑀 𝑛𝑀1 … 𝑛𝑀𝐿 
𝑟𝑀 =∑𝑛𝑀𝑗

𝐿

𝑗=1

 

Col sum 𝑐𝑖 
𝑐1 =∑𝑛𝑖1

𝑀

𝑖=1

 
… 

𝑐𝐿 =∑𝑛𝑖𝐿

𝑀

𝑖=1

 𝑁 =∑∑𝑛𝑖𝑗

𝐿

𝑗=1

𝑀

𝑖=1
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The joint probability that 𝑋 = 𝑥𝑖 and 𝑌 = 𝑦𝑗 happen at the same time is given 

by 𝑝(𝑋 = 𝑥𝑖, 𝑌 = 𝑦𝑗) =  𝑝(𝑋, 𝑌) =
𝑛𝑖𝑗

𝑁
.  

Similarly, the probability that 𝑋 takes the value 𝑥𝑖 is given by 𝑝(𝑋) =
𝑐𝑖

𝑁
.  

The 𝑝(𝑋) can be obtained by marginalizing the 𝑝(𝑋, 𝑌) over all possible 𝑌 i.e.  

𝑝(𝑋) =∑𝑝(𝑋, 𝑌)

𝐿

𝑗=1

 

 which is the sum rule of probability. 

Conditional distributions are the crucial tools in probability theory for 

reasoning about uncertainty since they allow us to update the probability in 

the face of new events. The conditional probability of 𝑌 = 𝑦𝑗 given 𝑋 = 𝑥𝑖 is 

the probability that 𝑌 occurs given that 𝑋 has already occurred. This means 

that 𝑋 becomes a new sample space, so the probability that the event 𝑌, 𝑋 

occurs is equal to the probability of 𝑝(𝑌, 𝑋) relative to the 𝑝(𝑋). The condition 

distribution is written as 𝑝(𝑌 = 𝑦𝑗|𝑋 = 𝑥𝑖) or shorter 𝑝(𝑌|𝑋) and it is given by 

𝑝(𝑌|𝑋) =
𝑝(𝑌∩𝑋)

𝑝(𝑋)
=

𝑝(𝑌,𝑋)

𝑝(𝑋)
=

𝑛𝑖𝑗

𝑐𝑖
 . 

Condition distribution is defined when 𝑝(𝑋) > 0. 

Let X be the event that a traveler visited Milano (M), let Y be a traveler that 

visited Paris (P). We want to determine the probability that users will visit 

Paris, given that they visited Milano. Let's say we observe the 40 travelers 

(𝑁 = 40). The total number of travelers who visited Milano is 6, and the 

total number of travelers who visited Paris is 9, while 3 travelers visited 

both cities. So the marginal distribution is 𝑝(𝑀) =
6

40
= 0.15 and 𝑝(𝑃) =

9

40
= 0.225. Given that the visitor already visited Milan, the conditional 

probability that he will visit Paris is a subset of the visitors who visited 

both Paris and Milan; therefore 𝑝(𝑃|𝑀) =
𝑝(𝑃∩𝑀)

𝑝(𝑀)
=

3/40

6/40
= 0.5. On the other 

hand, the probability that a visitor will go to Milan, given that they visited 

Paris, is 𝑝(𝑀|𝑃) =
3

9
= 0.3333 
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Figure 26 Geometrical representation of conditional probability. Each hexagon represents 

a visitor. 

The definition of conditional probability can be rewritten as 

𝑝(𝑋, 𝑌) =
𝑛𝑖𝑗

𝑁
=

𝑛𝑖𝑗

𝑐𝑖
⋅
𝑐𝑖

𝑁
= 𝑝(𝑌|𝑋) ⋅ 𝑝(𝑋)  

which is known as the chain rule of probability. More generally, for events 

𝑋1, 𝑋2, . . . , 𝑋𝑛  the chain rule can be written  

𝑝(𝑋1, 𝑋2, . . . , 𝑋𝑛) = 𝑝(𝑋1)𝑝(𝑋2|𝑋1)𝑝(𝑋3|𝑋1, 𝑋2) . . . 𝑝(𝑋𝑛|𝑋1, 𝑋2 . . . 𝑋𝑛−1) 

The chain rule is used to evaluate the joint probability of some random 

variables, especially when there is (conditional) independence across 

variables  

From the chain rule (also known as the product rule) of probability and the 

symmetry property of the joint probability 𝑝(𝑋, 𝑌) = 𝑝(𝑌, 𝑋) the following 

relationship can be obtained 

𝑝(𝑌|𝑋) =
𝑝(𝑋|𝑌)𝑝(𝑌)

𝑝(𝑋)
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where 𝑝(𝑌|𝑋) is the posterior probability, 𝑝(𝑋|𝑌) is likelihood, 𝑝(𝑌) is the 

prior probability and 𝑝(𝑋) is the marginal probability of 𝑋. This relationship 

is also known as Bayes' theorem, which plays a crucial role in ML. Intuitively, 

we can observe Bayes' theorem as updating our prior belief given evidence. 

Let's consider a classification of satellite images into water (W) and forest 

(F) areas, based on the NDWI index. Based on available maps, we know that 

20 % of the study area is covered by water, i.e. 

𝑝(𝑊) = 0.2 and 𝑝(𝐹) = 0.8 

This is our prior knowledge about land cover, independent of the observed 

pixel. Next, we consider the NDWI value for each class. Water areas 

typically have a high value of NDWI, while the forest typically has a low 

NDWI value. So if pixel has NDWI=0.7, we can calculate probability based 

on the training data 

𝑝(𝑁𝐷𝑊𝐼 = 0.7|𝐹) = 0.15 

𝑝(𝑁𝐷𝑊𝐼 = 0.7|𝑊) = 0.75 

This is the likelihood that measures how probable the observed NDWI data 

is, given that the pixel belongs to the forest class. 

Based on Bayes' theorem, we can update our village about pixel class  

𝑝(𝑊|𝑁𝐷𝑊𝐼) =
𝑝(𝑁𝐷𝑊𝐼|𝑊)⋅𝑝(𝑊)

𝑝(𝑁𝐷𝑊𝐼)
 i.e. 𝑝(𝑊|0.7) = 0.2 ⋅ 0.75 = 0.15 

𝑝(𝐹|0.7) = 0.8 ⋅ 0.15 = 0.12 

After normalization, we will have  

𝑝(𝑊|0.7) =
0.15

0.15+0.12
= 0.55 and 𝑝(𝐹|0.7) =

0.12

0.15+0.12
= 0.45 

So, even though the prior probability that the pixel represents the water 

class was 20%, after observing that the NDWI=0.7, the posterior probability 

of the pixel bearing water is increased to 55%. 

The two events 𝑋 and 𝑌 are independent if 

𝑝(𝑋, 𝑌) = 𝑝(𝑋) ⋅ 𝑝(𝑌) 

If two events are independent, then  
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𝑝(𝑋|𝑌) = 𝑝(𝑋) 

meaning that 𝑋 and 𝑌 are independent if knowledge that 𝑌 occur does not 

affect the probability that 𝑋 occurs. Therefore, the occurrence of 𝑋  is 

independent whether or not 𝑌 occurs. 

11.1 Probability density 
The probability for discrete sets of events can be extended to the probabilities 

with respect to continuous variables. By a continuous variable, we consider a 

random variable whose sample space is infinite. This is tricky since if each 

variable has a non-zero probability, the total sum will add up to infinity, 

which violates the requirement that the total probability must sum up to 1. 

The X is a continuous random variable if there exists a nonnegative function 

𝑝(𝑥)defined for all real 𝑥 ∈ (−∞,∞) having the property that for any set B of 

real numbers 

𝑝{𝑋 ∈ 𝐵} = ∫𝑝(𝑥)𝑑𝑥
.

𝐵

 

The function 𝑝(𝑥) is called the probability density function of the random 

variable 𝑋. This means that the probability that 𝑋 will be in 𝐵 can be calculated 

by integrating the probability density function over the set I. 

Therefore, the probability that 𝑋 will lie in an interval [𝑎, 𝑏] is given by 

𝑝(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫ 𝑝(𝑋)𝑑𝑋
𝑏

𝑎

 

11.2 Probability distributions  
The most common continuous distributions (probability density) are 

Bernoulli, Poisson, Normal distribution, etc. 

The Bernoulli distribution is a simple discrete distribution in which the 

random variable can take exactly two possible values 𝑥 ∈ {0, 1}. One example 

of a Bernoulli random variable is the outcome of a coin toss, where possible 

outcomes are heads or tails. It is specified by a single parameter 𝑝, i.e., 𝑝(𝑋 =

1) = 𝑝 and 𝑝(𝑋 = 0) = 1− 𝑝 where 0 < 𝑝 < 1. Bernoulli distribution can be 

written as  



Introduction to Geospatial Artificial Intelligence 

263 

 

𝑝(𝑋) = 𝑝𝑥(1− 𝑝)1−𝑥 

The Binomial distribution models the outcome of performing multiple 

independent Bernoulli trials, each with the same probability p. Instead of just 

success and failure, it gives the probability of observing exactly k successes 

out of n trials. It is defined as follows 

𝑝(𝑋 = 𝑘) = (
𝑛
𝑘
)𝑝𝑘(1 − 𝑝)𝑛−𝑘 

Let 𝑋 be the number of successes (value 1) that occur in the n trials, then X is 

said to have a binomial distribution with parameters (𝑛, 𝑝) denoted as 𝑋 ∼

𝐵𝑖𝑛(𝑛, 𝑝). However, for large n and small p values, the binomial is hard to 

compute (such as  𝑋 ∼ 𝐵𝑖𝑛(104, 10−6)) and it can be approximated using the 

Poisson distribution.   

The Poisson distribution is, in fact, a limiting case of the binomial 

distribution. It gives the probability when the chance of an event p is small, 

but the total number of trials n is large. It is often used if an event occurs 

independently and randomly over a fixed interval of time, and the mean rate 

of occurrence is constant over time, then the number of occurrences in a fixed 

time period follows the Poisson distribution. It is a discrete distribution with 

a probability mass function of a random variable 𝑋 is defined as follows 

𝑝(𝑋 = 𝑘;  𝜆) =
𝜆𝑥𝑒−𝜆

𝑥!
 

where 𝑘 = 0, 1, . .. is the number of events observed and 𝜆 = 𝑛 ⋅ 𝑝 is called the 

average arrival rate. The mean value of a Poisson random variable is 𝜆, and 

its variance is also 𝜆. 

Gaussian distribution, also known as normal distribution, is one of the most 

used probability distributions for continuous variables. It appears in different 

contexts. According to the Central Limit Theorem, when the number of trials 

n becomes larger, the distribution of the Binomial variable can be 

approximated by the Gaussian (especially if p is close to 0 or 1). Moreover, the 

Poisson distribution begins to resemble a Normal distribution when 𝜆 is large 

(Figure 76).  
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Figure 76 Plots of the Poisson probability function for various values of λ (a) λ=1, (b) λ=5, (c) 

λ=20 

The Gaussian distribution is defined by two parameters: the mean 𝜇 and 

variance 𝜎2 (Figure 77). This means that we can compute any probability of 

interest given only the mean and standard deviation. For a single real-value 

variable x, it is given by 

𝑓(𝑥) =
1

√2𝜋𝜎
𝑒
−
(𝑥−𝜇)2

2𝜎2  

where x can take any value −∞ < 𝑥 < ∞. The argument of the exponential 

function is the quadratic function of the variable x. Since the coefficient is 

negative, the parabola points downwards. The coefficient 
1

√2𝜋𝜎
 is a constant 

since it does not depend on x. The random variable 𝑋 that follows a normal 

distribution is denoted as 𝑋 ∼ 𝑁(𝜇, 𝜎2).  

 

Figure 77 Gaussian distribution for different parameters. μ controls the location of the center 

of density, σ2 controls how spread out the density is. 



Introduction to Geospatial Artificial Intelligence 

265 

 

It is a bell-shaped curve (Figure 77) and it is assumed that during any 

measurement, values will follow a normal distribution with an equal number 

of measurements above and below the mean values.  If the distribution of 

measurement is normal, then their mean (average of all values), median (mid-

point of distribution), and mode (the most frequent value observed during the 

experiment) are the same. Moreover, the level of confidence can be expressed 

based on the mean and standard deviation, i.e. 𝜇 ± 𝜎 contains 68.2% of all 

values, 𝜇 ± 2 ⋅ 𝜎 contains 95.5% of all values and 𝜇 ± 3 ⋅ 𝜎 contains 99.7% of all 

values. 

The standard Normal distribution is a Normal distribution with a mean 𝜇 = 0 

and 𝜎2 = 1. The random variable that follows a standard normal distribution 

is often denoted by 𝑍 ∼ 𝑁(0, 1). 

For a multivariate Gaussian distribution (Figure 78), the probability density 

is defined over a vector of inputs as follows 

𝑓(𝑥) =
1

√2𝜋𝑛|𝛴|
𝑒
−(

1
2
(𝑥−𝜇)𝑇𝛴−1(𝑥−𝜇))

 

where n is the number of variables, 𝜇 is an nx1 vector of means, 𝛴 is the 

covariance matrix nxn. The covariance matrix needs to be symmetric, positive 

semidefinite, and it can be factored as 𝛴 = 𝐴𝐴𝑇. The argument of the 

exponential function is a quadratic form in the vector variable x. Since Σ is 

positively defined (and therefor it inverse is also positively defined) than for 

any 𝑥 ≠ 𝜇 −
1

2
(𝑥 − 𝜇)𝑇𝛴−1(𝑥 − 𝜇) < 0 and therefore a quadratic bowl is 

downward open. 

The computing multivariate Gaussian for large n (number of parameters 

grows quadratically with n) can be computationally demanding. It can be 

reduced by assuming that the covariances are zero; therefore, the determinant 

|𝛴| will be a product of the variance, and the inverse can be computed as the 

inverse of the diagonal elements. 

The n-dimensional multivariate Gaussian with a diagonal covariance matrix 

𝛴 = 𝑑𝑖𝑎𝑔(𝜎1
2, . . . , 𝜎𝑛

2), can be viewed as a collection of d independent Gaussian-

distributed random variables with mean 𝜇𝑖 and variance 𝜎𝑖
2.  
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Figure 78 Multi-variate Gaussian 

Moreover, if 𝑍 ∼ 𝑁(0, 1),  𝑍 can be defined as a collection of d independent 

standard normal variables. Feature more, if 𝑍 = 𝐴−1(𝑋 − 𝜇) then from algebra 

𝑋 = 𝐴𝑍 + 𝜇. Therefore, any random variable X with a multivariate Gaussian 

distribution can be interpreted as the result of applying a linear 

transformation to some collection of n independent standard normal 

variables. 

The analysis of contour lines provides a better understanding of the 

multivariate Gaussian. The contour lines represent the region of equal 

probability density. Due to the quadratic form in the Gaussian equation, these 

contour lines are ellipses (Figure 79 (a)). The orientation and shape of the 

ellipse are determined by the covariation matrix.  If 𝛴 is diagonal, the ellipses 

are axis aligned (since variables have different variance, the ellipses will be 

stretched horizontally or vertically), if 𝛴 has off-diagonal elements, the 

ellipses are rotated (if two variables are positively correlated, the major axis is 
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along a line with positive slope) (Figure 79 (c) and (d)). Moreover, the 

independent variables have the same variance and therefore circular contours 

(Figure 79 (b)). 

 

Figure 79 Contour lines of multi-variate Gaussian (a) diagonal covariance matrix, (b) 

independent variables, (c) positively correlated variables and (d) negatively correlated 

variables 

11.3 Expectations and Variance 

The expectation of a random variable, also known as the mean, first moment, 

or expected value, is denoted by 𝐸(𝑋) for the discrete distribution is given by 

𝐸(𝑋) = ∑ 𝑥𝑖𝑝(𝑋 = 𝑥𝑖)

.

𝑥𝑖∈𝑋
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Therefore, the expected value of 𝑋 is the weighted average of the possible 

values that 𝑋 can take on weighted by the probability that 𝑋 assumes that 

value. 

Let's find the 𝐸(𝑋) where 𝑋 is the outcome of rolling the dice. Since 𝑝(1) =

𝑝(2) = 𝑝(3) = 𝑝(4) = 𝑝(5) = 𝑝(6) the expected value is 

𝐸(𝑋) = 1 ⋅
1

6
+ 2 ⋅

1

6
+ 3 ⋅

1

6
+ 4 ⋅

1

6
+ 5 ⋅

1

6
+ 6 ⋅

1

6
=
7

2
 

Calculate the 𝐸(𝑋) where 𝑋 is a Bernoulli random variable with parameter 

𝑝. Since 𝑝(0) = 1 − 𝑝 and 𝑝(1) = 𝑝 than  𝐸(𝑋) = 0 ⋅ (1 − 𝑝) + 1 ⋅ 𝑝 = 𝑝 

 

In the case of continuous variables, expectations are expressed in terms of an 

integration with respect to the corresponding probability density, i.e. 

𝐸(𝑋) = ∫ 𝑥𝑝(𝑥)𝑑𝑥
∞

−∞

 

Calculate the 𝐸(𝑋) of a random variable uniformly distributed over an 

interval (𝑎, 𝑏) 

𝐸(𝑋) = ∫
𝑥

𝑏 − 𝑎
𝑑𝑥

𝑏

𝑎

=
𝑏2 − 𝑎2

2(𝑏 − 𝑎)
=
𝑎 + 𝑏

2
 

Therefore, if random variables are uniformly distributed over an interval 

(𝑎, 𝑏) then the expected value is the middle point of the interval. 

Calculate the 𝐸(𝑋) when X is normally distributed with parameters 𝜇 and 

𝜎2 

𝐸(𝑋) =
1

√2𝜋𝜎
∫ 𝑥𝑒

−
(𝑥−𝜇)2

2𝜎2 𝑑𝑥 
∞

−∞

 

If we express 𝑥 = (𝑥 − 𝜇) + 𝜇 transform 

𝐸(𝑋) =
1

√2𝜋𝜎
∫ 𝑒

−
(𝑥−𝜇)2

2𝜎2 𝑑𝑥
∞

−∞
+ 𝜇

1

√2𝜋𝜎
∫ 𝑒

−
(𝑥−𝜇)2

2𝜎2 𝑑𝑥
∞

−∞
  

letting 𝑦 = 𝑥 − 𝜇 leads to  
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𝐸(𝑋) =
1

√2𝜋𝜎
∫ 𝑦𝑒

−
𝑦2

2𝜎2𝑑𝑦
∞

−∞

+ 𝜇∫ 𝑓(𝑥)𝑑𝑥
∞

−∞

 

where 𝑓(𝑥) is the normal density. By symmetry, the first integral must be 0. 

Due to that,  

 𝐸(𝑋) = 𝜇 ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
= 𝜇 

Therefore, the expected value of a random variable that follows a normal 

distribution is the mean value. 

 

The variance of the distribution, also known as the second moment, is defined 

as follows 

𝑉𝑎𝑟(𝑋) = 𝐸((𝑋 − 𝐸(𝑋))2) 

It measures the expected square of the deviation of 𝑋 from its expected values. 

It is often denoted by 𝜎2. The variance of a random variable 𝑋 is not a linear 

function of a random variable.  The standard deviation, denoted as 𝜎, is given 

by 𝜎 = √𝑉𝑎𝑟(𝑋). 

If random variables 𝑋 and 𝑌 are independent than 

𝑉𝑎𝑟(𝑋 + 𝑌) = 𝑉𝑎𝑟(𝑋)𝑉𝑎𝑟(𝑌) 

The covariance of two random variables measures how closely related the two 

random variables are. It is given by 

𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸((𝑋 − 𝐸(𝑋))(𝑌 − 𝐸(𝑌)) 

Let 𝑋 be normally distributed with parameter  𝜇 and 𝜎2. Find 𝑉𝑎𝑟(𝑋) 

𝑉𝑎𝑟(𝑋)=E((𝑋 − 𝜇)2) =
1

√2𝜋𝜎
∫ (𝑥 − 𝜇)2𝑒

−
(𝑥−𝜇)2

2𝜎2
∞

−∞
𝑑𝑥 

by introducing the substitution 𝑦 = (𝑥 − 𝜇)/𝜎 we have 

𝑉𝑎𝑟(𝑋) =
𝜎2

√2𝜋
∫ 𝑦2𝑒−

𝑦2

2 𝑑𝑦
∞

−∞

 

Integrating by parts 𝑢 = 𝑦 and 𝑑𝑣 = 𝑦𝑒−
𝑦2

2 𝑑𝑦 gives 
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𝑉𝑎𝑟(𝑋) =
𝜎2

√2𝜋
∫ 𝑒−

𝑦2

2 𝑑𝑦
∞

−∞

= 𝜎2 

11.4 Bayesian classification 
Generally, there are two approaches used in classification: generative and 

discriminative. In a discriminative approach (such as logistic regression), 

classifiers learn what features from the input dataset are most useful to 

discriminate between different classes. On another hand, generative 

approaches, such as Bayesian classifiers, are based on obtaining a distribution 

over some input data. A Bayesian classifier is a probabilistic approach based 

on the Bayesian theorem that addresses classification problems by modeling 

the distribution of the input class. Therefore, it returns the class most likely to 

generate the observation.  

Let us consider the binary classification where samples belong to 𝑦1 or 𝑦2. We 

assume the prior probabilities 𝑃(𝑦1) and  𝑃(𝑦2) are known or it can be 

assumed that the classes are equally liked or calculated from training samples. 

If n is the total number of available training samples and 𝑛1, 𝑛2 of them belong 

to  𝑦1 and 𝑦2, respectively, then the prior probability is given by 

𝑃(𝑦1) ≈
𝑛1

𝑛
 and 𝑃(𝑦2) ≈

𝑛2

𝑛
 

Once we observe a feature vector x, we estimate the conditional probability 

density distribution 𝑝(𝑥|𝑦𝑖), where  𝑖 = 1, 2, describing the distribution of 

feature vectors 𝑥 = (𝑥1, . . . , 𝑥𝑘) in each class. If the feature vector can only take 

discrete values density function 𝑝(𝑥|𝑦𝑖) becomes a probability denoted by 

𝑃(𝑥|𝑦𝑖). Applying the Bayes’ theorem will lead to the posterior probability 

given by:  

𝑃(𝑦𝑖|𝑥) =
 𝑝(𝑥|𝑦𝑖)𝑃(𝑦𝑖)

𝑝(𝑥)
 

where 𝑝(𝑥) is the input data probability distribution, and for which we have  

𝑝(𝑥) =∑𝑝(𝑥|𝑦𝑖)𝑃(𝑦𝑖)

2

𝑖=1
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The Bayes classification rule is based on minimization of probability error i.e., 

maximization of a posterior probability (MAP), i.e. 𝑦̂ = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑦∈{0,1}𝑃(𝑦|𝑥). 

Since 𝑝(𝑥) is the constant across all classes, it does not affect the argmax, so  

 𝑦̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈{0,1}𝑝̂(𝑥|𝑦𝑖)𝑃̂(𝑦𝑖). 

Therefore, we can determine the class of a sample by considering the 

inequality between  𝑝(𝑥|𝑦1)𝑃(𝑦1) and 𝑝(𝑥|𝑦2)𝑃(𝑦2). 

The classification can be given as: 

if 𝑝(𝑥|𝑦1)𝑃(𝑦1) < 𝑝(𝑥|𝑦2)𝑃(𝑦2), x belongs to the class 𝑦2, 

if 𝑝(𝑥|𝑦1)𝑃(𝑦1) > 𝑝(𝑥|𝑦2)𝑃(𝑦2), x belongs to the class 𝑦1, and 

if 𝑝(𝑥|𝑦1)𝑃(𝑦1) = 𝑝(𝑥|𝑦2)𝑃(𝑦2), x can be assigned to any of the classes. 

Therefore, the decision boundary is the set of all x where posterior 

probabilities are equal. 

So, the classifier balances the likelihood (i.e., how well x fits each class) with 

prior knowledge. Since the prior is a single fixed number, the likelihood 

grows exponentially with the number of samples, and the influence of the 

prior on the posterior fades away (Figure 80). 

If 𝑃(𝑦1) = 𝑃(𝑦2) = 1/2 than priors cancel out and classification depends only 

on the likelihood i.e. the decision boundary is determined by considering the 

inequality between 𝑝(𝑥|𝑦1) and 𝑝(𝑥|𝑦2). 

In multi-class classification Bayes classifier generalizes directly 𝑦̂ =

𝑎𝑟𝑔 𝑚𝑎𝑥𝑦𝑚𝑃(𝑦𝑚|𝑥) where m represents the number of classes. The MLE or 

MAP can be used to estimate the distribution parameters and then calculate 

an argmax decision rule over m classes for classification. However, if the 

number of features is large, estimating the probability of every possible 

combination would require a huge number of parameters and a large training 

dataset.  

This can be addressed by introducing Naive Bayes. The Naive Bayes assumes 

that each feature of X is conditionally independent of the others, given Y, i.e. 

𝑝(𝑥1, . . . , 𝑥𝑘|𝑦) =∏𝑝(𝑥𝑗|𝑦)

𝑘

𝑗=1

 

where k is the number of features. 
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Figure 80 Steps in Bayes classification (a) compute the class conditional probability, (b) 

multiply by the class prior probability, (c) obtain the posterior probability, and find the decision 

boundary 

This assumption is often wrong in the real world, but it significantly reduces 

the computational complexity, allowing us to make predictions using space 

and data, which is linear with respect to the size of the features. Therefore, it 

enables training and making predictions for a huge feature space. The 

prediction algorithm can be presented as 

𝑦̂ = 𝑎𝑟𝑔 max
𝑦∈{0,1}

𝑝̂(𝑥|𝑦)𝑃̂(𝑦) = 𝑎𝑟𝑔 max
𝑦∈{0,1}

𝑃̂(𝑦)∏𝑝̂(𝑥𝑖|𝑦)

𝑚

𝑖=1

= 𝑎𝑟𝑔 max
𝑦∈{0,1}

𝑙𝑜𝑔𝑃̂(𝑦) +∑𝑝̂(𝑥𝑗|𝑦)

𝑘

𝑖=1

 



Introduction to Geospatial Artificial Intelligence 

273 

 

11.5 Bayesian error 
In Bayesian classification, the feature space is partitioned into two decision 

regions 𝑅1 and 𝑅2 associated with 𝑦1 and 𝑦2 respectively. The boundary 

between regions is the decision boundary. Therefore, for all values of x in 𝑅1 

the classifier decides 𝑦1 and for all samples in  𝑅2 the classifier decides 𝑦2. 

However, the errors are unavoidable if class distributions overlap (Figure 81). 

Due to that, there is a finite probability that observation x is located in the 𝑅2 

region, in fact, belongs to the class 𝑦1. Then our decision is in error. The total 

probability, 𝑃𝑒, of committing a decision error for the case of two classes is 

given by 

𝑃𝑒 = ∫ 𝑝(𝑥|𝑦1)𝑃(𝑦1)𝑑𝑥
𝑥0

−∞

+∫ 𝑝(𝑥|𝑦1)𝑃(𝑦1)𝑑𝑥
∞

𝑥0

 

As already mentioned, the 𝑃𝑒 is minimized if each x is assigned to the class 

having the largest posterior probability. The 𝑃𝑒 is equal to the total shaded 

area under the curves.  

 

Figure 81 Bayes' error corresponds to the overlap between the class distributions. The optimal 

decision boundary is where the curves cross (x0 ). 
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Bayesian error is a very important concept in ML. It is the minimum error you 

could obtain using any kind of classifier. Тhe classifier that achieves this error 

is an optimal classifier.  It is a theoretical value that is hard to obtain in real-

world problems, since it is hard to estimate the exact data distribution of 

various classes from a finite dataset. Moreover, the loss function is 

discontinuous and not convex, and therefore hard to optimize.  
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12 SUPPORT VECTOR MACHINE 

Support Vector Machine (SVM) was proposed by [10], is a supervised ML 

algorithm used for both classification and regression. It is one of the best off-

the-shelf ML algorithms that have been extensively used in various tasks. 

SVM is a discriminative approach, so it does not provide posterior probability. 

As we already mentioned, in binary logistic regression, the decision boundary 

is linear. The SVM also uses the linear separator by employing the optimal 

margin principle. 

Let us consider a binary classification problem with labels y and a feature 

vector 𝑥𝑖. Class  

𝑦 = 1 is a positive class and 𝑦 = −1 is the negative class, respectively. We 

assume that positive and negative classes are linearly separable. The goal is to 

find a decision boundary given as  

𝑔(𝑥) = 𝑤𝑇𝑥 + 𝑏 = 0 

that classifies data correctly. The decision boundary separates the feature 

space into two subspaces. If 𝑤𝑇𝑥 + 𝑏 ≥ 0 than 𝑦 = 1, otherwise 𝑦 = −1. 

However, such a decision boundary is not unique (Figure 82). 

 

Figure 82 Binary classification in a 2D feature space. Multiple decision boundaries can provide 

correct classification 
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The question is which decision boundary we should select. Let's consider 

point A, which is located far away from the decision boundary, meaning that 

we are very confident that point A belongs to the positive class. On the other 

hand, point B is close to the decision boundary, and small changes to the 

decision boundary can result in classifying point B as a negative class. 

Although point B is correctly classified, we are not very confident in the 

prediction at point B. So we wish to find a decision boundary that will provide 

correct and confident classification on training examples. Taking that into 

account, we would most likely select a green line because it provides the 

largest gap between classes. Due to that, the data points can move more freely 

without causing errors. Therefore, the generalization ability of the classifier is 

higher. So if there are multiple decision boundaries that provide accurate 

classification, we should select one that provides the best generalization (i.e., 

it provides stable performance on the unseen data). 

The SVM ensures the generalization of maximizing the margins. Margin is 

defined as the smallest perpendicular distance between the decision 

boundary and all data samples. To quantify the margin that a decision 

boundary leaves from both classes, we start with the assumption that the w 

are b are constrained so that the output of the linear model is always larger 

than 1 or smaller than -1, i.e.  

{
𝑤𝑇𝑥 + 𝑏 ≥ 1     𝑖𝑓 𝑦𝑖 = 1

𝑤𝑇𝑥 + 𝑏 ≤ −1     𝑖𝑓 𝑦𝑖 = −1
 

Thus, if 𝑦𝑖 = 1 than our prediction if 𝑤𝑇𝑥 + 𝑏 > 0 is correct, while it is correct 

and confident if 𝑤𝑇𝑥 + 𝑏 is a large positive number.  

Consider two points 𝑥1 and 𝑥2 that both lie on the hyperplane, i.e. 𝑔(𝑥1) =

𝑔(𝑥2) = 0 and therefore 𝑤𝑇(𝑥1 − 𝑥2) = 0. So any difference vector that lies 

inside the hyperplane is orthogonal to 𝑤. Thus 𝑤 points in the direction 

normal to the hyperplane and determine its orientation. 

To compute the margin, let's analyses the training set 𝑠 = {(𝑥𝑖, 𝑦𝑖);  𝑖 =

1, . . . , 𝑛}. For a candidate hyperplane (𝑤, 𝑏), the functional margin of the 

training point (𝑥𝑖, 𝑦𝑖) is given by 

𝛾𝑖̂ = 𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) 
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This quantity is positive if the point is correctly classified, and its magnitude 

reflects how confidently the classifier assigns the labels. The true geometrical 

distance from any point to a hyperplane is given by   

𝛾𝑖 =
𝛾𝑖̂

||𝑤||
=
𝑦𝑖(𝑤

𝑇𝑥𝑖 + 𝑏)

||𝑤||
 

therefore geometrical margin is a scaled version of the functional margin (i.e., 

if ||𝑤||=1 than the functional margin is the same as the geometrical margin). It 

is invariant to rescaling the parameters, so if we replace 𝑤 with 2𝑤 and b with 

2b the geometric margin does not change. 

Let's analyse the closest point 𝑥3 of the positive class to the boundary. The 

margin of  𝑥3 can be computed by projecting the line segment vector 𝑥3 − 𝑥1 

over the orientation vector w i.e. 

1

2
𝜌 =

𝑤𝑇(𝑥3 − 𝑥1)

||𝑤||
=
(𝑤𝑇𝑥3 + 𝑏) − (𝑤

𝑇𝑥1 + 𝑏)

||𝑤||
=

1

||𝑤||
 

where ||⋅|| is the norm (magnitude) of a vector. Hence, the point closest to the 

decision boundary is at a distance 
1

||𝑤||
.  The magnitude of 𝑤 does not change 

orientation, it only scales the margin width.  Therefore, to maximize the 

margin 𝜌 = 2/||𝑤|| we need to minimize the norm of the weight vector 𝑤. 

Taking that into account, we need to find a decision boundary with 

parameters w and b so that 

min
𝑤,𝑏

1

2
‖𝑤‖2 

subject to constraint 𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) ≥ 1    ∀𝑖 = 1, . . . , 𝑛 i.e., all training points are 

classified correctly and lie outside the margin.  

Finally, for a given training set S, the geometrical margin of the classifier is 

defined as the smallest geometrical margin among all training examples 

𝛾 = min
𝑖=1,…,𝑛

𝛾𝑖 

Since the objective function is a quadratic function and all constraints are 

linear inequality constraints, this is a convex problem, so any local solution is 

also a global optimum. This is an important property of SVM. The SVM 
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optimization problem has 1 objective and n corresponding constraints, where 

n represents the number of training samples. 

In order to solve this constrained problem, for each 𝑥𝑖 we introduced 

Lagrange multipliers 𝜆𝑖 ≥ 0. The overall Lagrangian function is given as 

𝐿(𝑤, 𝑏, 𝜆) =
1

2
||𝑤||

2
−∑𝜆𝑖(𝑦𝑖(𝑤

𝑇𝑥𝑖 + 𝑏) − 1)

𝑛

𝑖=1

 

where 𝜆 = (𝜆1, . . . , 𝜆𝑛)
𝑇. The first term is our objective, while the second term 

penalizes violation of the constraint (loss function). The minus sign in front of 

the Lagrange multiplier term is because we are minimizing with respect to 𝑤 

and b and maximizing with respect to 𝜆. From the Karush-Kuhn-Tucker 

condition, at the optimum, we require stationarity w.r.t. w and b. By setting 

the derivatives of 𝐿(𝑤, 𝑏, 𝜆) with respect to 𝑤 and b equal to zero, we obtain 

the following two conditions 

𝑤 =∑𝜆𝑖𝑦𝑖𝑥𝑖

𝑛

𝑖=1

 

Returning 𝑤 back into L, the dual optimization problem becomes 

𝑚𝑎𝑥𝜆∑𝜆𝑖

𝑛

𝑖=1

−
1

2
∑∑𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗(𝑥𝑖 ⋅  𝑥𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

 

subject to 𝜆𝑖 ≥ 0 ∀𝑖 = 1, . . . , 𝑛 

∑𝜆𝑖𝑦𝑖

𝑛

𝑖=1

= 0 

 

If 𝜆𝑖 = 0 the constraint for point i is not active, i.e., points lie outside the 

margin and do not influence the solution. Therefore, Lagrangian multiplier 

vector is a sparse vector and only vectors that lie on the margin hyperplanes 

𝑤𝑇𝑥𝑖 + 𝑏 = ±1 will have positive 𝜆𝑖.  Thus, the vector parameter 𝑤 of optimal 

solution is a linear combination of the feature vector 𝑛𝑠 < 𝑛 with 𝜆𝑖 ≥ 0 i.e. 

𝑤 =∑𝜆𝑖𝑦𝑖𝑥𝑖

𝑛𝑠

𝑖=1
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The feature vectors that contribute to 𝑤 are called support vectors, and the 

optimum decision boundary is known as an SVM. Geometrically, the 

hyperplane bisects the closest points of opposite classes, and only supported 

vectors are used to determine the optimal solution, leading to robustness and 

good generalization (Figure 83). 

 

Figure 83 Support vector optimization 

To predict a new point 𝑥𝑛𝑒𝑤 

𝑤𝑇 ⋅ 𝑥𝑛𝑒𝑤 + 𝑏 =∑𝜆𝑖𝑦𝑖(𝑥𝑖 ⋅ 𝑥𝑛𝑒𝑤)

𝑛

𝑖=1

+ 𝑏 

If the quantity is bigger than 0, the new point belongs to the positive class. 

Thus, the prediction on a new point depends only on the inner product 

between x and the supported vectors.  

There are several important characteristics of SVM: 
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● The optimal decision boundary of SVM is unique. As already 

mentioned, the optimization is a strict convex function and thus it 

guarantees that any local minima is also a global minimum. 

● Uses just a subset of training data (supported vectors) to determine 

decision boundaries. It is computationally effective,  

● It is robust to outliers, 

● It is little affected by data distribution and density, and 

● It works well in high-dimensional space, especially where the number 

of features is higher than the number of samples. 

On the other hand, it is computationally expensive and it performs badly 

when classes overlap. 

12.1.1 Soft margins 

So far, we assumed that classes are linearly separable. When classes are 

linearly separable, the loss function results in infinite error if a point is 

misclassified and zero error if it is correctly classified, and then optimized 

model parameters are used to maximize the margin. However, in practice, 

data are usually not perfectly separable (class overlap, mislabeling, noise, etc). 

Consider the cases presented in the Figure 84. 

Although classes' conditional probability slightly overlap, points can still be 

linearly separable, but due to the presence of outliers, the decision boundary 

makes a swing, resulting in a narrow margin (i.e., low generalization ability). 

On the other hand, we can maximize margin, but the constraint is violated 

(some points are misclassified). The question is which of those cases is better? 

In general, there is a trade-off between the margin maximization and the 

number of mistakes on the training data. Therefore, if classes slightly overlap, 

we can allow some of the training points to be misclassified in order to 

increase the margin. 
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Figure 84 Linear non-separable classes (a) point samples are correctly classified but the 

classifier has a much smaller margin, (b) the margin is maximized, but there is a misclassified 

point 

Consider the non-linear separable classes presented in the Figure 85. There 

are three possible cases: the vector is located outside the margin and it is 

correctly classified, the vector flies inside the margin and it is correctly 

classified, or the vector is misclassified. 

 

Figure 85 Soft margin SVM 
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To make the algorithm work for a non-linearly separable dataset and reduce 

the sensitivity to outliers, we can modify the approach so that data points can 

be on the wrong side of the boundary, but with a penalty that increases with 

distance from the boundary. To do so, we introduced the slack variables 𝜉𝑖 

where 𝑖 = 1, . . . , 𝑛..The misclassification is penalized as a linear function of the 

distance from the point to distance boundary by using a single type of 

constraint  

𝑦𝑖(𝑤
𝑇𝑥 + 𝑏) ≥ 1 − 𝜉𝑖 

where 𝜉𝑖 ≥ 0. Vectors for which 𝜉𝑖 = 0 are correctly classified, if 0 < 𝜉𝑖 < 1 

vector lies inside the margin and it is correctly classified (this is a margin 

violation), and for  𝜉𝑖 > 1 vector is misclassified. This relaxation that allows 

vectors to be misclassified is known as a soft margin. 

The goal is to maximize the margin while minimizing the number of vectors 

with 𝜉𝑖. Therefore, we need to minimize  

min
𝑤,𝑏,𝜉

1

2
‖𝑤‖2 + 𝐶∑𝜉𝑖

𝑛

𝑖=1

 

s.t. 𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) ≥ 1− 𝜉𝑖    ∀𝑖 = 1, . . . , 𝑛 

𝜉𝑖 ≥ 0   ∀𝑖 = 1, . . . , 𝑛 

where 𝐶 > 0 is a constant that controls the trade-off between training error 

and margin width. The large C leads to small 𝜉𝑖 and strong penalization of 

margin violations, while small C allows more tolerance for misclassification 

but enables better generalization. Misclassified points can be farther away 

from the decision boundary, and the model won’t change the boundary to fit 

them. 

12.1.2 Kernel 

Soft margin allows the SVM to deal with slight distribution overlapping. 

However, if classes are not linearly separable. Consider the following case 

(Figure 86) where the positive and negative class is arranged into two 

concentric circles. In the original feature space, there is no straight line that 

can separate these classes.  
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Figure 86 (a) classes in the original feature space, (b) classes embedded in a higher-

dimensional space 

In such cases, the SVM relies on the so-called kernel trick. The basic idea is to 

map data in a much higher-dimensional space where they can be separated. 

If we go back to our example, we can project data into 3D space by adding a 

square radius  𝑧 = 𝑥1
2 + 𝑥2

2 as a new feature, i.e. (𝑥1, 𝑥2, 𝑧). In higher-

dimensional space, the two circles lie on parallel planes, and we can create a 

linear hyperplane to separate them. 

The kernel function computes an inner product between two data points in 

the high-dimensional feature space without performing the explicit mapping.  

As already mentioned, the dual optimization problem only depends on the 

inner product. Thus, if data are not linearly separable, we can map them into 

a higher-dimensional feature space 𝜙(𝑥) so that 

(𝑥𝑖 ⋅ 𝑥𝑗)  ↦  𝐾(𝑥𝑖 , 𝑥𝑗) = 𝜙(𝑥𝑖)
𝑇 ⋅ 𝜙(𝑥𝑗) 

where K is the kernel function. Therefore, the dual problem with the kernel is 

given by: 

𝑚𝑎𝑥𝜆∑𝜆𝑖

𝑛

𝑖=1

−
1

2
∑∑𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖, 𝑥𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

 

subject to ∑ 𝜆𝑖𝑦𝑖
𝑛
𝑖=1 = 0,  0 < 𝜆𝑖 ≤ 𝐶 ∀𝑖 = 1, . . . , 𝑛 

Now the algorithm learns by using features 𝜙. 

Once the optimization is solved, the classification is given by 
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𝑔(𝑥) = 𝑠𝑖𝑔𝑛 (∑𝜆𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏

𝑛

𝑖=1

) 

The SVM dual only needs dot product; by replacing it with a kernel, SVM is 

able to perform nonlinear classification without explicitly computing high-

dimensionality (i.e., the kernel function directly gives the inner product). Due 

to that, it is computationally efficient and scalable, even when the feature 

space is infinite-dimensional. The most commonly used kernels are: the linear 

kernel, the polynomial, and the radial basis function (RBF) kernel. 

The linear kernel, given as 𝐾(𝑥, 𝑧)  = 𝑥 ⋅ 𝑧, is the simplest kernel used in SVM. 

It does not perform any explicit mapping, i.e., it operates in the original 

feature space. It is used when classes are approximately linearly separable.  

The polynomial kernel allows modeling the nonlinear relationship between 

features. It is given by 𝐾(𝑥, 𝑧)  = (𝑥𝑇 ⋅ 𝑧 + 𝑐)𝑑 where d is the degree of the 

polynomial and c is a constant that controls the trade-off between higher-

order versus lower-order terms (usually 0 or 1). Consider n training samples, 

each having two 𝑚 = 2 features, and we want to use a degree 𝑑 = 2 

polynomial expansion. Degree 2 polynomial expansions include all 

monomials up to degree 2, i.e. 𝜙(𝑥) = [1, 𝑥1, 𝑥2, 𝑥1
2, 𝑥2

2, 𝑥1𝑥2] so points are 

mapped from a 2D original feature space to a 6D feature space. 

By combining the dual optimization and kernel trick, we can compute the 

value of the kernel without explicitly writing the blown-up representation, 

i.e., the K values are computed by performing operations in the original space, 

and everything works as if we had mapped to higher higher-dimensional 

space, so 𝜙(𝑥)𝑇𝜙(𝑧) = (𝑥𝑇 ⋅ 𝑧 + 1)2. This allows SVM to fit more complex 

classifiers without significantly increasing computational cost. However, 

fitting increasingly complex models to the training set of the same size 

without regularization can lead to overfitting. 

The Radial Basis Function is a function whose values depend on the distance 

to a center in the input space (usually Euclidean). The most commonly used 

RBF is the Gaussian RBF, and is defined as 

𝐾(𝑥, 𝑧) = 𝑒𝑥𝑝(
||𝑥 − 𝑧||

2

2𝜎2 ) 
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where 𝜎2 is known as bendwidth, and it is directly related to the width 

parameter 𝛾 = 1/2𝜎2. The width parameter controls the influence of each 

training point.  The RBF Kernel measures the similarity between two vectors. 

If it is close to 1, x and z are close, while near 0 values imply that x and z are 

far apart. So if 𝛾 is large, the Gaussian is very narrow and only points close to 

each other have a high similarity 𝐾(𝑥, 𝑧) ≈ 1. The decision boundary fits data 

points tightly, leading to complex boundaries and possible overfitting (Figure 

87(c)). On another hand, for small 𝛾, the Gaussian is wide and the decision 

boundary becomes smooth and more general. However, it can lead to 

underfitting (Figure 87(a)). Therefore, selecting an appropriate 𝛾 value is 

crucial for SVM performance. RBF Kernel implicitly maps the input data into 

an infinite-dimensional feature space, enabling separation of very complex 

patterns.  

 

Figure 87 Decision boundary by using different γ values (a) underfitting, (b) just right, and (c) 

overfitting 
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12.1.3 Multi-class SVM 

Although SVM is fundamentally designed for binary classification, it can be 

adapted to perform multiclass classification. This is accomplished by 

applying the same principles after breaking down the multi-class problem 

into multiple binary classification problems by using one-vs-one (OvO) or 

one-vs-rest (OvR) approaches (Figure 88). 

Suppose our data has K different classes 𝑦 ∈ {1, . . . , 𝐾}. The main idea behind 

the one-vs-one approach is to simply train 
𝐾(𝐾−1)

2
 different binary classifiers 

for every possible pair of classes. To make predictions for new data points, 

each classifier will result in one possible class label, and the point is assigned 

to the label with the higher number of votes. 

OvR approach constructs only K classifiers, and 𝑘𝑡ℎ mode is trained by using 

data from the K class as positive, and all of the remaining data is considered 

negative. In an ideal scenario, when a new point is presented to the classifiers, 

exactly one of the K classifiers will label the point as positive, and all the 

remaining will classify it as negative. In reality, all classifiers can assign data 

points to negative classes, or more than one classifier can assign them to 

positive classes. A new point is fed into all K classifiers and each outputs a 

decision value (distance from its separation hyperplane). In reality, all 

classifiers can assign data points to negative classes or more than one classifier 

can assign it to positive classes. 

There is no definitive rule for choosing between one-vs-one (OvO) and one-

vs-rest (OvR) SVMs. OvO requires more classifiers (
𝐾(𝐾−1)

2
 compared to K in 

one-vs-rest), but each is trained just on a subset of data, reducing the 

computational cost per model. On the other hand, OvR classifiers are always 

trained on an imbalanced dataset. Let's say that we have a perfectly balanced 

training dataset classified in five classes, the individual classifiers in the one-

vs-rest approach will be trained on 20% of positive and 80% of negative 

samples, and the symmetry of the original problem is lost.  
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Figure 88 (a) OvO approach, (b) OvR 

12.1.4 Supported Vector Regression 

Although the SVM has been primarily introduced for binary classification, its 

extension to regression is also known as Support Vector Regression (SVR). 

The main idea is to find a function  

𝑔(𝑥) = 𝑤𝑇𝑥 + 𝑏 

that approximates all training set (𝑋, 𝑦) with a margin of tolerance 𝜖 and at 

the same time as flat as possible (minimizing function complexity). Due to 

that, SVR uses the 𝜖 insensitive loss given by 

𝐿𝜖 = {0,    𝑖𝑓|𝑦𝑖 − (𝑤 ∙ 𝑥𝑖 + 𝑏)| ≤ 𝜖 |𝑦𝑖 − (𝑤 ∙ 𝑥𝑖 + 𝑏)| − 𝜖,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

This defines the tolerance tube with radius 𝜖.  If the predicted value is within 

the tube, the loss is equal to zero. If the prediction lies outside the tube, the 

loss grows linearly with the distance from the boundary. As 𝜖 increases, the 

function is allowed to move away from the data points, the number of 

supported vectors decreases, and the fit decreases. However, sometimes 

functions that approximate all pairs (𝑥𝑖, 𝑦𝑖) with 𝜖 precision does not exist. In 

that case, we want to allow some errors by which predictions exceed the 

allowed tolerance. 

Analogy to soft margins in SVM, we can account for the errors outside the 

tolerance tube by introducing two slack variables 𝜉𝑖
+ and  𝜉𝑖

−. They define a 

positive and negative derivation outside the tolerance area. The optimization 

problem is given by: 
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𝑚𝑖𝑛 
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2
||𝑤||

2
+ 𝐶∑(𝜉𝑖

+ + 𝜉𝑖
−)

𝑚

𝑖=1

 

subject to 

𝑦𝑖 −𝑤
𝑇𝑥𝑖 − 𝑏 ≤ 𝜖 + 𝜉𝑖

+ 

𝑤𝑇𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤ 𝜖 + 𝜉𝑖
− 

𝜉𝑖
+, 𝜉𝑖

− ≥ 0 

The constant 𝐶 > 0 determines the trade-off between the complexity of the 

function 𝑓 and the tolerance of derivations outside the 𝜖 tube.  

Just as in SVM, kernels can be applied in SVR to handle non-linear 

relationships, allowing the regression function to capture complex patterns in 

data. 
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13 DECISION TREES 

Decision trees have been extensively used for both classification and 

regression tasks. It recursively splits the feature space into homogeneous 

regions based on the values of different features until a stopping criterion is 

met.  

Consider dataset 𝐷 ⊂ (𝑋, 𝑦) that contains n data samples, each of them being 

d-dimensional and classified into K classes (𝑦 = {𝑦1, . . . , 𝑦𝐾}). A decision tree 

divides the feature space (𝑥1, . . . , 𝑥𝑑)  into K distinct regions 𝑅1, . . . , 𝑅𝐾 to 

correspond to K classes. For every data sample that falls into the region 𝑅𝐾 

algorithms make the same prediction. The condition is that regions don't 

intersect with each other, and the union of all regions covers an entire feature 

space.  

 The root node represents the entire feature space. The algorithm aims to 

identify the feature and threshold that lead to the best split based on a specific 

criterion 𝜃 ∈ 𝑅 i.e. [𝑥𝑗 ≥ 𝜃] where 𝑗 ∈ {1, . . . , 𝑑}. To determine “best”, we 

measure the impurity of a node. Each split results in two child nodes, and 

each split must generate subsets that are more class homogeneous. This 

process continues sequentially, with each region being split on a specific 

feature. If the node is not feature-splitted, then we assign the prediction 𝑦 to 

the region corresponding to this node. This node, where the tree ends, is also 

known as a leaf node, and the number of leaf nodes is equal to the number of 

distinct classes within the dataset. The complexity of the tree is measured by 

the number of splits in the tree. 

This mapping results in a tree-like structure where we follow the right branch 

of the node if the condition is met and the left otherwise. The process 

continues until the stopping criterion is reached, such as: if the maximum 

value of decrease in the node impurity over all possible splits is less than 

threshold, the predefined depth of the tree is reached, the number of data 

samples in the terminal node is less than the minimum number, nodes are 

homogeneous, or there is no further improvement in purity. 

Splitting criteria are used to determine where a tree should split. The main 

aim is to use a criterion that quantifies node impurity (which quantifies the 

homogeneity of the labels at a given node) and splits the node so that the 
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overall impurity of the child node decreases compared to the parent node. 

Different splitting criteria, such as gain index, information gain, or 

information gain ratio, can be used. 

The choice of splitting criterion directly influences the tree’s structure and 

algorithm performance.  

The gain index (Gini) quantifies the purity of a specific class after splitting 

using a particular feature. It is given by  

𝐺𝑖𝑛𝑖(𝐷) = 1 −∑𝑝𝑖
2

𝐾

𝑖=1

 

where 𝑝𝑖 is the proportion of the training samples in the set that belongs to 

class i. 𝐾 is the total number of unique classes in the dataset. Gini represents 

the probability of incorrectly classifying a sample from the set D if we 

randomly label it based on the class distribution in the node. If the dataset is 

split on feature F into two subsets 𝐷1 and 𝐷2 with size 𝑁1 and 𝑁2 respectively,  

𝐺𝑖𝑛𝑖 is given by  

𝐺𝑖𝑛𝑖𝐹(𝐷) =
𝑁1

𝑁
𝐺𝑖𝑛𝑖(𝐷1) +

𝑁2

𝑁
𝐺𝑖𝑛𝑖(𝐷2) 

The value of 𝐺𝑖𝑛𝑖 ranges from 0 (perfect purity - node contains only one class) 

and 1 (maximum impurity). It is highly efficient for standard classification 

tasks, but misclassifying samples always results in the same amount of loss 

regardless of the distance in the original scale between the observed and the 

predicted class. 

Information Gain (IG) is based on the entropy that measures the impurity or 

randomness in a data set. The aim is to find a split that decreases uncertainty 

before and after the split. It determines the effectiveness of a feature in 

splitting the training data into homogenous sets. The entropy (H) of set D is 

given as follows 

𝐻(𝐷) = −∑𝑝𝑖𝑙𝑜𝑔2(𝑝𝑖)

𝐾

𝑖=1

 

where negative signs ensure that information is positive or zero, 𝑝𝑖 is the 

proportion of instances in 𝐷 that belongs to class i, i.e., 𝑝𝑖 =
|𝐷𝑖|

|𝐷|
 For a node 
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with one class 𝑝𝑖 = 1 and therefore entropy is equal to 0. If mixing is higher, 

the entropy will also be higher. Consider a feature (𝐹) with possible values 

{𝛿1, . . . , 𝛿𝑚}.  Then, splitting D on F will result in 𝐷1, . . . , 𝐷𝑚subsets where each 

subset 𝐷𝑗 contains the instances in D such that 𝐹 = 𝛿𝑗. Then the entropy of 𝐷𝑗 

is given by 

𝐻(𝐷𝑗) = −∑𝑝𝑖𝑗𝑙𝑜𝑔2(𝑝𝑖𝑗)

𝐾

𝑖=1

 

The information gain of splitting on F is calculated as the difference between 

the entropy of the parent node 𝐻(𝐷) and weighted entropy after the split 

𝐻(𝐷|𝐹) and it is given by 

𝐼𝐺 = 𝐻(𝐷) − 𝐻(𝐷|𝐹) = 𝐻(𝐷) −∑
|𝐷𝑗|

|𝐷|
𝐻(𝐷𝑗)

𝑚

𝑗=1

 

where 𝑚 are the different values that feature 𝐹 can take, and 𝐷𝑖 is the subset 

of 𝐷 for which feature 𝐹 has the value 𝑚. 𝐼𝐺 measures the reduction in entropy 

from the original data set 𝐷 to the set 𝐷𝑗 created after the split.  Based on that, 

it determines the usefulness of a feature f at classification. A high IG indicates 

a more effective feature for splitting the data, and therefore, it results in a more 

homogeneous subset. Although IG is a popular splitting criterion, it tends to 

favor the attributes with many distinct values.  

Information gain ratio (IGR) is designed to address the limitations of IG by 

considering the number and size of branches when choosing a feature. The 

IGR normalizes the IG by considering the intrinsic information (also known 

as split information). This normalization reduces bias toward the multi-value 

features, resulting in a more balanced and effective decision tree. It is given 

by 

𝐼𝐺𝑅(𝐷, 𝐹)  =  
𝐼𝐺(𝐷, 𝐹)

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝐷, 𝐹)
 

where the 𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝐷, 𝐹) = −∑
|𝐷𝑗|

|𝐷|
𝑚
𝑗=1 𝑙𝑜𝑔2 (

|𝐷𝑗|

|𝐷|
) is the entropy of the subset 

𝐷𝑗. 

To fit the model, algorithms minimize the loss (impurity) function in the child 

compared to the parent node. Due to the discrete structure of the decision tree, 
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the loss function is not smooth, and therefore, a greedy algorithm is used to 

fit data to the model.  

Algorithm Build tree 

Input: dataset 𝐷 with (𝑥𝑖, 𝑦𝑖) elements, k-number classes, f-features  

Return: decision tree 

function BuildTree(D): 

  if stopping criterion is met than: 

      return leaf node with the class label 

  best_gain=[] 

  for j=1 to d:   #loop over all features 

      for m in possible_values(𝐹𝑗):   #loop over possible values (split points) of 

feature 

             

            𝐷𝐿𝑒𝑓𝑡, 𝐷𝑅𝑖𝑔ℎ𝑡 ←  𝑠𝑝𝑙𝑖𝑡(𝐷, 𝐹, 𝜃)   #temporarily partition the data into left 

and right subsets 

            𝑔𝑎𝑖𝑛 = 𝐻(𝐷) −
|𝐷𝐿𝑒𝑓𝑡|

|𝐷|
𝐻(𝐷𝐿𝑒𝑓𝑡) +

|𝐷𝑅𝑖𝑔ℎ𝑡|

|𝐷|
𝐻(𝐷𝑅𝑖𝑔ℎ𝑡) # test all possible 

combinations 

            if 𝑔𝑎𝑖𝑛 > 𝑏𝑒𝑠𝑡_𝑔𝑎𝑖𝑛: 

                  𝑏𝑒𝑠𝑡_𝑔𝑎𝑖𝑛 = 𝑔𝑎𝑖𝑛 

                  𝐹𝑏𝑒𝑠𝑡 = 𝐹𝑗 

                  𝜃𝑏𝑒𝑠𝑡 = 𝑚  

                  𝐷𝐿𝑒𝑓𝑡𝐵𝑒𝑠𝑡 = 𝐷𝐿𝑒𝑓𝑡 

                  𝐷𝑅𝑖𝑔ℎ𝑡𝐵𝑒𝑠𝑡 = 𝐷𝑅𝑖𝑔ℎ𝑡 

                         

            left_child← 𝐵𝑢𝑖𝑙𝑑𝑇𝑟𝑒𝑒(𝐷𝐿𝑒𝑓𝑡𝐵𝑒𝑠𝑡) 

            right_child← 𝐵𝑢𝑖𝑙𝑑𝑇𝑟𝑒𝑒(𝐷𝑅𝑖𝑔ℎ𝑡𝐵𝑒𝑠𝑡) 

return Node(𝐹𝑏𝑒𝑠𝑡 , 𝜃𝑏𝑒𝑠𝑡, left_child, right_child) 
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Greedy means that at each step, the algorithm chooses the best split locally 

(the largest reduction in the loss right now), without considering the long-

term effect deeper in the tree. Therefore, once a split is made, it is never 

revisited. This enables efficient training, but also leads to suboptimal trees. 

Due to that, techniques such as pouring or ensembling methods are used to 

improve performance.  

The performance of decision trees is highly influenced by the quality of 

training data, tree depth (tree size), splitting criteria, and tree pruning 

methods. Moreover, feature selection and feature engineering can improve 

the efficiency and accuracy of models. 

The decision tree algorithms are intuitive and easy to interpret, making them 

valuable where understanding of the decision-making process is crucial, can 

handle both categorical and numerical data, don't demand feature scaling, are 

robust to outliers, are not affected by non-linear relationships between 

parameters, and are efficient with small to medium-sized datasets. Moreover, 

they implicitly perform feature selection and feature importance analysis by 

using the feature selection measure. However, without proper pruning 

(limiting tree growth), they tend to overfit, leading to poor prediction 

accuracy. Also, small changes in the training data result in very different trees 

due to the hierarchical nature of tree classifiers. 

13.1.1 Pruning 

Given a greedy strategy for building the tree, the remaining question is when 

to stop adding nodes to reduce the possibility of overfitting. There are two 

main approaches: pre-pruning (early stopping) and post-pruning. Pre-

pruning reduces the possibility of overfitting by reducing the size of the tree. 

To do so, different criteria such as maximum depth, minimum number of 

samples in a node, the information gain is below a certain threshold, etc., can 

be used. The main advantage is that the tree remains small, and it is 

computationally efficient. Pre-pruning relies on the threshold (such as 

information gain) to decide whether to continue or stop splitting. Algorithms 

evaluate each split locally without looking ahead. Due to that, it is possible 

that none of the current splits don't reduce the error significantly, while after 

several steps a significant error reduction is obtained. So if the applied 

threshold is too aggressive, it can lead to underfitting. Due to that, common 
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practice is to grow a large tree, using the number of samples in leaves as a 

stopping criterion. and prune back the resulting tree.  

Post-pruning is usually done by trimming down decision tree paths that do 

not provide significant improvement in predicting accuracy. Therefore, post-

pruning is based on a criterion that balances the trade-off between residual 

error and model complexity to improve generalization ability. The pruning 

starts from the leaves and for each node analyzes if the increased performance 

associated with it is worth the extra model size. If not, the node is removed by 

merging it back into a tree. Therefore, the subtrees are removed if they lead to 

a small reduction in error relative to their size.  

Consider a grown tree 𝑇0 with leaves indexed as 𝐿 = 1, . . . , |𝑡| with leaf node t 

representing the region 𝑅𝑡. The |𝑡| denote the total number of leaf nodes in 𝑇. 

We want to create a tree 𝑇 ⊂ 𝑇0 to be a subset of a tree 𝑇𝑜. 

Usually, advanced methods such as cost-complexity are used. The minimal 

cost-complexity pruning is given by  

𝑅𝜆(𝑇) = 𝑅(𝑇) + 𝛼|𝑡| 

where 𝑅(𝑇) is a total misclassification error of the whole tree. 𝛼 is a tuning 

parameter that controls the trade-off between model complexity and 

accuracy. If 𝛼 = 0 than pruning is not performed. Larger 𝛼 means a stronger 

penalty for model complexity, resulting in a simpler tree. Minimal cost-

complexity pruning finds the subtree of 𝑇0 that minimizes the 𝑅𝛼(𝑇).. The 

process is continued until only the root remains. The result is a sequence of 

subtrees 𝑇0 ⊃ 𝑇1 ⊃ . . . 𝑇𝑚 where 𝑇𝑚 is the root-only tree. Each subtree is 

evaluated using cross-validation error. 

13.1.2 Ensemble methods 

Using a single tree can be challenging due to its high sensitivity to small 

changes in the data. Therefore, another way to deal with overfitting is by 

averaging the predictions over multiple samples. Ensemble methods combine 

several single trees to produce a one, more robust predictive model. There are 

several types of ensemble methods, such as: 

● Bagging (also known as bootstrap aggregation) - The basic idea is to 

create B bootstrap samples (𝑋1, . . . , 𝑋𝐵) by uniformly sampling from the 
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original dataset X with replacement (i.e., the same training sample can 

be selected multiple times). Usually, ⅔ of bootstrap samples represent 

the original training data, while the remaining ⅓ is a replacement.  

Each bootstrap sample is used to train the model. The final prediction 

is made by average (for regression) or majority vote (for classification). 

A classic example is Random Forest. 

● Pasting - creates a subset of the data without replacement, therefore 

each subset contains only unique samples from the dataset. 

● Boosting - combines multiple weak learners to reduce bias by 

sequentially training base models. Each new model is trained to 

correct the errors made by the previous models. The final prediction 

is the weighted sum of the base model predictions. Typical 

representatives are AdaBoost, Gradient Boosting, and XGBoost. 

 It is applicable for both regression and classification. In classification, 

plurality voting is used to decide the overall ensemble classification. 

Ensemble methods provide higher accuracy and better generalization ability 

compared to single models. 

13.1.3 Out-of-Bag error estimation 

The out-of-bag error estimation enables the calculation of the generalization 

error of bagged models without the need for an external validation set. As 

already mentioned in bagging, bootstrap samples are created by randomly 

sampling with replacement. Due to that, some data samples are included 

multiple times in a bootstrap sample, while some are excluded. The data 

points that are excluded are also known as out-of-bag (OOB) samples. These 

OOB samples can be used to estimate the performance of the trained model 

as follows: 

● Generate B bootstrap samples,  

● For each sample 𝑋𝐵 identify the OOB samples 𝑋𝐵
𝑂𝑂𝐵, 

● Train the B-th base model ℎ𝐵, 

● For each data sample (𝑥𝑖, 𝑦𝑖) ∈ 𝐷, collect the prediction from all base 

models for which was (𝑥𝑖, 𝑦𝑖) an OOB sample by 𝑦̂𝑖
𝑂𝑂𝐵 =

1

|𝑀𝑖|
∑ ℎ𝐵(𝑥𝑖)𝐵∈𝑀𝑖

, and  
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● Calculate the OOB error by comparing the OOB prediction with the 

true values 𝑦𝑖. 

The OOB approach is a valuable method for evaluating the ensemble 

methods. It provides efficient use of training data, internal estimation of 

model performance, eliminating the need for a separate validation set, and 

unbiased estimation of true error. 

13.2 Random forest 
Random forest is based on constructing a huge number of decision trees, each 

of which is trained using a unique part of the training data. Each tree within 

the forest makes a prediction for an output given an input, and the final 

prediction is formed by collecting the majority vote of all trees in the forest 

(Figure 89). Growing trees on different data subsets prevents decision trees 

from being overly specialized to the training data, reducing overfitting. 

Random forest also enables feature importance analysis. The random forest 

algorithm uses two main techniques to reduce overfitting and improve 

accuracy: 

● Bagging - create B different bootstrap samples by random sampling 

with replacement. By using replacement, we don't split the training 

dataset into subsets and train each tree on a different subset. Consider 

training set D with n samples; we will still feed each tree a training set 

of size n. But instead of the original training data, we randomly sample 

a size n with a certain level of data representation. For example, if our 

training data were [a, b, c, d, e, f, g], then we might give to one of our 

trees the following list [a, b, d, d, f, g, g]. This means that the same data 

point can be randomly sampled more than once. For each training 

dataset 𝑋𝑖 a tree 𝑇𝑖 (𝑖 = 1, . . . , 𝐵) is constructed. 

Therefore, by sampling the data with replacement, the algorithm 

generates multiple training sets that are slightly different from each 

other. This type of sampling ensures reduced variance and prevents 

overfitting. 

● Random feature selection - consider that dataset D contains one 

feature that is highly correlated with the output. In decision trees, most 
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of the trees will use this feature in the top split, and all trees will look 

similar. Prediction will be highly correlated, and the average variance 

will be higher than the average of uncorrelated predictions. Random 

forest reduces tree similarity and prediction correlation by choosing 

only from a random subset of features. This ensures more variation 

among the trees (reduces correlation) and reduces the chance of 

selecting the same best feature for every tree.  

Each individual tree has high variance, but low bias, and averaging these trees 

reduces the variance and breaks the bias-variance trade-off. 

 

Algorithm Random Forest 

Input: dataset 𝐷 with (𝑥𝑖, 𝑦𝑖) elements where 𝑖 = 1, . . . , 𝑛, k - number 

classes, d - number of features, T- number of trees 

for t=1 to T: 

     Randomly select m instances from D with replacement 

     Randomly select f features from total d features (where 𝑓 << 𝑑) 

     Built a decision tree ℎ𝑡 based on the sampled instances and features 

end 

#To make prediction for new instance x 

if classification task then: 

    𝑓(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐
1

𝑇
∑ 𝐼{ℎ𝑡(𝑥) = 𝑐}
𝑇
𝑡=1  #majority vote across trees 

   else if regression task then: 

            𝑓(𝑥) =
1

𝑇
∑ ℎ𝑡(𝑥)
𝑇
𝑡=1  #average of tree prediction 

   end  

end 
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Figure 89 Random Forest algorithm 

13.2.1 Decision tree for regression 

For regression tasks, a commonly used criterion is the Sum of Squared Errors 

(SSE) to select the optimal feature f and optimal threshold t. SSE measures the 

variance within a node, and the aim is to detect feature-threshold pairs that 

minimize SSE after the split. This algorithm for building the regression tree is 

given below. 
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Algorithm Build tree regression 

Input: dataset 𝐷 with (𝑥𝑖, 𝑦𝑖) elements, k - number classes, f-features  

Return: decision tree 

function BuildTreeRegression(D): 

  if stopping criterion is met than 

      return leaf node with the class label 

  best_gain=[] 

  for j=1 to d:   # loop over all features 

      for m in possible_values(𝐹𝑗):   #loop over possible values (split points) of 

feature 

            𝑆𝑆𝐸(𝐷) = ∑ (𝑦𝑖 − 𝑦)
2

𝑛
𝑖=1  #calculate SSE for the parent node before split 

            𝐷𝐿𝑒𝑓𝑡, 𝐷𝑅𝑖𝑔ℎ𝑡 ←  𝑠𝑝𝑙𝑖𝑡(𝐷, 𝐹, 𝜃)   #temporarily partition the data into left 

and right subsets 

            𝑆𝑆𝐸(𝐷𝑙𝑒𝑓𝑡) = ∑ (𝑦𝑖 − 𝑦𝑙𝑒𝑓𝑡)
2

.
𝑖∈𝐷𝑙𝑒𝑓𝑡

      #calculate SSE for each node  

𝑆𝑆𝐸(𝐷𝑟𝑖𝑔ℎ𝑡) = ∑ (𝑦𝑖 − 𝑦𝑟𝑖𝑔ℎ𝑡)
2

.

𝑖∈𝐷𝑟𝑖𝑔ℎ𝑡

 

            𝑔𝑎𝑖𝑛 =
𝑁𝑙𝑒𝑓𝑡

𝑁
𝑆𝑆𝐸(𝐷𝑙𝑒𝑓𝑡) +

𝑁𝑟𝑖𝑔ℎ𝑡

𝑁
𝑆𝑆𝐸(𝐷𝑟𝑖𝑔ℎ𝑡) #test all possible 

combinations 

            if 𝑔𝑎𝑖𝑛 > 𝑏𝑒𝑠𝑡_𝑔𝑎𝑖𝑛: 

                  𝑏𝑒𝑠𝑡_𝑔𝑎𝑖𝑛 = 𝑔𝑎𝑖𝑛 

                  𝐹𝑏𝑒𝑠𝑡 = 𝐹𝑗 

                  𝜃𝑏𝑒𝑠𝑡 = 𝑚  

                  𝐷𝐿𝑒𝑓𝑡𝐵𝑒𝑠𝑡 = 𝐷𝐿𝑒𝑓𝑡 

                  𝐷𝑅𝑖𝑔ℎ𝑡𝐵𝑒𝑠𝑡 = 𝐷𝑅𝑖𝑔ℎ𝑡 

                       

            left_child← 𝐵𝑢𝑖𝑙𝑑𝑇𝑟𝑒𝑒(𝐷𝐿𝑒𝑓𝑡𝐵𝑒𝑠𝑡) 

            right_child← 𝐵𝑢𝑖𝑙𝑑𝑇𝑟𝑒𝑒(𝐷𝑅𝑖𝑔ℎ𝑡𝐵𝑒𝑠𝑡) 

return Node(𝐹𝑏𝑒𝑠𝑡 , 𝜃𝑏𝑒𝑠𝑡, left_child, right_child) 
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14  NEURAL NETWORK 

A Neural Network (NN) represents a system that utilizes a network of 

functions to identify underlying patterns and learn relationships in the data, 

and apply acquired knowledge to map input to output. It consists of layers of 

interconnected simple computational elements called neurons. 

14.1 Perceptron 
The perceptron, developed by Rosenblatt, is the simplest model of an artificial 

neuron. It is a building block of NNs. The perceptron (Error! Reference source n

ot found.) takes input values 𝑥𝑖  𝑖 ∈ {1, . . . , 𝑑}, creates a linear combination of 

the n input variables and corresponding weights 𝑤𝑖 , and sums them up, i.e., 

𝑧 = 𝑓(𝑥) =∑𝑤𝑖𝑥𝑖 + 𝑏

𝑛

𝑖=1

 

Weights represent the importance of the input to the output; the larger the 

weights, the greater the influence of the input feature on the output. After 

that, the results are then passed through a differentiable, nonlinear activation 

function to produce the output. Therefore, perceptron computes a linear 

combination of inputs and then applies the nonlinear function.  

As already mentioned in the Section 9.10, the choice of activation function 

primarily depends on the assumed data distribution and the type of the 

problem. In the original Rosenblatt [4] perceptron, the activation was a step 

function, so the binary output is determined by  

ℎ(𝑧) =

{
 
 

 
 1     𝑖𝑓 ∑𝑤𝑗𝑥𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑗

0     𝑖𝑓 ∑𝑤𝑗𝑥𝑗 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑗

 

Then the output is given by 

𝑦 = ℎ(𝑓(𝑥)) 
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Figure 90 Perceptron 

For example, you are deciding whether to go hiking. There are three 

factors that influence your decision: 

● Weather 𝑥1 were 𝑥1 = 1 if the weather is good, or  𝑥1 = 0 if it 

rains. 

● A company 𝑥2 where 𝑥2 = 1 if your friend wants to go, and  𝑥2 =

0 if your friend doesn't want to go. 

● Shoes 𝑥3 were 𝑥3 = 1 if you have proper shoes, and  𝑥3 = 0 if you 

don't have proper shoes. 

You can use perceptron to model this decision. If all three factors are 

equally important to you, then the weights are equal 𝑤1 = 𝑤2 = 𝑤3.  

However, let's say that there is no way you would go hiking without 

proper shoes. Then you can choose a weight 𝑤3 = 0.7 for shoes, and 𝑤1 =

0.4, 𝑤3 = 0.25 for other factors.  Finally, you choose a threshold of 0.5 for 

a perceptron. Let's say that 𝑥1 = 0, 𝑥2 = 0, and 𝑥3 = 1 then 0 ⋅ 0.25+ 0 ⋅

0.3+ 1 ⋅ 0.7 = 0.7 since 0.7 > 0.5 the decision is to go hiking. 

The larger value of 𝑤3 indicates that having the right shoes matters a lot 

to you, much more than weather or company. Therefore, the perceptron 

will output 1 if you have proper shoes and 0 otherwise. It makes no 

difference whether your friends want to go or not, regardless of the 

weather.  

The lower the threshold is, the easier it is for the perceptron to output a 1. 
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The weights and threshold values are parameters of the neuron, and by 

adjusting these values, we can obtain different models. To simplify 

perceptron, the sum is changed by the dot product, and the threshold is 

moved to the other side of the inequality, also referred to as bias b (𝑏 −

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑). Taking that into account, the perceptron can be rewritten as 

𝑦 = {
1     𝑖𝑓 𝑤𝑇𝑥 + 𝑏 > 0

0     𝑖𝑓 𝑤𝑇𝑥 + 𝑏 ≤ 0
 

However, threshold logic is rigorous. For example, let's consider the 

classification of satellite images, where we aim to detect forests solely based 

on NDVI. The input to the model is the pixel value. If the threshold is 0.7 and 

the weight is 1, the pixel with an NDVI value of 0.71 would be classified as 

forest. However, the pixel with an NDVI value of 0.69 would be classified as 

non-forest. This behavior is not the result of the pixel nature or the chosen 

perceptron parameters; rather, it is due to the characteristics of the used 

activation function. For most real-world applications, small changes in the 

input value don't produce sudden changes. Taking that into account, we want 

small changes in weights and bias to cause only small changes in the network 

result (i.e., we want a smooth decision function that gradually changes from 

0 to 1). To overcome this limitation of perceptron, the sigmoid neuron is 

introduced (Figure 91).  

The output of a sigmoid neuron is given by  

𝑦 =
1

1+ 𝑒−(𝑏+∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 )

 

Introducing the sigmoid activation function, there are no sudden changes 

around the threshold, and the output is a real value between 0 and 1, which 

can be interpreted as a probability. In contrast to the step function, which is 

not smooth, not continuous, and not differentiable, the sigmoid function is 

smooth, continuous, and differentiable everywhere. This is extremely 

important since it enables the use of gradient descent, allowing the network 

to learn effectively.  
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Figure 91 Sigmoid vs step activation function 

14.2 Network architecture 
A layer, created by composing multiple neurons, represents the fundamental 

data structure in NNs. Generally, the network contains three types of layers 

(Figure 92 (d)): 

● Input layer - a set of neurons that directly receives the information 

from the training dataset, 

● Hidden layer - allows the network to learn non-linear patterns 

between input and output data by transforming input data into a high-

dimensional space. neurons that transform training data to extract 

patterns captured in weights, and 

● Output layer - neurons that make predictions based on the input data. 

Predicted value can be categorical, binary, or continuous, which is 

controlled by the activation function applied on the output layer 

 The layers are connected as an acyclic graph (i.e., there are no cycles or closed 

loops) where the output of one layer represents the input to the next layer. 

Such networks are also known as feedforward networks since information in 

the network flows in one direction from the input layer, through the hidden 

layers used to define f, and finally to the output y. Therefore, there are no 

feedback connections in which the model's outputs are fed back into itself.  

A feedforward NN can be viewed as a composite of many different nonlinear 

functions that takes input variables 𝑥𝑖 and transforms them to produce the 
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output variables 𝑦𝑘. Each training data point 𝑥 contains a label 𝑦 ≈ 𝑓∗(𝑥). 

During training, the value of parameters will be adjusted to provide the best 

approximation of the real function 𝑓∗ that maps input to output. For example, 

in classification, we aim to approximate a function that maps a surface 

reflectance vector x to a class y. 

Training data samples directly specify what output layer should produce (i.e., 

values close to 𝑦). Since the behavior of other layers is not directly specified 

by the training data, they are referred to as hidden layers. The number of 

hidden layers determines the depth of the model. Each layer consists of 

neurons that work in parallel, and each neuron receives input from many 

other neurons and computes its own activation value. 

 

Figure 92 (a) single biological neuron, (b) single artificial neuron, (c) human brain, and (d) 

feedforward NN (input layer - orange neurons, hidden layer-grey neurons, and output layer - 

blue neurons) 
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The architecture of NNs is defined by the number of layers, connections 

between those layers, and the number and type of neurons per layer. The 

design of the input and output layers is straightforward. The number of 

neurons in the input layer is defined by the number of explanatory variables 

in the training data, while the type of target features specifies the number of 

neurons in the output layer. For example, in image classification, the input 

layer matches the shape of the image (height, width, and number of bands) 

while the output layer matches the number of classes. For regular networks, 

the most common layer type is the fully connected layer, where each neuron 

is connected to every neuron in the neighborhood. Neurons within the same 

layer are not connected. The most challenging task in designing NNs is to 

determine the number of hidden layers (i.e., depth of network) and the 

number of neurons per layer (i.e., width of layer).   

The universal approximation theorem [43] states that a NN with at least one 

hidden layer and enough neurons can approximate any continuous function 

to any desired precision. Taking that into account, the first approach would 

be to start with two neurons and continue adding more until a satisfactory 

function approximation is reached. The logical question would be, why do we 

use more hidden layers? 

 Although the single-layer network is sufficient to represent any function, the 

number of neurons may be infeasibly large (an exponential number of units 

in a shallow network). However, in practical application, using a deeper 

model can reduce both the number of parameters and the generalization error.  

For example, let's consider a rectifier network (using ReLu as the activation 

function) that defines a linear boundary, splitting the input space into two 

regions. Imagine the input space is a piece of paper, and the linear boundary 

is obtained by folding it so that regions coincide and are mapped to the same 

output. Each hidden unit adds a new fold of activation space on top of the 

previous layer. By reusing and composing these folding operations from layer 

to layer, it is possible to obtain an exponentially large number of regions 

(Figure 93). Montufar [44] showed that a deep rectifier can divide the input 

space into exponentially more regions than a shallow network with the same 

number of units. This is a crucial property that enables deep networks to 

compute very complex functions with relatively few parameters. 



Introduction to Geospatial Artificial Intelligence 

306 

 

 

Figure 93 Folding input space. Each hidden unit adds a new fold on top of the previous. 

The term Deep Neural Networks (DNNs) refers to a network with multiple 

layers. Since each layer is a function, a deep network is a composite of many 

functions  

𝑓(𝑥) = 𝑓𝐿 (𝑓𝐿−1 (. . . (𝑓2(𝑓1(𝑥))))) 

where 𝐿 is the number of layers.  

The size of an NN is usually expressed by the number of parameters or the 

number of neurons. For example, the network presented in Figure 92 (d) has 

3+ 3+ 2 = 8 neurons (the input neurons are not included). On the other 

hand, the same network has 4 ⋅ 3+ 3 ⋅ 3+ 3 ⋅ 2 = 12+ 9+ 6 = 27 weights and 

3+ 3+ 2 = 8 biases, so a total of 33 learnable parameters. With the increase in 

the number of layers and parameters, the network's capacity also increases. 

High capacity means that the network can express more complicated patterns 

and relationships. However, it is easier to overfit the data. 

Designing the hidden layer is challenging since there is no clear guidance on 

how to do so.  Usually, the architecture is determined via a trial-and-error 

approach. Processes typically begin with a relatively small number of layers 

and units, after which the network is trained and its performance is evaluated 

on a validation set. We increase the model size gradually if the validation loss 

is decreasing. 

Feedforward NNs represent a vital concept since they form the basis for many 

more complex architectures. They represent the basis for Recurrent Neural 

Networks (RNN), which have been extensively used in natural language 
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applications. Moreover, Convolutional Neural Networks (CNNs), used for 

object detection and recognition, are a specialized type of feedforward 

network. 

14.2.1 Unit type 

There are three types of units: input, output, and hidden units. They can be 

further differentiated based on the activation function that they use. In 

addition to structure selection, important aspects in designing NNs represent 

the selection of unit type.  

14.2.1.1 Input units 

Each input neuron corresponds to a feature in the input data. NNs use tensors, 

high-dimensional arrays, as a data structure. Tensor is defined by: rank (that 

represents the number of axes, for example, a matrix has two axes, a 3D matrix 

has three axes), shape (the dimensionality of each axis), and data type (it is 

almost always numerical values, for example, float32, uint8, etc.)  

For example, the image is a 3D tensor shape (height, width, number of bands). 

Pixel values are real numbers, so the data type is float 64. A batch of images 

is a 4D tensor (number of samples, height, width, number of channels). For 

example, if the batch size is 64 and we have a satellite image with six channels, 

with each image consisting of 256 x 256 pixels, then the tensor shape will be 

(64, 256, 256, 6). The point cloud is also modeled as an n-dimensional tensor 

depending on the number of features. 

14.2.1.2 Hidden units 

Each hidden unit computes two functions, one that performs a linear 

transformation and an activation function that performs the nonlinear 

transformation. A crucial aspect of designing the NN is the selection of the 

type of hidden unit. Similar to selecting the number of parameters, the process 

began by selecting the hidden unit based on intuition, then training the 

network with that unit, and evaluating performance on the validation set.  

Although various types of hidden units are available, piecewise linear ReLu 

units are the most commonly used default choice. ReLus are typically used on 

top of a linear transformation. Since the ReLu is inactive for negative values, 

it is recommended to set all biases to a small positive value, allowing the 
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derivatives to pass through. Additionally, the generalization of ReLu 

functions can be utilized, such as LReLu, PReLu, ELu, SELu, or maxout. ReLu 

(see Section  9.10) and all its generalizations are easier to optimize if the 

behavior is closer to linear.  

Prior to ReLu, most units used sigmoid or tanh activation functions. As 

already mentioned in 9.10, the tanh is preferable over the sigmoid when the 

output can be both positive and negative.  As already mentioned, the sigmoid 

function is prone to saturation for both large and low values, making gradient 

propagation very difficult. Therefore, it is not recommended for hidden units 

in feedforward networks.  

Additionally, softmax units, RBF, softplus (smooth version of ReLu), or hard 

tanh (bounded tanh) units can be used.  

14.2.1.3 Output unit 

The hidden units provide a set of hidden features. The output unit also 

transforms these features to complete tasks for which the networks are 

designed. The choice of output unit is tightly related to the choice of loss 

function. The probabilistic interpretation of the network output can provide 

insight into both selecting the output unit type and the loss function. 

For a linear regression model with a Gaussian noise distribution, the error 

function corresponds to the negative log likelihood. 

Consider the input vector x and the linear predictor given as 𝑦̂𝑖 = 𝑤
𝑇𝑥𝑖. 

Gaussian noise distribution with variance 𝜎2 is given as 𝑝(𝑦|𝑥, 𝑤) =

𝑁(𝑦|𝑦̂, 𝜎2). To extend the linear models to represent a nonlinear function, 

we transform the input 𝜙(𝑥) by a nonlinear transformation 𝑦̂𝑖 = 𝑤
𝑇𝜙(𝑥𝑖). 

The log-likelihood for one point n is given by 𝑙𝑛 𝑝(𝑦|𝑤) = −
1

2
𝑙𝑛(2𝜋𝜎2) −

1

2𝜎2
(𝑦𝑛 − 𝑦̂𝑛)

2. Therefore, the negative log-likelihood represents the error 

contribution from point n, and it is given by (constant 
1

2
𝑙𝑛(2𝜋𝜎2) does not 

depend on 𝑤 so it's ignored):  

𝐸𝑛(𝑤) =
1

2𝜎2
(𝑦𝑛 − 𝑦̂𝑛)

2 =
1

2𝜎2 (𝑦𝑛 −𝑤
𝑇𝜙(𝑥𝑛))

2
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If we take the derivative with respect to the parameter vector 𝑤 of the 

contribution to the error function from point n: 

𝛁𝑤𝐸𝑛 =
1

2𝜎2 ⋅ 2 ⋅ (𝑦𝑛 −𝑤
𝑇𝜙(𝑥𝑛))(−𝑥𝑛) =

1

𝜎2
(𝑦̂𝑛 − 𝑦𝑛)𝜙(𝑥𝑛) 

Therefore, the gradient takes the form of the error multiplied by a feature 

vector. 

The same form will be obtained for a combination of the logistic sigmoid 

activation function and the cross-entropy loss function, as well as for the 

softmax activation function with the categorical cross-entropy loss function. 

The NN can be viewed as a generalized linear model with a nonlinear 

activation function. In NNs, usually cross-entropy is used as a loss function. 

The type of cross-entropy used is defined by the representation of the output. 

There is a natural link between the type of problem, the error function, and 

the output unit activation function. 

If the conditional probability of the input is a Bernoulli distribution, a sigmoid 

output unit is combined with the cross-entropy error function. On the other 

hand, for multiclass classification problems where the output is one of K 

mutually exclusive and exhaustive values, the softmax unit and categorical 

cross-entropy loss function are used (see Section 9.9.2). Softmax can be 

observed as a generalization of the sigmoid for a multinomial output 

distribution. Like the sigmoid, softmax can saturate when the difference 

between input values becomes extreme. Consequently, many loss functions 

based on softmax also saturate, leading to a vanishing gradient, especially 

when the input is extremely negative. However, if loss functions use log (such 

as cross-entropy), it undoes the exponential of the softmax, preventing 

gradient vanishing, making training stable and effective. 

14.2.2 Chain rule 

Let 𝑤 be the input of the graph, and we use the same function 𝑓: 𝑅𝑛 → 𝑅𝑛 at 

every step of the chain 𝑥 = 𝑓(𝑤), 𝑦 = 𝑓(𝑥) and 𝑧 = 𝑓(𝑦). The derivative 
𝜕𝑧

𝜕𝑤
 

measure the rate of change between variables 𝑤 and z.  Consequently if 𝑤 
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change by infestation a smaller value 𝛥𝑤 then 𝑧 will change by approximately 

𝛥𝑤
𝜕𝑦

𝜕𝑧
. To compute 

𝜕𝑧

𝜕𝑤
 we apply the univariate chain rule expression, i.e., 

𝜕𝑧

𝜕𝑤
=
𝜕𝑧

𝜕𝑦

𝜕𝑦

𝜕𝑥

𝜕𝑥

𝜕𝑤
= 𝑓′(𝑓(𝑓(𝑤)))𝑓′(𝑓(𝑤))𝑓′(𝑤) 

where 𝑓(𝑤) is computed each time it is needed, leading to exponential 

redundancy, making a naive implementation of the chain rule infeasible. 

Example: Consider a feed-forward network, each unit computes a 

weighted sum of its input,  

𝑧 = 𝑤𝑥 + 𝑏. The sum is transformed by a nonlinear sigmoid activation 

given as 

𝑦̂ = 𝜎(𝑧) = (
1

1+ 𝑒−𝑧
) 

Let's use the squared error loss function  

𝐸𝑛 = 𝐸 +
𝜆

2
𝑤2 

In order to perform gradient descent, we want to find the derivative of 𝐸 

with respect to 𝑤, and 𝐸 with respect to b.  

𝜕𝐸𝑛

𝜕𝑤𝑗𝑖
(𝑙)
=
𝜕𝐸𝑛

𝜕𝑤𝑗𝑖
(𝑙)
=
𝜕𝐸𝑛

𝜕𝑧𝑗
(𝑙)

𝜕𝑧𝑗
(𝑙)

𝜕𝑤𝑗𝑖
(𝑙)

 

𝜕𝐸𝑛

𝜕𝑤
=

𝜕

𝜕𝑤
[

1

2
(𝑦̂ − 𝑦)2] =

𝜕

𝜕𝑤
[

1

2
(𝜎(𝑤𝑥 + 𝑏) − 𝑦)2] =  

=
1

2

𝜕

𝜕𝑤
(𝜎(𝑤𝑥 + 𝑏) − 𝑦)2 = (𝜎(𝑤𝑥 + 𝑏) − 𝑦)𝜎(𝑤𝑥 + 𝑏)(1− 𝜎(𝑤𝑥 + 𝑏))𝑥𝑖 

where 
𝜕𝑦̂

𝜕𝑧
= 𝜎′(𝑧) =

𝜕

𝜕𝑧
(

1

1+𝑒−𝑧
) = 𝜎(𝑧)(1− 𝜎(𝑧)) for sigmoid activation 

function. 

Similarly,  

𝜕𝐸𝑛
𝜕𝑏

=
𝜕

𝜕𝑏
[
1

2
(𝜎(𝑤𝑥 + 𝑏) − 𝑦)2] =

1

2

𝜕

𝜕𝑏
(𝜎(𝑤𝑥 + 𝑏) − 𝑦)2 = 

=(𝜎(𝑤𝑥 + 𝑏) − 𝑦)𝜎(𝑤𝑥 + 𝑏)(1− 𝜎(𝑤𝑥 + 𝑏)) 
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However, this naive implementation of the chain rule has several 

disadvantages. As you can see, the above derivations contain many 

repeated terms. For example, there are six copies of sigma (w x + b), 

meaning there is a lot of redundant work, even for a simple example.  

In deep networks with millions of parameters, there can be an exponentially 

large number of these redundant computations. We can apply a multivariate 

chain rule that generalizes the univariate chain rule if the function depends 

on multiple variables. To enable a computation of derivatives, the value of 

𝑓(𝑤) is computed once and stored in the variable 𝑥 and so on.  There is no 

redundant computation, and if the memory requirements to store the value 

are lower, this approach is preferable. This is the approach that 

backpropagation uses. 

The derivation can be expressed compactly as a Jacobian-gradient product, 

making the training computationally feasible, especially for large models. For 

a vector input 𝑥 = {𝑥1, . . . , 𝑥𝑛}, parameter matrix 𝑤, and vector output 𝑦 =

{𝑦1, . . . , 𝑦𝑘} Jacobian matrix 𝐽𝑘𝑖 organize all partial derivations into an 𝑘 ×  𝑛 

matrix (see Section 9.1.2) 

𝐽𝑘𝑖 =
𝜕𝑦𝑘
𝜕𝑤𝑖

= (
𝜕𝑦𝑘
𝜕𝑤1

, . . . ,
𝜕𝑦𝑘
𝜕𝑤𝑛

 ) 

We want to minimize an error function 𝐸 with respect to the parameter 𝑤. The 

derivative of the error function is given by 

𝜕𝐸

𝜕𝑤
=∑

𝜕𝐸

𝜕𝑦𝑘

𝜕𝑦𝑘
𝜕𝑧𝑗

𝜕𝑧𝑗

𝜕𝑤
𝑘,𝑗

 

where 
𝜕𝐸

𝜕𝑦𝑘
 is the gradient of the error with respect to the k-th output, 

𝜕𝑦𝑘

𝜕𝑧𝑗
  is the 

Jacobian of layer activation, 
𝜕𝑧𝑗

𝜕𝑤
 is the Jacobian of 𝑧 with respect to each 

parameter. 

In a compact matrix form, it is given as 

𝜕𝐸

𝜕𝑤
= (

𝜕𝐸

𝜕𝑦
) 𝐽𝑦(𝑧)𝐽𝑧(𝑤) 
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14.3 Backpropagation 
As already mentioned, in feedforward networks, each sample in the input 

data 𝑥 propagates through hidden units at each layer and finally produces 𝑦̂. 

During training, the scalar loss E is produced. This process is called forward 

propagation. 

A NN can be represented as a directed graph where nodes represent the 

variables and edges represent the learnable parameters. The variables in the 

node are computed as a function of the variable of the inflowing edge and the 

learnable parameters associated with it. The exception is the input layer that 

has fixed values. 

Let's consider the NN with 𝐿 hidden layers. Each neuron in the network 

computes the weighted sum of its inputs and adds bias, i.e., 

𝑧𝑗
(𝑙)
=∑𝑤𝑗𝑖

(𝑙)
𝑎𝑖
(𝑙−1)

+ 𝑏𝑗
(𝑙)

𝑖

 

where 𝑎𝑖
(𝑙−1)

 is the activation of the previous layer or 𝑥𝑖 for the first layer,  𝑤𝑗𝑖
(𝑙)

 

is the weight connecting the neuron 𝑖 in 𝑙 − 1 to neuron 𝑗 in 𝑙 layer, 𝑏𝑗
(𝑙)

 is the 

bias of the neuron 𝑗 in layer 𝑙,  and 𝑧𝑗
(𝑙)

 is the pre-activation of a neuron 𝑗 in 𝑙 

layer. 

The pre-activation is passed through a non-linear activation function ℎ(⋅) 

(such as sigmoid, tanh, ReLU, etc.), and post-activation output is given as 

𝑎𝑖
(𝑙)
= ℎ (𝑧𝑗

(𝑙)
) 

The forward propagation continues from layer to layer until the network 

outputs 𝑦̂𝑘 = 𝑎
(𝐿) . 

For a single training point, the loss function is denoted by 𝐸𝑛. If the training 

dataset consists of N independent and identically distributed samples, then 

the total error (𝐸) represents the sum over each data sample in the training 

set, i.e., 

𝐸(𝑤) = ∑𝐸𝑛(𝑤)

𝑁

𝑛=1
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where 𝑤 represents model parameters, and 𝐸𝑛(𝑤) is the error from the n-th 

training sample.  

To optimize an NN, we need to compute the gradient of the loss function with 

respect to the parameter 𝑤𝑗𝑖 . Since the 𝐸𝑛 depend on the weight  𝑤𝑗𝑖 only via 

summed input 𝑧𝑗 the gradient with respect to  𝑤𝑗𝑖 can be determined by 

applying the chain rule (see Section 9.1.2)   

𝜕𝐸𝑛

𝜕𝑤𝑗𝑖
(𝑙)
=
𝜕𝐸𝑛

𝜕𝑧𝑗
(𝑙)

𝜕𝑧𝑗
(𝑙)

𝜕𝑤𝑗𝑖
(𝑙)

 

The second term is equal to 

𝜕𝑧𝑗
(𝑙)

𝜕𝑤𝑗𝑖
(𝑙)
=
𝜕∑ 𝑤𝑗𝑘

(𝑙)
𝑎𝑘
(𝑙−1)

𝑘

𝜕𝑤𝑗𝑖
(𝑙)

= 𝑎𝑖
(𝑙−1)

 

Taking that into account 

𝜕𝐸𝑛

𝜕𝑤𝑗𝑖
(𝑙)
=
𝜕𝐸𝑛

𝜕𝑧𝑗
(𝑙)
𝑎𝑖
(𝑙−1)

= 𝛿𝑗
(𝑙)
𝑎𝑖
(𝑙−1)

 

where 𝛿𝑗
(𝑙)
=

𝜕𝐸𝑛

𝜕𝑧
𝑗
(𝑙) is called the delta term for a neuron in a layer 𝑙. Based on the 

above expression, it is evident that the gradient of the loss function with 

respect to the parameters 𝑤𝑗𝑖 can be determined simply by multiplying the 𝛿 

(also known as errors) for the unit at the output end of the weight (layer 𝑙) 

and activation for the unit at the input end of the weight (layer 𝑙 − 1).  

 To determine the delta term, we apply the chain rule of derivatives. Since the 

loss function depends on the weighted sum of neuron j only via the weighted 

inputs of all the neurons that are connected to the layer 𝑙 + 1 

𝛿𝑗
(𝑙)
=∑(

𝜕𝐸𝑛

𝜕𝑧𝑖
(𝑙+1)

𝜕𝑧𝑖
(𝑙+1)

𝜕𝑧𝑗
(𝑙)

)

𝑖

=∑(
𝜕𝐸𝑛

𝜕𝑧𝑖
(𝑙+1)

𝜕𝑧𝑖
(𝑙+1)

𝜕𝑎𝑗
(𝑙)

𝜕𝑎𝑗
(𝑙)

𝜕𝑧𝑗
(𝑙)
)

𝑖

 

The first derivative is just  𝛿𝑗
(𝑙+1)

, while the second derivative  

𝜕𝑧𝑖
(𝑙+1)

𝜕𝑎𝑗
(𝑙)

=
𝜕 (∑ 𝑤𝑖𝑘

(𝑙+1)
𝑎𝑘
(𝑙)

𝑘 )

𝜕𝑎𝑗
(𝑙)

= 𝑤𝑖𝑗
(𝑙+1)
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Therefore, we get 

𝛿𝑗
(𝑙)
=∑(𝛿𝑖

(𝑙+1)
𝑤𝑖𝑗
(𝑙+1)

𝜕𝑎𝑗
(𝑙)

𝜕𝑧𝑗
(𝑙)
)

𝑖

=
𝜕𝑎𝑗

(𝑙)

𝜕𝑧𝑗
(𝑙)
∑(𝛿𝑖

(𝑙+1)
𝑤𝑖𝑗
(𝑙+1)

)

𝑖

 

since 𝑎𝑗
(𝑙)
= ℎ (𝑧𝑗

(𝑙)
) the partial derivation outside of the sum is just the partial 

derivation of the activation function 

𝛿𝑗
(𝑙)
= ℎ′ (𝑧𝑗

(𝑙)
)∑(𝛿𝑖

(𝑙+1)
𝑤𝑖𝑗
(𝑙+1)

)

𝑖

 

The 𝛿 the term for the output layer needs to be computed first, and it is given 

as 

𝛿𝑗
(𝐿)
=
𝜕𝐸𝑛

𝜕𝑧𝑗
(𝐿)
=
𝜕𝐸𝑛

𝜕𝑎𝑗
(𝐿)
ℎ′ (𝑧𝑗

(𝐿)
) 

For MSE 𝐸𝑛 =
1

2
∑ (𝑦𝑗 − 𝑎𝑗

(𝐿)
)
2

𝑗  

𝜕𝐸𝑛

𝜕𝑎𝑗
(𝐿)
= 𝑎𝑗

(𝐿)
− 𝑦𝑗 

therefore 

𝛿𝑗
(𝐿)
= (𝑎𝑗

(𝐿)
− 𝑦𝑗) ℎ′ (𝑧𝑗

(𝐿)
) 

 

The new weights are then updated via gradient descent 

𝑤𝑗𝑖
(𝑙)
= 𝑤𝑗𝑖

(𝑙)
− 𝜂 ⋅ 𝛿𝑗

(𝑙)
𝑎𝑖
(𝑙−1)

 

where 𝜂 denote the learning rate. 
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Algorithm Backpropagation 

Input: Training dataset  𝐷 = {(𝑥𝑖, 𝑦𝑖  )}𝑖=1
𝑛 , a multilayer neural network 

with 𝐿 layers, parameters 𝑤𝑖𝑗
𝑙 , and  activation function ℎ, loss function 

𝐸(𝑦̂𝑗 , 𝑦𝑗): 𝑅
𝑁 → 𝑅, learning rate 0 < 𝜂 < 1, number of epochs  

#initialize parameters 

for  𝑤𝑗𝑖
(𝑙)

 in the network do 

       𝑤𝑗𝑖
(𝑙)
← 𝑎 𝑠𝑚𝑎𝑙𝑙 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 

#Forward propagation to compute outputs 

for i =1 to epochs do 

       for each (𝑥, 𝑦) ∈ 𝐷 do 

             for 𝑙 = 1 to 𝐿 do 

                   if 𝑙 = 1 do  

                       for each neuron 𝑗 in the input layer do 

                             𝑎𝑗
0 ← 𝑥𝑗 

                       else  

                       for each neuron 𝑗 in the layer do 

                             𝑧𝑗
(𝑙)
← ∑ 𝑤𝑗𝑖

(𝑙)
𝑎𝑖
(𝑙−1)

𝑖  

                             𝑎𝑗
(𝑙)
← ℎ(𝑧𝑗

(𝑙)
)  

             #Backward propagation of the delta term from the input to the 

output 

             for each neuron j in the output layer do 

                   𝛿𝑗
(𝐿)
←

𝜕𝐸(𝑦̂𝑗,𝑦𝑗)

𝜕𝑦𝑖
ℎ′ (𝑧𝑗

(𝐿)
) 

             for 𝑙 = 𝐿 − 1 to 1 do 

                   𝛿𝑗
(𝑙)
← ℎ′ (𝑧𝑗

(𝑙)
)∑ (𝑤𝑖𝑗

(𝑙+1)
𝛿𝑖
(𝑙+1)

)𝑖  

             #Update the weights using delta 

             for each 𝑤𝑗𝑖
(𝑙)

 in the network do 

                   𝑤𝑗𝑖
(𝑙)
← 𝑤𝑗𝑖

(𝑙)
− 𝜂𝛿𝑗

(𝑙)
𝑎𝑖
(𝑙−1)
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Example: Let's consider the classification of a satellite image, where the 

input vector 𝑥 = [𝐵, 𝐺, 𝑅, 𝑁𝐼𝑅], and we want to classify it into four classes. 

We use the ReLU activation function for the hidden layer and the softmax 

activation function for the output layer, cross-entropy as the loss function, 

and 0.1 as the learning rate. The computational graph is given in the image 

 

Let's consider one pixel with 𝑥 = [0.12, 0.35, 0.28, 0.58], that belong to class 

2 𝑦 = [0, 0, 1, 0] 𝑤(1) = [0.020, −0.010, −0.009, 0.016] and 𝑏(1) = 0 

𝑤(2) = [0.066, −0.05, −0.075, 0.02] and 𝑏(2) = [0, 0, 0, 0]. Due to simplicity, 

we will show a network that has one layer and one hidden unit.  

𝑧(1) = ∑𝑤(1)𝑥=0.0053 

𝑎(1) = 𝑅𝑒𝐿𝑈(𝑧(1)) = 𝑅𝑒𝐿𝑈(0.0053) = 0.0053 

𝑧(2) = 𝑤(2)𝑎(1) = [0.0004, −0.0003, 0.0004, 0.0001] 

𝑎(2) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧(2)) = [0.2499, 0.2499, 0.2500, 0.2499] 

𝐸 = −∑𝑦𝑖𝑙𝑜𝑔𝑎𝑖
(2)

𝑘

𝑖=1

= −𝑙𝑜𝑔(0.2499) ≈ 1.386 

Backpropagation 

𝛿(2) = 𝑎(2) − 𝑦 = [0.2501, 0.2498, −0.7499, 0.2499] 

𝜕𝐸

𝜕𝑤(2)
= 𝛿(2)(𝑎(1))

𝑇
 

𝜕𝐸

𝜕𝑏(2)
= 𝛿(2) 

𝑤𝑛𝑒𝑤
(2)

= 𝑤(2) − 𝜂
𝜕𝐸

𝜕𝑤(2)
= [0.066, −0.050, 0.075, 0.019] 
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𝑏𝑛𝑒𝑤
(2)

= 𝑏(2) − 𝜂
𝜕𝐸

𝜕𝑏(2)
= [−0.0249, −0.0249, 0.0749, −0.0249] 

Backpropagation of error through 𝑤(2) 

𝛿(1) ≡
𝜕𝐸

𝑑𝑧(1)
= 𝑢 ⊙𝑔′(𝑧(1)) = (𝑤(2))

𝑇
𝛿(2)⊙ 1𝑧(1)>0 = −0.0042 

where ⊙ represents the Hadamarov product, i.e. 𝛿(1) by each input is 

given as, 

𝜕𝐸

𝜕𝑤(1)
= 𝛿(1)𝑥𝑇 = [−0.0056, −0.0165, −0.0132, −0.0273] 

𝜕𝐸

𝜕𝑏(1)
= 𝛿(1) 

𝑤𝑛𝑒𝑤
(1)

= 𝑤(1) − 𝜂
𝜕𝐸

𝜕𝑤(1)
= [0.0208, −0.0086, −0.0076, 0.0183] 

𝑏𝑛𝑒𝑤
(1)

= 𝑏(1) − 𝜂
𝜕𝐸

𝜕𝑏(1)
= 0.0047 

14.4 Training of a neural network 
Designing and training a NN is similar to training any other machine learning 

model with gradient descent. Optimization (training) is a process of finding 

weights and biases to get the best approximation of 𝑦(𝑥) for all training inputs 

x.  

The first step represents defining the problem that we want to solve 

(classification, regression, etc). This is crucial information, as it is directly 

related to the voice of the output layer, the loss function, and performance 

metrics. Training of the network requires data preprocessing, network 

architecture design, selection of the optimizer, loss function, and type of 

output unit. 

14.4.1 Preprocessing 

Training NNs requires preprocessing of the raw data before it is fed to the 

model. Preprocessing steps are domain-specific (specific to image or point 
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clouds). The most commonly used steps include data normalization, feature 

engineering, and handling missing values, among others. 

Normalization is a preprocessing step that rescales all input data to a 

consistent range. It enables more efficient learning, as large values can 

dominate the gradient update, causing very slow convergence (see Section 

9.11 for more details).  

A commonly used technique is min-max normalization, which scales values 

into the interval [0, 1]. It is mathematically defined as 

𝑥𝑖
𝑛 =

𝑥𝑖 −𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
 

where 𝑚𝑖𝑛(𝑥) and 𝑚𝑖𝑛(𝑥) denotes the maximum and minimum values, 

respectively, in each feature vector. 

Additionally, z-score normalization, also known as standardization, can be 

used. It transforms each feature to have zero mean and a standard deviation 

of 1. The z-score is calculated as  

𝑧 =
𝑥𝑖 − 𝜇

𝜎
 

Feature engineering is the process of transforming input data before feeding 

it to the model, making the data better suited to the specific task. It includes 

methods for feature selection (choosing a set of features that improves model 

performance), feature synthesis (creating a new feature set from raw data), 

and feature extraction (transforming features to obtain more representative 

features for the specific task). For example, we need to train models that 

classify point clouds into multiple classes. If we feed X, Y, Z coordinates and 

intensity into a NN model can struggle due to high class overlap (power lines 

and tree canopies). Adding new features such as surface normal or multi-scale 

features can significantly improve classification accuracy. 

Before deep learning, feature engineering was a crucial step, as ML algorithms 

(such as RF or SVM) are not able to detect useful features on their own.  By 

introducing DNNs that can automatically transform raw data into useful 

features, the influence of feature extraction on model performance is 

significantly reduced. However, the ability of deep learning models to learn 

features independently relies on having a substantial amount of training data 
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available. Due to this, feature engineering can still be used to solve tasks with 

fewer resources or with far less data. If only a small training dataset is 

available, then feature engineering becomes crucial. 

14.4.2 Initialization 

Training a NN is similar to training any other machine learning model. 

However, the nonlinearity of a network function causes the loss function to 

become nonconvex. Due to nonconvexity, deep learning models are typically 

trained using an iterative, gradient-based optimizer (see Section 9.1) that 

requires the initialization of model parameters. In contrast to convex loss 

functions that guarantee convergence from any initial point, nonconvex loss 

functions are highly sensitive to the initial parameters. The initial point has a 

strong influence on how optimizers navigate the loss landscape, determining 

whether the algorithm converges at all, the convergence rate, and the quality 

of the final solution (whether the algorithm converges to a local or global 

minimum). Therefore, parameter initialization plays a significant role in NN 

learning, and it can be crucial for maintaining numerical stability and 

achieving a high convergence rate. The selection of the initialization scheme 

is closely related to the choice of activation function.  

In a Fully Connected Network (FCN), all neurons have the same input, and 

their response will be identical regardless of their position.  Therefore, 

permutation of neurons in the hidden layer will not change the network 

function but yield a different point in parameter space.  This property of the 

network is known as the symmetry of the NN.  

Consider a FCN with a 𝑑 − 1 hidden layer, and each layer contains n neurons. 

In each layer, we can permit the neurons in 𝑛! different ways so the total 

number of permutations is (𝑛!)𝑑−1.  Due to that, the loss landscape will have 

(𝑛!)𝑑−1 identical minima, making it highly redundant. While symmetry is not 

necessarily harmful, it creates a challenge for optimisation.  

Parameter initialization schemes need to break symmetry. If we initialize 

weights to have the same constant value, all neurons in the hidden layer will 

have the same response. However, if all neurons compute the same output, 

then they will also compute the same gradient during backpropagation, 

causing each neuron to have the same update.  
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To break a symmetry, hidden units must have different initial parameters, 

ensuring that neurons compute diverse functions. 

Usually, weights are initialized as small random numbers sampled from a 

multi-dimensional Gaussian or uniform distribution. The choice of scale is 

crucial, since it directly influences training effectiveness. Although large 

initial values will lead to higher redundant units, they will avoid losing signal 

during forward or back propagation. However, large weights result in large 

outputs of matrix manipulation, causing a vanishing gradient for sigmoid or 

tanh region (since they saturate for large values) or an exploding gradient if 

the ReLu activation function is used. Therefore, weights should be large 

enough to propagate information through the network without vanishing, but 

small enough to avoid saturation. 

It is common practice to initialize weight to be very close to zero, but not zero 

(for example, a Gaussian distribution with zero mean and a small standard 

deviation, such as 0.01). In this way, we ensure that all neurons are random 

and unique at the beginning, allowing them to compute distinct updates 

during training and enabling them to learn diverse features. However, this 

initialization is not sensitive to the number of inputs to a specific neuron, i.e., 

the variance of the output of randomly initialized neurons increases linearly 

with the number of inputs. Authors [45] and [46]proposed an initialization 

scheme that maintains the variance of activation constant across all layers, 

thereby preventing vanishing or exploding gradients. This is achieved by 

scaling the variance of weights according to the number of inputs. the 

weighted variance is set to 𝑉𝑎𝑟(𝑤) =
2

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡
 for tanh/sigmoid [45] and to 

𝑉𝑎𝑟(𝑤) =
2

𝑛𝑖𝑛
 for the ReLu activation function [46]. 

However, initial scaling of the weight can lead to very small individual 

weights when the layers become large. To address those limitations, Martens 

[47] introduced a sparse initialization scheme. This scheme limits the number 

of non-zero weights to each neuron, ensuring a high difference between them 

and preventing saturation. However, setting most weights to zero can slow 

down the learning process, and it slows down gradient descent by initializing 

weights that are too large for certain neurons. Bias is always initialized to zero 

or small positive values. 
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14.4.3 Optimization  

The loss function evaluates the network's approximation ability by comparing 

the predicted and true values during training. Those values are averaged to 

provide a single numerical value. An optimization finds a set of parameters 

that will minimize a loss. The performance metrics are used to evaluate the 

model's performance after training, with the aim of providing deeper insights 

into model performance, assessing the model's generalization ability, and 

comparing different models. The most commonly used loss functions and 

performance metrics are presented in Section 9.9. The last-layer activation 

function should be selected based on the type of problem. Most commonly 

used combinations are shown in the Table 17. 

Table 17 Selection of lost function and last-layer activation based on the problem type 

Problem Loss 

function 

Last-layer activation 

Binary classification BCE sigmoid 

Multi-class 

classification 

CCE softmax 

Regression MSE linear 

One of the fundamental issues in training machine learning is the trade-off 

between optimization and generalization. As already mentioned, 

generalization refers to the model's ability to perform well on unseen data. 

Therefore, we want our model to have good generalization, but we cannot 

directly control generalization; we can only control optimization. Due to that, 

deep learning models tend to perform well on training data, but this really 

changes when it comes to fitting the test dataset. So correlation between 

optimization and generalization is extremely important. At the beginning of 

the training process, the loss on training and test data is correlated. The 

network does not model all relevant patterns in the training data, and there is 

still room to improve, so the model is underfitting (see Section 9.13).  
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Figure 94 Training a neural network 

However, after a certain number of iterations, models start to overfit (i.e., they 

learns irrelevant patterns). The best solution for overfitting is to enlarge the 

training dataset. However, often this is not possible and we use regularization 

(see Section 9.14) such as L1/L2 regularization, dropout, early stopping, etc. 

Once the model design and regularization technique are chosen, we train the 

network using backpropagation to calculate the contribution of each 

parameter to the error (Figure 94). The optimizer utilizes the gradient updates 

from backpropagation to adjust network parameters, thereby minimizing a 

loss function. The commonly used optimizers are: SGD, Adam, and RMSProp 

(please see Section 9.5-9.7).  

Example: Estimate the Water Quality Parameters (WQP) concentration 

from satellite images and machine learning algorithms. 

Monitoring of WQP in inland water bodies - such as Turbidity, Total 

Suspended Solids (TSS), Total Nitrogen (TN), Total Phosphorus (TP)-is 

performed by modeling the relationship between satellite-derived surface 

reflectance and corresponding in-situ water quality observations 

employing  deep learning algorithms. This example is published in [48]. 
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Preprocessing: Field campaigns conducted between 2013-2017 by the 

Agency for Environment protection of Serbia were used as in-situ data, 

while the time series of Landsat 8 and Sentinel 2 are accessed through 

Google Earth Engine.   

In-situ data contain the coordinates of monitoring stations along with 

corresponding WQP concentrations. The locations of the monitoring 

stations were visually inspected using Landsat 8 satellite images. In total, 

23 monitoring stations were selected for this study, resulting in 313 and 

408 data samples for Landsat 8 and Sentinel 2, respectively. 

For both Sentinel 2 and Landsat 8, surface reflectance values were 

extracted for the B, G, R,  NIR, SWIR1 and SWIR 2 bands, along with the 

image acquisition dates for each monitoring station.  In addition to 

spectral bands, several spectral indices were calculated, including G/R, 

NIR/R, NIR/B, R/G, R/B, NDVI, NDWI, and Normalized Difference 

Turbidity Index (NDTI) are calculated. The maximum allowed time 

difference between water sampling and satellite overpass was set to three 

days, and only matching pairs within this interval were retained. The 

input data were normalized to a [0,1] range by using min-max 

normalization. The data was split into 70 % for training, 10 % for validation 

and 20 % for testing.  

Training: ANN and SVM algorithms are used to model the relationship 

between spectral features and in-situ WQP concentration. 

ANN: The number of the input neurons was selected to be equal to the 

selected input bands that had a strong correlation with WQPs, and the 

number of output neurons was selected to be one. The trial-and-error 

approach was used for the selection of a proper number of hidden neurons 

i.e. the number of hidden neurons was modified in order to minimize 

RMSE at the training phase. In order to reduce overfitting the performance 

is monitored on validation dataset and early stopping is used. The hidden 

layer used the Tanh activation function to capture the nonlinear 

relationship between input and output variables. The learning rate and 

decay rate were determined through grid search (Learning rate: [0.0001, 

0.001, 0.01, 0.1]; Weight decay: [0.000001, 0.00001, 0.0001]). To avoid 



Introduction to Geospatial Artificial Intelligence 

324 

 

overfitting, early stopping was used. The weights assigned to each 

connection were randomly generated before training and updated using a 

backpropagation algorithm. The final model configuration corresponding 

to the lowest validation error was selected. 

SVM: For comparison, a SVM regression model was developed 

using  Radial Basis Function (RBF) kernel to handle nonlinear relationship. 

The model parameters the kernel width (γ) and the regularization 

parameter (C)- were optimized throught a grid search combined with 

cross-validation on the validation dataset. The optimal configuration (C = 

100 and γ=0.5 ) provided  a robust model minimizing overfitting.  

The algorithm performance was evaluated using NRMSE. The results of 

accuracy assessment are presented bellow 

Parameter Landsat 8 Sentinel 2 

ANN SVM ANN SVM 

NRMSE NRMSE NRMSE NRMSE 

Turbidity 6.85% 5.04% 3.18% 7.28% 

TSS 10.81% 6.65% 3.72% 6.88% 

TN 12.56% 6.88% 12.82% 7.38% 

TP 12.76% 9.72% 10.27% 6.33% 

The SVM model demonstrate greater robustness to small data samples and 

mixed pixels which likely explains its higher accuracy compared to the 

ANN.  However, the results for Turbidity and TSS indicated that the 

ANN  more accurately predicted parameters with a wider dynamic range. 

Furthermore, the accuracy of the ANN was observed to increase with the 

larger training datasets, confirming its sensitivity to data volume.  

Due to higher spatial and temporal resolution, Sentinel 2 represents a more 

suitable alternative for water quality monitoring. It provides higher 

accuracy and 25 % larger data set in 50 % less acquisition time compared 



Introduction to Geospatial Artificial Intelligence 

325 

 

with Landsat 8. On the other hand, the Landsat imagery enables the 

analysis of long-term trends, seasonal variations and historical changes in 

surface water quality. 

Prediction: The trained ANN and SVM  models are applied to water 

bodies extracted from Landsat 8 and Sentinel 2 imagery to estimate the 

concentration and spatial distribution of selected WQP. The spatial 

variation of WQP across the study area is presented in the maps below. 
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15 CONVOLUTION NEURAL NETWORK 

Convolution Neural Networks (CNN) are introduced as alternatives to 

regular NN. Although FCN has been extensively used in early stages of deep 

learning, dealing with high-dimensional data is challenging. Consider a 

satellite image of size 256 x 256 pixels and 6 bands corresponding to B, G, R, 

NIR, SWIR1, and SWIR2. In a feedforward NN, each pixel corresponds to the 

node in the input layer, resulting in 256 x 256 x 6 = 393 216 nodes. Since each 

node of one layer is connected to each unit in the next layer, computation of 

just one neuron in the first layer will require 393 216 weights. The high 

number of connections is computationally expensive, and it requires a huge 

amount of training data to avoid overfitting.  

To address these challenges, we can utilize any existing structural knowledge 

about how inputs should map to outputs, even before we see any data. This 

concept is based on a prior probability distribution (see Section 11). Since 

input neurons can connect to any output neuron and the model must learn all 

dependencies from scratch, the FCN has a very weak prior about the structure 

of the function. On the contrary, CNN can be viewed as a specialized FCN 

with an infinitely strong prior on its weights. The priors leverage the invariant 

properties of the structured data by effectively assigning zero probabilities to 

connections that violate locality and translation invariance constraints. As a 

result, CNN is well-suited for processing grid-like structured data such as 

images or time series. For example, an image is a 2D grid of pixels, audio can 

be represented as a special form of time series data (1D sequence where values 

are sampled at regular intervals in time), while video has a 3D grid structure 

(height x width x time plus channels).  

The CNN has completely revolutionized image classification, object detection, 

and pattern recognition, leading to accuracy that was unattainable with 

traditional machine learning algorithms.   
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15.1 CNN architecture 
Similar to NN, CNN has an input layer, an output layer, and many hidden 

layers in between. The hidden layer of a CNN consists of three different types 

of layers: a convolutional layer, a pooling layer, and a fully connected layer 

(also known as a dense layer).  

The convolution layer applies multiple learnable filters in parallel to produce 

a set of linear activations. A nonlinear activation function, such as ReLU, is 

then applied to each linear activation, followed by a pooling layer that reduces 

the spatial dimensionality of the output feature maps. Those operations are 

performed over a large number of layers, where each layer detects different 

features, gradually transforming a raw input into a more abstract 

representation. Finally, once the size of feature maps becomes reasonably 

small, fully connected layers combine all the extracted features from the 

previous layer with all the features in the next layers into a higher 

representation used for the final prediction. 

The key aspects of designing CNN architecture are the selection of network 

depth (number of layers), and width (number of filters in the convolution 

layer and number of neurons in the FC layer). The network size and number 

of associated parameters directly influence its performance and complexity.  

The depth and width of the network are functions of several factors, including 

task complexity, size of training dataset, and computational resources. Each 

convolution layer increases the number of feature maps that compensate for 

the amount of information lost due to the pooling layer. Deeper networks can 

capture more complex patterns but demand a large training dataset. 

Moreover, input data resolution should be taken into consideration, as a high-

resolution image requires more depth to progressively downsample and 

extract features at multiple scales. In most CNNs, the width increases with 

depth. A common rule is to start with 32-64 filters and double them every few 

layers.  

As in NN, there is no clear guidance on how to design an optimal CNN 

architecture (Figure 95). It is usually determined based on expert opinion and 

a trial-and-error approach. 



Introduction to Geospatial Artificial Intelligence 

328 

 

 

Figure 95 CNN Architecture. K1,K2,K3 denote the number of kernels in each convolution 

layer 

15.1.1 Convolution operation 

Convolution is a mathematical operation that describes a rule for combining 

two functions to form a third one. It is crucial in signal and image processing. 

Convolution operates on two signals, where one is considered the input and 

the other is a filter (or kernel) applied to the input signal, producing a third 

function as output, also known as a feature map. 

Let's consider the 1D convolution. For example, tracking the location of a car 

by using GNSS. A sensor will provide a single output 𝑥(𝑡) that represents the 

position of the car at time t. Let's say that GNSS sensors provide a 

measurement at regular intervals, once per second. If a signal gets noisy due 

to environmental or sensor-induced errors, we can obtain a more precise car 

position by averaging several measurements (Figure 96). Since more recent 

measurements are more relevant, we need to compute a weighted average 

that gives higher importance to recent measurements by using a weighted 

function 𝑤(𝑎). By applying the weighted average operation at every moment, 

we obtain a third function s that provides a smoothed estimation of the car 

position. This operation is called convolution, and it is given by 

𝑠(𝑡) = (𝑥 ∗ 𝑤)(𝑡) = ∫𝑥(𝑎)𝑤(𝑡 − 𝑎)𝑑𝑎 

where 𝑎 is the age of measurement.  
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Figure 96 Tracking the car position by GNSS 

In deep learning, inputs are usually a multidimensional array (tensor) of data, 

and the filter is usually a multidimensional array of parameters that are 

adapted by the learning algorithm. For example, if input is a 2D image 

denoted by I and we use a 2D kernel K, then the convolution is given by: 

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) =∑∑𝐼(𝑚, 𝑛)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)

𝑛𝑚

 

When designing and training a NN for image classification, there are several 

key structural knowledge that convolution layers use to improve the 

accuracy. Firstly, nearby pixels are more strongly correlated than more distant 

pixels. Convolution layers exploit this property by extracting local patterns 

within a small 2D window of the input. Therefore, only a local neighborhood 

is affected by neurons from the previous layer. The spatial extent of the 

neighborhood is also known as the receptive field or filter size. The size of the 

filter, denoted as 𝑓, is typically set to 3x3 or 5x5 pixels. The filter size must be 

the same within a layer, but it may vary between layers. Although each 

neuron is connected only to the local region, the extent of the filter along the 

depth axis is always equal to the depth of the input volume. Focusing on a 

small receptive field enables convolution to detect simple patterns such as 

edges, corners, and textures.  
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For example, consider an input image with a size of 256x256x6. If the 

filter size is 3x3, each neuron in the convolution layer will have a total of 

3x3x6 = 54 connections, plus one bias parameter. 

Secondly, the visual world is translation invariant, meaning that the same 

pattern can appear anywhere in the image. For example, after learning a 

certain pattern in the upper right corner of an image, convolution can 

recognize it anywhere, such as in the lower left corner. In contrast to fully 

connected networks, where each weight is used only once, convolution layers 

leverage parameter sharing, where the same filter is applied across the entire 

input. Parameter sharing ensures that learned parameters in one region can 

be reused to recognize the same patterns in another, rather than requiring a 

separate set of parameters for every location (Figure 97). This significantly 

reduces the number of parameters and training samples required to learn 

representations, thereby improving the network's generalization ability. 

 

Figure 97 Parameter sharing (a) convolution - the blue arrow represents the center of the 3-

element kernel. The same parameter is used at all input locations. The input neuron x3 affects 

only three outputs. (b) fully connected - there is no parameter sharing, and the blue arrow is 

used only once. The input neuron 𝑥3 influence all outputs. 
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Finally, the images are fundamentally spatially hierarchical, where low-level 

features combine to form higher-level representations. The lower 

convolutional layer will learn small local patterns, such as edges. A second 

convolutional layer will learn larger patterns composed of features from the 

first layer, and so on (Figure 98). This allows convolution to efficiently learn 

increasingly complex and abstract visual concepts. 

 

Figure 98 Image hierarchy. Edges combine into corners, corners combine into more specific 

features such as eyes or ears, which combines into complex concepts such as dogs 

Convolution works by sliding small windows over the 3D input feature maps. 

At each position, the kernel is centered on a pixel of interest, extracting the 3D 

patch of the local neighborhood (Figure 100). Each such patch is transformed 

by an element-wise multiplication with the learned weights of the 

convolution filter and summed up to a single scalar value. All of these outputs 

are then spatially reassembled into a 3D output feature map.  
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Each spatial location in the output feature map corresponds to the same 

location in the input feature map. The size of the output feature map is 

controlled by three hyperparameters: depth, padding, and stride. Padding 

and stride control the spatial extent of output (width and height), and depth 

controls the number of channels. 

The convolution can be computed only in positions where all components of 

the filters have corresponding input components. This is not the case with the 

input boundaries. Padding controls the spatial dimensionality of output by 

adding additional pixels, usually zeros, around the border of the input map 

before applying the convolution operation. Therefore, if no padding is used, 

the output size gradually shrinks after each layer, leading to a loss of 

information around edges. 

Consider applying the kernel size 3x3 to the  5x5 input feature map. Since 

the kernel can only be centred where a full 3x3 window fits inside the 

input, output will be reduced to 3x3. 

 

By adding a one-pixel-wise border of zeros (padding=1) enables 

application of the kernel at the edges as well and the output size remains 

5x5. 
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Moreover, in images the pixel values change gradually, which means that it 

is not always necessary to apply a filter at every location. Instead certain 

blocks can be skipped.  Stride parameter controls the number of steps the 

kernel moves each time it slides across feature maps (Figure 99). The stride 

one means that the kernel shifts by one pixel at a time, covering every possible 

location. If stride increases to 2, the kernel skips one pixel between positions, 

so the output feature map becomes smaller because fewer local 

neighborhoods are visited. The larger stride reduces spatial dimension and 

computational cost but also leads to loss of fine-gradient details. 

 

Figure 99 (a) stride=1, (b) stride=2 

For example, applying a 3x3 kernel with strid 1 on 7x7 input gives the 

output size of 5x5, while using stride 2 reduces it further to 3x3. 

 The depth of output represents the number of filters used by the convolution. 

If we use k filters, then the result is k new images. Increasing the number of 

filters enhances the network's capacity to learn various types of features at the 

same spatial locations. 
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Figure 100 Convolution operation using a 3x3x3 Kernel 

15.1.2 Pooling layer 

The output of the convolution layer is the input to the pooling layer. The 

pooling layer reduces the spatial dimensionality while preserving the most 

important information. It works by sliding a small receptive field across the 

input and computing a single output for each region. Different approaches, 

such as max pooling and average pooling, can be used. Typically, a max 

polling (Figure 101), which returns the maximum value of the elements 

within the receptive field, is used. So, the pooling layer indicates that the 

feature has been detected somewhere within the receptive field, ensuring the 

translation invariance. Therefore, from a probability perspective, it can be 

observed as a prior assumption that output is insensitive to small translations 

of the corresponding regions in the input.  

To ensure a balance between dimensionality reduction and information 

preservation, the 2x2 max pooling with a stride of 2 has been the standard 

approach. While a 2x2 pooling operation with a stride of 2 reduces both the 

height and width of the feature map by half, the depth remains unchanged, 

allowing the network to maintain all feature representations learned by 

previous convolutional layers.  
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Figure 101 2x2 Max pooling 

Contrary to the convolution layer, the pooling layer does not have any 

learnable parameters. Pooling reduces both the number of parameters and 

computations in the network, which helps to control overfitting. 

Moreover, the pooling layer helps the network to learn a global representation 

of an object. Early convolution layers detect local features such as edges, 

corners, or textures. The pooling layer gradually aggregates this local 

information, producing the feature maps with coarser spatial resolution. By 

repeatedly applying pooling, the network essentially compresses information 

from the entire input into a smaller spatial map where each activation is 

sensitive to a larger receptive field. 

For example, in an image of a dog (Figure 98), the early layers will detect the 

edges of the eye or ear. After several convolution and pooling operations, 

output feature maps encode information from many of these local patterns 

together, allowing the network to create a representation of the dog as a single 

object. 

15.1.3 Fully connected layer 

A fully connected layer is typically used as the final layer in a CNN 

architecture. Each neuron in this layer shares its weights with all other 

neurons of its preceding layer, enabling the learning of global relationships 

between features. Once convolution and pooling layers significantly reduce 

the size of the feature map, the fully connected layer integrates high-level 

features into a global representation and uses this representation to produce 
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the final prediction. In classification tasks, the fully connected layer is 

typically followed by a softmax activation function.  

15.2 Training convnet  

15.2.1 Preprocessing  

Images are usually very large with tens or even hundreds of megapixels. Since 

the convolution operation is performed across the whole image, the 

computational and memory requirements grow quadratically with image 

size. This can make training very slow or even impossible on standard GPUs. 

To address this, the standard practice is to split images into small patches, 

usually 256x256 pixels, depending on available GPU memory. 

15.2.2 Backpropagation 

As already mentioned, CNNs are deep feed-forward networks where an 

input, such as an image, is passed through a convolutional layer to extract 

local features, an activation function to introduce non-linearity, a pooling 

layer that reduces dimensionality, and a fully connected layer that combines 

the extracted features to produce an output. This output is compared with the 

ground truth data using a loss function to calculate an error. The entire 

network is trained through error minimization using backpropagation to 

calculate the gradient of the error function. In CNN, the gradient is computed 

with respect to both the input and the filter.  

In the fully connected layers, the gradient is propagated backward in the same 

way as in standard neural networks. The propagation of the error signal 

through the convolution layer involves a slight modification of the usual 

backpropagation algorithm to ensure that the shared weights constraints are 

satisfied. For each convolution filter, the gradient is represented as a 

convolution operation between the error signal from the next layer with the 

corresponding region of the input feature map. Since a filter is applied across 

many positions, its weight updates are obtained by summing the 

contributions from all locations where the filter was applied. This ensures that 

each kernel learns features that are useful across the entire input space. Unlike 

the filters that affect all outputs, each input influences one or more of them. 
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The gradients with respect to the input are also computed by convolving the 

flipped filter weights (flipping first vertically and then horizontally) with the 

error signal, allowing the backward flow of information through the network. 

Each input pixel receives gradient contributions only from outputs whose 

respective fields. In order to ensure that the spatial dimensionality of the 

propagated gradients matches those of the input feature map and that every 

element receives an appropriate gradient update, the gradient of the loss with 

respect to the output is zero-padded.  

Moreover, the pooling layer requires special treatment during 

backpropagation. In max pooling, the gradient is passed back only to the 

location of the maximum value selected during the forward pass, while all 

other positions receive zero gradient. In average pooling, the gradient is 

distributed equally among all inputs in the pooling region. In this manner, 

backpropagation ensures that this is the case. 

The final step is the parameter update, where the gradients are used to update 

the weights and biases of the network through an optimization algorithm 

such as SGD or Adam. This process is repeated over many epochs and batches 

of training data until the model converges. 

15.3 Regularization of CNN 
One of the most important characteristics of deep learning is that it can 

automatically detect important features, eliminating the need for manual 

feature engineering. This can be done only if a large number of training 

samples are available. As already mentioned, the deeper the network is, the 

more complex patterns it can learn; however, it requires more training data. 

In training CNN networks, overfitting is the main challenge. Hypothetically, 

if we had an infinite data set, the model would never overfit. However, it is 

relatively rare to have a dataset of sufficient size, since labelling data is a time-

consuming and financially demanding process. 

15.3.1 Data augmentation 

To expand the dataset, we can utilize data augmentation. Data augmentation 

is used to enlarge the training dataset by augmenting the real samples via a 

number of random transformations. The aim is to diversify the training 
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dataset without altering image semantics, thereby enabling the model to learn 

various aspects of the object and enhance its generalization ability.  

In remote sensing, images are acquired with different sensors under varying 

climate conditions, resulting in differences in spectral reflectance and spatial 

resolution that affect the object's appearance in the image. Different data 

augmentation techniques, such as geometric transformation (rotation, 

translation, flipping, scaling, cropping), change of brightness and contrast of 

image, adding noise (salt and pepper, additive Gaussian, additive Poisson), 

as well as simulation of clouds, smoke, and fog, have been successfully used 

to diversify the dataset. 

Data augmentation provides better generalization, helps solve class 

imbalance, and preserves network capacity. However, the inputs remain 

highly intercorrelated because they originate from a small number of original 

images. Consequently, it is often combined with dropout to enhance the 

generalization ability (see Section 9.14.3).  

15.3.2 Batch Normalization 

One of the main challenges during deep network training is internal covariate 

shift [49], where the distribution of each input feature map changes due to 

parameter updates during training. As networks become deeper, the small 

changes to the network parameters amplify even further. Batch normalization 

(BN) [39] stabilizes the training process by normalizing sub-networks and 

layers to maintain a constant variance (see also Section 9.11). It is given by 

𝐵𝑁(𝑥) = 𝛾 ⊙
𝑥 − 𝜇̂𝐵
𝜎̂𝐵

+ 𝛽 

where 𝐵 is minibatch 𝑥 ∈ 𝐵,  𝜇̂𝐵 is the sample mean,  𝜎̂𝐵 is the sample standard 

deviation, 𝛾 is the scale parameter, and 𝛽 is the shift parameter. Both 

parameters are learned during training. The BN layer is incorporated in the 

network architecture after convolution and before the nonlinear activation 

function. The BN significantly speeds up the training process, stabilizes 

training, and reduces both the vanishing and exploding gradient issues. It is 

less sensitive to changes in learning rate and weight initialization, and often 

eliminates the need for dropout. Moreover, each mini-batch will be 

normalized by using different 𝜇̂𝐵 and 𝜎̂𝐵 each time, introducing additional 
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noise into the training process and leading to the better generalization ability 

of the model.  

15.4 Transfer learning 
As already mentioned, CNNs can learn local, translation-invariant features, 

making them extremely efficient for perceptual problems, and can be easily 

repurposed for different tasks. In reality, we often have a limited dataset for 

a new task. Therefore, it is relatively rare to train models from scratch. Instead, 

transfer learning, which utilizes a pre-trained model's knowledge on another 

learning task, has been extensively used.   

A pre-trained model is a model that has been previously trained on a large 

dataset. So, if the original dataset is large enough and general enough, then 

the pre-trained network has a small number of task-specific features, while it 

shares a common low-dimensional representation across different tasks. Due 

to that, learned features can be useful in many different problems, even 

though these new problems may be completely different from the original 

task.  

For instance, you might train a network on ImageNet databases that contain 

1.4 million labeled images and 1000 classes (mostly animals and everyday 

objects), and then reuse it for detecting objects in high-resolution 

orthophotography.  

There are two primary ways to utilize pre-trained models: feature extraction 

and fine-tuning. 

Feature extraction involves utilizing the representation learned by a previous 

network as a fixed feature extractor for new samples. These features are then 

run through a new classifier, which is trained from scratch. So we use the 

convolution base of previously trained networks, running the new data 

through it, and training a new classifier on top of the output. This is due to 

the fact that convolutions detect the generic concepts over a picture, which are 

useful regardless of the computer-vision problem at hand. The generality of 

features extracted by a specific convolution layer depends on the depth of the 

layers. Shallow layers extract local, highly generic feature maps (edge, colors, 

texture) while deeper layers extract more abstract concepts (ears, eyes, etc). 
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So, if the new dataset is significantly different from the dataset on which the 

original model was trained, only the first few layers of the model should be 

used. Feature extraction is computationally efficient and reusable 

The second strategy is fine-tuning. Fine-tuning enables slight adjustments of 

pretrained models to fit the target task, refining the parameters to make them 

more relevant for specific problems. Typically, a few top layers are replaced 

to match the number of classes in a new task; the weights of those layers are 

randomly initialized and then fine-tuned to fit specific tasks. Different 

strategies, such as full fine-tuning (where all layers of the pre-trained model 

are adjusted) or partially fine-tuning (where only the high convolutional layer 

and classifier are fine-tuned). The more parameters you train on the small 

dataset, the higher the risk of overfitting. Thus, in this situation, it is a good 

strategy to train only the top few layers. Typically, during fine-tuning, an 

optimizer with a very low learning rate is used to limit the magnitude of the 

modification. 

There are several parameters that should be considered when deciding on a 

type of transfer learning. The most important are the size of the new dataset 

and its similarity to the original dataset: 

● If the target dataset is small and similar to source datasets, the feature 

extraction may be the most effective approach. 

● If the target dataset is large and similar to the original dataset, we can 

fine-tune through the full network, allowing all layers to adapt to the 

new task. 

● If the target dataset is small but very different from the original 

dataset, it is recommended to train just the top layers of the network 

or consider traditional machine learning algorithms. 

● If the target dataset is large and very different from the original 

dataset, we can initialize the network with weights from a pretrained 

model and fine-tune it throughout the entire network. 

Transfer learning substantially reduces the size of the training dataset and 

speeds up training.  
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15.5 CNN architectures 
Modern CNN architectures employ a modular design, facilitating easier 

design, training, and optimization. The network consists of predefined 

structural blocks of layers, and stacking those blocks creates a deep network 

capable of modeling spatial and temporal correlations. Regarding 

architecture, research efforts have focused on designing new building blocks.  

15.5.1 LeNet 

LeNet-5 [50] is one of the earliest CNNs, designed for handwritten digit 

recognition of the MNIST dataset. It consists of input layers, two 

convolutional layers followed by two pooling layers, three fully connected 

layers, and finishes with an output layer with a softmax activation function 

(Figure 102). Although it is designed for small-scale problems, LeNet-5 

introduced several key concepts, including convolution, non-linearity, and 

pooling units, as well as end-to-end learning via backpropagation in a 

complex, dynamic architecture. It was the first to demonstrate practically the 

capabilities of CNN in automatic learning hierarchical features and  became a 

foundation for all subsequent DL models. 

 

Figure 102 LeNet 5 architecture 

15.5.2 AlexNet 

AlexNet [15] extended LeNet architecture to a larger and deeper model, 

demonstrating that these principles could be successfully scaled to large and 

complex visual tasks when combined with sufficient data. They won the 

ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) with a 15.4% 

error rate. It consists of five convolution layers followed by a max pooling 

layer, and three fully connected layers (Figure 103). It implements several new 

features to improve performance. It utilizes a ReLU as an activation function 
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to accelerate convergence, employs GPU parallelization to facilitate the 

training of large models, and incorporates data augmentation and dropout to 

mitigate overfitting. The model is trained by using batch SGD with 

momentum and weight decay. They emphasize the importance of depth in 

achieving high classification accuracy. 

 

Figure 103 AlexNet Architecture 

15.5.3 VGGNet 

VGGNet [51] is built on the foundation of AlexNet. VGG network uses small 

convolution filters of size 3x3 and padding 1 to maintain a spatial resolution, 

followed by ReLU, and stacks them in multiple consecutive layers (Figure 

104). The max pooling layer, 2x2 with a stride of 2, is used after each stack of 

convolution layers (rather than after every single convolution layer, as in 

AlexNet). The core idea behind using a small filter size is to increase the 

network depth while maintaining computational efficiency. Stacking multiple 

3x3 convolutions effectively enlarges a receptive field (for example, two 

tacked 3x3 convolutions are equal to a receptive field of a single 5x5), 

introduces more non-linearity, and increases network capacity while 

preserving the number of parameters. 

Following the convolution part of the network, the three fully connected 

layers are included. The VGG architecture varies between VGG11 and 

VGG19, differing only in depth: VGG11 contains 8 convolutional and 3 fully 

connected layers, while VGG19 includes 16 convolutional and 3 fully 

connected layers. Moreover, the number of channels increases by a factor of 2 

after each max pooling layer. The VGG demonstrated that the increasing 

network depth significantly improves classification accuracy. 
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Figure 104  VGGNet 16 architecture 
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15.5.4 ResNet 

Although VGG confirmed that network depth is of crucial importance for 

classification accuracy. However, even after batch normalization, the deeper 

network leads to lower accuracy for both the training and validation datasets. 

meaning that degradation in classification accuracy is not caused by 

overfitting, and that adding more layers to a suitable deep model results in 

higher training error even if added layers are identity mapping (returning the 

input without changing it). It often makes training harder due to vanishing or 

exploding gradients. 

 The Residual Network (ResNet) [46] addresses this problem by changing the 

learning objective from fitting a full transformation (𝐻(𝑥)) to each few 

stacked layers to fit only residual mapping. This is done through a simple 

operation  

𝐹(𝑥) = 𝐻(𝑥) − 𝑥 therefore 

𝑦 = 𝐹(𝑥,𝑤) + 𝑥 

where 𝑦 is the output vector, 𝐹(𝑥,𝑤) represents the learned residual mapping 

and 𝑥 is the input vector to those layers. The residual block consists of two 3x3 

convolutional layers, followed by a batch normalization layer and a ReLU 

activation function. The skip connection bypasses two convolutions, ensuring 

that if the residual path learns nothing (i.e., the gradient is zero), the network 

still behaves as an identity function (Figure 105). Moreover, the skip 

connection does not add any parameters to the model.  

The ResNet is built by stacking residual blocks. The network ends with a 

global average pooling layer and a fully connected layer with softmax 

activation. The ResNet 34, ResNet 50, ResNet 101, and ResNet 152 are the most 

commonly used models. In deeper networks (from ResNet 50 and beyond), 

the bottleneck block is introduced to reduce memory and computational 

complexity by using two 1x1 convolutions (Figure 105). The first 1x1 

convolution reduces the number of feature maps, while the second 1x1 

convolution layer restores the dimensionality. 



Introduction to Geospatial Artificial Intelligence 

345 

 

 

Figure 105 (a) Building block ResNet 34, (b) bottleneck building block for ResNet 50 and 

deeper 

To provide better insights into the effect of skip connection, Lee et al. [52] 

visualise the loss landscape. It shows that in traditional models that don't use 

skip connections, as the depth of the network increases, the loss landscape 

transforms from nearly convex to extremely irregular, containing many local 

minima and saddle points (Figure 106 (a)). This makes gradient-based 

optimization. 

By introducing skip connections, the loss landscape becomes smoother and 

flatter (Figure 106 (b)), which facilitates stable and efficient training. The 

flatness represents the wider region around the minima where training loss 

remains low, ensuring that small changes in parameters cause smaller 

changes in loss, which is crucial for both training stability and better 

generalization 
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Figure 106 Loss landscape of ResNet 56 (a) without skip connection, (b) with skip connection 

(courtesy of Le et al. [54]) 

The ResNet fundamentally changed deep learning. It has several benefits:  

● mitigates the vanishing gradient problem, enabling networks to be 

trained with hundreds of layers,  

● improves optimization, allowing the model to converge faster, 

● introduces a modular design, i.e. residual block, which can be easily 

stacked to build deeper architecture in a systematic way, and  

● provide better generalization, achieving state-of-the-art accuracy in 

many computer vision tasks. 

15.5.5 UNet 

UNet architecture, introduced by Ronneberger et al. [18], is one of the most 

important CNN models for semantic segmentation. Semantic segmentation is 

a challenging task since the output is an image that contains the prediction for 

each pixel. If we have an input 224x224 that is passed through ResNet, the 

output will be 7x7 convolution activations. In the end, we need to have a 

224x224 pixel segmentation mask. However, the 7x7 grid does not contain 

enough information to fully regenerate every pixel in the output.  
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The primary concept behind UNet is to capture both the context and precise 

localization of features within an image. The architecture consists of a 

symmetrical encoder and a decoder part, as well as a skip connection that 

combines them (Figure 107). 

The encoder type follows a typical CNN design consisting of two 3x3 

convolutions, followed by ReLU and a 2x2 max pooling operation with a 

stride of 2. Pooling gradually reduces spatial resolution while increasing the 

number of channels, enabling the network to learn abstract and context-rich 

representations.  

The decoder part is responsible for reconstructing spatial detail and 

producing a segmentation map of the same resolution as the input. Each step 

in the decoder consists of a transposed convolution that doubles the spatial 

information, followed by concatenation with the corresponding feature maps 

from the encoder. These skip connections preserve spatial information, 

allowing the decoder to recover fine-grained details. After concatenation, two 

3x3 convolutions and ReLU activation are applied to fuse the features. After 

the final layer, a 1x1 convolution maps the resulting feature representation to 

the predefined number of output classes. 

Although primarily designed for medical imaging, it has been widely adopted 

in remote sensing communities for semantic image segmentation. The main 

benefits of UNet: 

● skip connection and symmetrical design allow precise localization, 

● it works well with a limited amount of training data and 

● computationally efficient and flexible. 

Due to its simplicity and modularity, it can utilize pre-trained models, such 

as ResNet, as an encoder, combining the strong representation power of 

ResNet with the precise localization ability of UNet (Figure 107). 
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Figure 107 ResUNet architecture 

Example: Extraction of floating plastic pieces from very high resolution 

remote sensing images based on deep learning algorithms. This research is 

published in [53]. 

Semantic segmentation of floating plastic is highly challenging due to 

several limitations: low amount of training data, highly imbalanced data 

sets, limited accuracy of ground truth data, and frequent scene changes due 

to constant plastic movement.  

The proposed workflow consists of three main steps: preprocessing, 

classification and accuracy assessment. 

The study area is the confluence of the Crna Rijeka and the Vrbas Rivers, 

near Mrkonjic Grad, Bosnia and Herzegovina. A net for collecting floating 

garbage was installed to mitigate pollution in the area. Floating waste in 

this area is primarily caused by the disposal of the garbage in illegal 

landfills and picnic sites along the river or directly in the river. In order to 

detect and map the plastic a UAV survey was conducted, using a DJI Mavic 

pro equipped with an RGB camera. The flight height was set to 90 m. 

Preprocessing: The acquired images, together with the SfM algorithm were 

used to generate a high-resolution orthophoto with a spatial resolution of 3 

cm. The creation of training data was both challenging and time consuming, 

due to the small size of the object, variations in color and spectral 
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signatures, different levels of submersion, and the constant moving of the 

floating plastic items.  

To reduce the errors caused by the manual delineation,, the multiresolution 

segmentation algorithm was applied. This algorithm merges pixels into 

meaningful non-overlapping segments/polygons.  Each segment was then 

manually labeled using QGIS software, based on a visual inspection of the 

orthophoto.  Plastic waste was categorized into two groups: plastic and 

maybe plastic. The maybe plastic class was introduced to reduce the 

spectral confusion in the plastic class, and it was assigned to the segments 

where the operators were not able to state whether it was plastic by visual 

inspection and by analyzing the spectral signature. 

Classification: An end-to-end semantic segmentation model for a floating 

plastic segmentation was developed based on ResUNet 50 architecture. 

This architecture is well suited for application with limited training data 

and provides precise segmentation results. 

The performance of deep neural networks is highly limited by the low 

number of training data. As already mentioned, the size of the dataset 

needed for network training is a function of the size of the network (width 

and depth) and the complexity of the problem. To reduce overfitting the 

data augmentation techniques were applied including: rotating, horizontal 

and vertical flipping, zooming and brightness variation . Although the 

produced images are intercorrelated they are not the same, contributing to 

a better generalization capability. In addition to reducing overfitting, data 

augmentation also enhances performance in cases of class imbalance within 

the dataset. 

Additionally, transfer learning was employed through fine-tuning of 

ResNet-50 model pretrained on the ImageNet dataset. The weights of the 

upper layers of the pretrained network were unfrozen and updated during 

the training phase to adapt to the specific characteristics of the datasets, 

while the lower layers remained frozen. 

Implementation: Due to the limited processing power, the original images 

were decomposed to 256 × 256 px patches. The ResUNet model, which uses 

3x3 convolution layers with padding of 1 and stride of 1, was fine-tuned on 
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the Crna Rijeka dataset. The dataset, consisting of 1846 images, was split 

into 80% of the data for training and 20% for validation. The batch size was 

limited by the GPU and it was chosen as large as possible.  

Different loss functions, such as cross entropy, cross entropy weighted, and 

focal loss were tested. Since the highest accuracy was obtained using cross 

entropy, it was adopted for the final model. The models were implemented 

in Python 3 using popular deep learning libraries such as PyTorch, 

TensorFlow, Keras, and Matplotlib. Training was performed on the 

publicly available cloud platform Colaboratory (Google Colab), which is 

based on Jupyter Notebooks.  

Accuracy assessment: To test the accuracy of the classification results three 

standard parameters were calculated: precision, recall, and F1-score. The 

results of the accuracy assessment are presented below 

Class Precision Recall F1 

Plastic 0.82 0.75 0.78 

Maybe plastic 0.62 0.34 0.43 

The ResUNet-50 model demonstrated a stable performance in classifying 

plastic. The highest confusion was obtained for the “maybe plastic” class, 

which was occasionally misclassified as water or plastic. For this class the 

precision was high, while recall was low, indicating the underestimation of 

the area covered by the maybe plastic class. Although metrics such as 

precision, recall, and F1 score provide a deeper insight into the performance 

of the algorithm, the area and volume of the detected plastics are more 

relevant for stakeholders. In the Crna Rijeka case study, the algorithm only 

underestimated the plastic area by 3.4%, highlighting its strong potential 

for optimizing cleaning campaigns. 

Visual inspection shows that the locations of the plastic pieces were 

accurately detected, although some pixels along edges of plastic items were 

misclassified as the surrounding class. No differences were observed in the 

performance of the model between grouped (a) or single plastic items (b). 

Interestly, the algorithm detected plastic accurately in shallow water (c) 
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which is typically challenging because the presence of the river bed 

increases water reflectance (same as plastic does). In this study case, the 

algorithm accurately extracted the plastic pieces that were omitted from the 

training data (d), showing good generalization abilities. Moreover, the 

model showed its potential for plastic detection not just in water but also 

on land, with lower accuracy compared with the floating plastics (e). 
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16 FUTURE OF GEOAI 

Over the past few years, GeoAI has revolutionized many geospatial tasks, 

rapidly becoming a growing subfield of spatial data science across various 

domains (Table 18).  

Table 18 Overview of GeoAI application across different domains and research topics 

Geospatial 

domain 

Research 

topic 

Description Commonly used 

architectures 

Remote 

sensing 

Scene 

classification 

assigning the entire RS 

image to a predefined 

category 

CNN, ResNet 

Semantic 

segmentation 

assigning each pixel to 

predefined classes 

UNet, ResUNet 

Object 

detection 

extracting the 

boundary box of the 

detected geospatial 

object 

R-CNN, Fast 

CNN 

Instance 

segmentation 

object-level 

classification 

Recurrent Neural 

Network (RNN), 

Transformers 

Super-

resolution 

and data 

fusion 

increasing spatial 

resolution or enabling 

fusion of different 

sources such as 

optical+SAR+LiDAR 

CNN, GAN, 

Change 

detection 

monitoring spatial 

changes across time 

series of satellite 

images 

Siemens network, 

temporal CNN 

Cartography Automatic feature extraction CNN, UNet 
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map feature 

extraction 

from geospatial 

images 

Automatic 

map 

generation 

automatic generation 

of vector maps from 

satellite images, and 

generation of semantic 

maps for autonomous 

driving 

GAN 

Cartographic 

generalizatio

n 

altering the map 

visualisation when the 

scale changes 

CNN, Graph 

Neural Network 

(GNN), GAN 

Environment Monitoring 

climate 

changes 

Track snow and ice 

melting, modeling 

climate parameters 

CNN, Conv Long 

Short Term 

Memory 

(convLSTM), 

GNN 

Disaster 

events and 

early 

warning 

systems 

Detect hazards, 

provide information 

for disaster response 

and resilience  

CNN 

Agriculture 

and food 

security 

crop type mapping, 

health monitoring,  

CNN, ANN 

Water 

availability 

water body mapping, 

water quality 

monitoring, wetland 

monitoring 

CNN, ANN, 

RNN 

While classical machine learning and deep learning models significantly 

advanced geospatial analysis, they are often task-specific, requiring large 

labeled datasets and retraining for each new sensor, region, or application. 

Moreover, most models are trained on geography-specific datasets, encoding 

location explicitly instead of considering it as another attribute. This limits 
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their scalability and generalization across geographic regions with different 

characteristics, making them unsuitable for global, dynamic Earth 

observation. In addition, many traditional models struggle to capture non-

stationary and multi-scale dynamics that characterize complex real-world 

systems, such as climate and hydrological ecosystems. 

16.1 Foundation models 
In recent years, the launch of ChatGPT marked a major turning point, 

drawing high attention in Large Language Modeling (LLMs). The LLM 

models, such as Generative Pre-trained Transformers (GPT), are designed to 

encode a sophisticated understanding of the syntax, semantics, and 

contextual relationships within human language. By leveraging enormous 

amounts of data during training, these models develop a generalized 

representation that can be applied to a wide range of applications, including 

question answering, summarization, and code generation, demonstrating 

their ability to transfer knowledge across domains. Taking into account their 

fundamental roles in completing various domain-specific tasks, LLMs and 

other large-scale models are also referred to as foundation models (FMs) [54]. 

FMs [54], are pre-trained on large-scale data in a task-agnostic manner, and 

can be easily adapted to a wide range of downstream tasks across domains by 

fine-tuning.  

With the introduction of AlexNet and ResNet, the GeoAI frameworks have 

shifted rapidly from custom-built, task-specific models trained from scratch 

to frameworks that leverage pre-trained models as feature extractors. This 

form of transfer learning dramatically reduces training time, improving 

model accuracy by exploiting learned rich and more abstract patterns that 

only need to be adapted to the specified task. While transfer learning enables 

the creation of foundation models, it is the scale of training that makes them 

powerful. The scale is determined by three main factors: access to massive and 

diverse datasets, improvements in computational hardware (such as GPUs 

and TPUs), and advances in Transformer-based architectures. 

Transfer learning with annotated datasets has been standard practice for the 

last decades. However, the costs of annotation are often substantial, which 

limits practical scalability and benefits from pretraining. In contrast, self-
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supervised learning performs pretraining tasks automatically using 

unlabeled data, enabling models to leverage massive datasets at an Internet 

scale. This approach provides more scalability to adaptively handle large 

quantities of high-dimensional data. 

The transformer network [55] is built on a self-attention mechanism, which 

allows it to compare all elements across the input simultaneously and to 

capture long-range dependencies. This enables parallelized computation, 

offering a more flexible alternative to the rigid, fixed-weight computation of 

MLP and CNN.  

One of the main advantages of attention over prior architectures is its 

generality: it is not strongly tied to a specific task or domain, unlike the local 

receptive fields of convolution. This general-purpose nature of attention and 

transformers contributes to their broad applicability.  

16.2 Geospatial Foundation Models  
The foundation models can generalize effectively only within the scope of 

their training data. While they have been trained on vast amounts of text, 

tabular data, images, and other forms of web-accessible content, they have 

had limited exposure to geospatial vector data, multi-spectral images, 

spatiotemporal datasets, or point clouds. Because these data types were 

largely absent during pretraining, general-purpose FMs are not expected to 

perform reliable geospatial reasoning or prediction tasks. 

Moreover, many geospatial tasks are highly specialized and require types of 

reasoning beyond the capabilities of current general-purpose FMs, including: 

● Data modality diversity - Geospatial applications often involve 

heterogeneous input (multispectral, radar images, LiDAR) and output 

formats. General-purpose FM is mostly trained on RGB imagery. 

Moreover, aerial or satellite images are characterized by different 

geometries, spectral properties, and object scales compared to a street-

level view.  

● Topological reasoning - understanding spatial relationships such as 

connectivity, adjacency, or containment between geospatial features 
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(such as buildings, parcel borders, roads, etc) is crucial for spatial 

analysis but remains difficult for existing FMs [56], and 

● Spatial and temporal variability - Geospatial processes operate across 

large, continuous areas over time, requiring models to handle both 

local context and long-term temporal dependencies, which most FMs 

currently do not explicitly model.  

These challenges underscore the need for Geospatial foundation models 

(GeoFMs) specifically designed to handle the unique properties of spatial 

data. Emerging GeoFMs aim to address these limitations by: employing LLMs 

as agents that can synthesize geospatial workflow using existing geospatial 

toolset and APIs (such as geopandas, rasterion, Google Earth Engine or 

remote sensing APIs), leveraging large-scale geographic knowledge graphs to 

encode spatial relationships and domain knowledge, and integrating the 

LLMs with knowledge graphs to enhance spatial reasoning and contextual 

understanding [57], [58]. 

To achieve state-of-the-art accuracy across diverse remote sensing tasks, 

GeoFM must incorporate the unique characteristics of remote sensing data. In 

addition to being task agnostic, it is desired to be: 

● Sensor agnostic - capable of reasoning seamlessly across data collected 

from different sensors with varying spatial, spectral, and temporal 

resolution,  

● Spatiotemporally aware - able to handle the spatiotemporal data of 

imagery while performing geospatial reasoning for tasks such as 

image geolocalization, change detection, and object tracking,  

● Environmentally invariant - able to distinguish the intrinsic spectral 

properties of the objects of interest regardless of seasonal, 

atmospheric, or environmental conditions. 

Another critical challenge in developing FMs for GeoAI is the complexity of 

vector data, which differs fundamentally from structured text or imagery data 

typically used in NLP.  The vector data exhibit more complex data structures 

such as points, polylines, polygones, triangulated irregular network (TINs), 

3D building models, point clouds, etc., which require a flexible NN 

architecture capable of learning from graphs, meshes, and irregular 

topologies. In other data modalities, such as geo-tagged videos or images, 
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spatial social network posts, and sensor data, contribute further to the 

multimodal nature of GeoAI. To effectively process and integrate these 

sources, GeoFM must develop advanced topological and semantic reasoning 

capabilities. 

The multimodality of geospatial data thus represents one of the greatest 

challenges in developing GeoFMs. As a result, future research in geospatial 

data sciences and GeoAI must focus on designing models that can integrate 

and reason across these modalities in a coherent manner.  

Recent examples demonstrate the potential of GeoFMs models. Prithvie-EO-

2.0 is a multi-temporal transformer-based GeoFM pretrained on 4.2 million 

globally sampled time-series tiles from the NASA Harmonized Landsat-

Sentinel 2 dataset at 30 m resolution and incorporates both temporal and 

location embedding to improve performance across three main tasks: disaster 

response, land cover mapping, and ecosystem dynamic monitoring [59]. 

SatClip learns an implicit representation of geographic locations by 

contrastively matching visual patterns from satellite imagers with their spatial 

coordinates, significantly improving generalizations across diverse location-

based tasks [60]. These developments illustrate the ongoing shift in GeoAI 

toward multimodal, scale-aware, and geographically grounded models, 

making a new era of robust, task-agnostic tools for Earth observation and 

environmental analytics. 

Although GeoFM is a recent development, emerging only in the last one to 

two years as a convergence of geospatial science and large foundation model 

research, its progress is accelerating rapidly. Currently, GeoFMs are mainly 

focused on raster images, primarily leveraging optical and radar satellite 

imagery. The next major step is expected to be the expansion across data 

modalities, integrating raster, vector, and point cloud data into a unified 

embedding space. In parallel, research will increasingly emphasize temporal 

transformations and change-aware embedding that capture the dynamics of 

processed and forecasting modalities. This evolution will transform GeoFM 

from a static mapping system into a dynamic Earth reasoning system, capable 

of understanding and predicting processes such as deforestation or 

urbanization. 
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In summary, future efforts should prioritize the development of sensor-

agnostic, spatiotemporally aware, and environmentally invariant GeoFMs 

that leverage remote sensing to address urgent environmental and climate-

related challenges. Such models have the potential to transform our 

understanding of complex Earth system dynamics at a global scale and to 

enable evidence-based decision-making. Beyond achieving technical 

accuracy, it is essential that GeoFM development also maximizes long-term 

social and environmental benefits. Without such a shift, there is a risk that 

advances in GeoAI may fail to translate into meaningful real-world impact or 

support comprehensive monitoring of SDG indicators. 
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Excerpt from review 

 
From a pedagogical approach, the writing is exceptionally clear, logical, and 

well-structured. In each chapter the text moves from broad to specific to 

highly specific, with perfect clarity, using figures and tables to provide visual 

and comparative aids. Moreover, it adjusts to a logical motivation: It doesn't 

just state facts, it explains why. The clear examples and the "problem-solution" 

narrative is a highly effective teaching method. In addition, the book 

immediately organizes the vast field of AI into clear categories, so this 

systematic approach helps the reader build a mental map of the field. 

In my view, the book is not just a technical manual; it's a mature academic text 

that understands the context and implications of the technology. Includes 

data and ethical limitations upfront (in the introduction), which is a sign of 

academic integrity.  

Prof.  Flor Álvarez Taboada 

The publication “Introduction to Geospatial AI” by Gordana Jakovljević, Miro 

Govedarica, and Maria Antonia Brovelli is a timely and well-structured 

contribution to the growing body of literature at the intersection of artificial 

intelligence and geospatial technologies. It offers a clear, concise, yet 

remarkably focused overview of key AI concepts and their applications in 

geoinformatics, making it a valuable resource for both practitioners and 

researchers entering or deepening their understanding of this field.  

Prof. Milan Rapaić 
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