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Preface

It gives me great pleasure to provide this Preface to the book on Introduction
to Geospatial Artificial Intelligence, a timely and important contribution to the
evolving relationship between geospatial sciences and artificial intelligence.
The book arrives at a critical moment in our shared journey toward achieving
the 2030 Agenda for Sustainable Development. As recent assessments have
shown, progress across many of the Sustainable Development Goals remains
uneven, with some targets even regressing. Meeting these challenges requires
new ways of thinking, new tools, and deeper collaboration across borders and
disciplines.

Geospatial information has long been recognized as indispensable for
evidence-based decision-making, for managing natural resources, planning
resilient cities, protecting the environment, and responding to crises. Today,
with the rapid advances in earth observation, unmanned aerial systems,
LiDAR, and other emerging technologies, we are able to collect data at
unprecedented scale and detail. Yet data alone is not enough. It is the
intelligent integration of geospatial data with innovative methods of
processing and analysis that unlocks its true potential. Artificial intelligence
offers precisely this: the capacity to transform raw data into decision-ready



knowledge, delivered with the speed and reliability needed to address
complex global challenges.

This book makes a valuable contribution by bridging two communities:
geospatial professionals and Al researchers. It demonstrates in practical terms
how their combined efforts can support governments, institutions, and
societies. It aligns with the vision set out in the United Nations Integrated
Geospatial Information Framework (UN-IGIF), which emphasises
governance, standards, and above all, capacity development and education.
Building the skills and human capital to apply geospatial Al responsibly and
effectively is as important as building the technical infrastructure itself.

At the General Authority for Survey and Geospatial Information in Saudi
Arabia, we are committed to advancing national geospatial capabilities in line
with our Vision 2030, while also contributing to the global community
through the work of UN-GGIM and related international partnerships. We
see in this book both a reflection of those shared ambitions and a practical
guide for how they can be realised.

I commend the authors for their efforts in creating a resource that will inform,
educate, and inspire. It is my hope that this book will not only serve as an
introduction, but also as a catalyst for further innovation, collaboration, and
capacity building in the geospatial community.

Dr. Mohammed bin Yahya Al-Sayel

Co-Chair, UNGGIM

President, General Authority for Survey and Geospatial Information
(GEOSA)

Kingdom of Saudi Arabia
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Introduction to Geospatial Artificial Intelligence

1 INTRODUCTION TO GEOSPATIAL
Al

Over the years, significant advances have been made in sensing hardware in
the area of passive optical images, such as multispectral or hyperspectral
imaging, and active sensors, such as Lidar Detection and Ranging (LiDAR)
and Synthetic Aperture Radar (SAR). In addition to improvements in sensors,
the advancements in platforms have enabled higher frequency and greater
flexibility in data acquisition, allowing for more comprehensive and timely
analysis of geospatial phenomena. This led to the development of a large
heterogeneous multi-scale spatiotemporal dataset that can be used in various
applications.

In parallel, over recent years, there has been an enormous advantage in
computer vision and machine learning, which have significantly increased the
capability to understand and analyze that data. Geospatial Artificial
Intelligence (GeoAl) is an interdisciplinary field that applies Artificial
Intelligence (Al) to studying and understanding geographic and spatial data.
It combines the power of Al and Geospatial Information Systems (GIS) to
solve location-based problems. The GeoAl encompasses a range of tasks,
including object detection, image and point cloud classification, anomaly
detection, semantic segmentation, super-resolution, and multi-resolution
data fusion.

Al is the field of computer science that focuses on creating systems capable of
performing tasks that typically require some level of human intelligence. Al
represents a general field that includes machine learning (ML) and deep
learning (DL), but also comprises other approaches that don't involve any
form of learning, such as rule-based systems or symbolic AL

Al was born in the 1950s when Alan Turing proposed the concept of machine
intelligence in his paper ,Computing Machinery and Intelligence” [1]. Turing
raised the question ,,Can machines think?” and created the Turing test as a
way to evaluate a machine's ability to exhibit human-like intelligence. The
term Al was introduced by John McCarthy et al. [2], proposing ,that every
aspect of learning or any other feature of intelligence can in principle be so
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precisely described that a machine can be made to simulate it”. Symbolic Al,
which is based on programmers manually crafting a comprehensive set of
explicit rules for representing knowledge, was the dominant paradigm in
artificial intelligence from the 1950s through the 1980s. Therefore, in symbolic
Al humans define and input a set of rules and data for the system to process,
and then the system provides results based on those predefined rules.

Although symbolic AI works well for tasks with well-defined rules, such as
playing chess, for complex problems such as satellite image classification and
object detection, creating and maintaining those rules becomes extremely
difficult and time-consuming. These limitations in learning, scalability, and
complex data processing led to the development of ML.

Instead of relying on rules written by humans, ML automatically learns those
rules by analyzing data.

An ML system includes four main steps: data collection, model training,
prediction, and accuracy assessment. The model is fed by a large amount of
data. These data consist of:

e Features — input variables or characteristics of data that the model
uses to make predictions, such as intensity of reflected
electromagnetic radiation in different bands, band ratios, spectral
indices, textures, etc, and

e Labels — correct answers or output of models, such as labels for the
pixel ( "water," "forest," or "urban area").

The data are usually split into two sets: a training dataset (used to train the
model) and a testing set (used to evaluate how well the model performs on
unseen data). In model training, ML uses algorithms to detect patterns or
relationships between features and labels by analyzing the provided data. The
comparison between the algorithm prediction and the expected outcome is
performed. This information is used as a feedback signal to adjust the way the
algorithm works. This iterative adjustment is called learning. Once trained, the
model makes predictions based on new unseen data. Thus, an ML system is
trained instead of being explicitly programmed.

The central problem in ML is learning adequate input data representations. A
representation can be defined as a way to encode or transform data to make
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it more useful for a specific task. The goal is to transform the input data into
a form that makes it easier to predict output, such as classifying land cover
types or detecting water bodies. In ML, input data are defined by the operator.
This process, in which humans decide which attribute of the data is relevant
for a specific task, is called feature engineering.

For example, satellite images can be encoded in the RGB format or
multispectral or hyperspectral format. The task is to classify pixels in animage
into ,water” and , vegetation”. In the RGB format, the identification of those
classes can be challenging due to similar spectral signatures in the visible part
of the electromagnetic spectrum. Additional features, such as the Normalized
Difference Vegetation Index (NDVI) that combines Red (R) and Near-Infrared
(NIR) bands, emphasizing areas with high chlorophyll content; the
Normalized Difference Water Index (NDWI) that combines NIR and Short-
wave infrared (SWIR), and emphasizes the water, band ratios, or raw bands
can be extremely useful. ML algorithms automatically find transformations of
input data that turn them into more useful representations and use the
percentage of correctly classified pixels as feedback to learn an appropriate
representation. For example, the ML model might learn that NDVI > 0.5 is a
good indicator of vegetation, that pixels with low NIR/R ratio are likely water,
or it can combine existing features such as NDVI and Green (G) band into a
new representation that better captures patterns in the data.

Artificial Machine
intelligence learning

Deep learning

Figure 1 Artificial Intelligence, machine learning, and deep learning

Deep learning (DL) is a subfield of ML that uses many successive layers to
learn complex representations and patterns from data automatically (Figure
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1). The , deep” in the DL model is defined by the number of layers used in the
network. Today, a DL network can consist of hundreds or thousands of
hierarchical layers. Unlike traditional ML, DL models use layers to extract and
learn the hierarchical representation of the data without explicit feature
engineering. This ability enables DL models to uncover complex, hidden
patterns that may not be immediately obvious or easily detected by humans,
thereby creating new features for classification. In the satellite image
classification task, early layers learn simple features such as edges or corners,
deeper layers combine the results of previous layers into more complex
features like shapes, and the final layer synthesizes all these features to
classify the image into predefined classes such as roads or buildings. The
comparison between ML and DL is provided in Table 1.

Table 1 Comparison between ML and DL

Aspect ML DL
Approach Statistical techniques Neural networks with
multiple layers
Feature Manual (hand-crafted | Automatic (learns features
engineering feature) from the data)
Data dependency | Small to  medium | Large datasets
dataset
Task complexity Low to moderate High-dimensional and
complex
Computational Low to moderate High
need
Training time Less time needed Much more time needed
Accuracy High accuracy on large | Good results on both small
datasets and large datasets

1.1 ALGORITHMS

In recent years, ML algorithms have been used in abroad spectrum of
domains. In these applications, each instance in the dataset is represented by
a consistent set of features/attributes. For example, in RS, a pixel can be
characterized by its reflectance values across different spectral bands such as
blue, green, red, and NIR. Additionally, each instance in the dataset can be
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associated with a corresponding label, i.e., the correct output for that instance.
Each feature can be binary, categorical, or continuous.

ML is categorized into four categories:

Unsupervised learning,
Supervised learning,
Semi-supervised learning, and

W=

Reinforcement learning.

Unsupervised learning is based on systems that analyze the patterns in
unlabeled data. It provides abetter understanding of the correlations,
structures, and patterns present in the data. Unsupervised learning is usually
used as the initial step before supervised classification.

Supervised learning uses a labeled dataset to train Al algorithms to identify
patterns and relationships between input features and outputs. In supervised
learning, analytics manually identifies examples of interest, i.e., creates
labeled data. Labeled data represents data points with corresponding labels
(i.e., correct output). The supervised learning algorithm is trained on labeled
data. The goal is to learn to map input data to known labels. During training,
algorithms process large datasets to understand potential correlations
between input and output variables. Algorithms can apply what they learned
on the training set to the unseen data and predict the output values.
Generally, it is the most common approach, and almost all deep learning
applications belong to this category. Supervised learning is mainly divided
into two categories:

e Regression —used when the target variable is continuous and the task
is to predict a real value instead of a discrete label. For example, we
want to predict Land Surface Temperature using satellite data from
Landsat 8 images. The most commonly used algorithms include
Linear Regression, Decision Trees for Regression, and Support Vector
Regression (SVR), among others.

e (lassification —used when the target variable is discrete or categorical.
The primary aim is to assign each input to predefined classes.
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Traditionally, in geomatics, classification methods are categorized based on
the smallest unit of analysis, on pixel-based classification and object-based
image analysis (OBIA).

Pixel-based classification observes each pixel in an image as an independent
unit. The primary aim is to classify each pixel into one of the predefined
classes based only on its spectral characteristics. Spatial context and
relationships between neighboring pixels are not considered. Pixel-based
classification is straightforward and has been commonly used in tasks such as
land use/ land cover classification (where individual pixels are labeled as
vegetation, water, or urban areas based on their reflectance values in different
spectral bands).

Object-Based Image Analysis (OBIA), on the other hand, groups pixels into
meaningful objects or segments before classification. Objects are created
through image segmentation before classification using segmentation
algorithms such as multiresolution segmentation or watershed analysis.
Pixels are grouped based on spatial, spectral, and contextual properties such
as shape, texture, and proximity. OBIA is primarily used for the classification
of high-resolution imagery, where features like buildings or tree crowns need
to be classified as cohesive units rather than isolated pixels.

In GeoAl classification tasks, they can be divided into semantic segmentation,
object detection, and instance segmentation, each addressing different aspects
of spatial data interpretation. Semantic segmentation (i.e., pixel-based
classification) labels each pixel within an image (or point in a 3D point cloud)
with a class, providing a complete understanding of the spatial distribution
of objects. For instance, a satellite image of an urban area might be segmented
into classes such as roads, buildings, vegetation, and water bodies.

Object detection, on the other hand, focuses on both identification and
localization of objects of interest within an image using bounding boxes. For
example, detecting vehicles in parking lots or identifying individual trees in
a forested landscape are everyday tasks in this category. Finally, instance
segmentation combines the pixel-level detail of semantic segmentation with
the localization of object detection by identifying and delineating each
instance of an object separately. A typical use case is segmenting individual
buildings in a dense urban environment or distinguishing between
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overlapping tree canopies in a forest. These methods have been extensively
used in different applications, including but not limited to environmental
monitoring, urban planning, agriculture, and disaster management.

Semi-supervised learning represents a branch of ML that combines
supervised and unsupervised learning by using both labeled and unlabeled
data to train models for regression or classification tasks. It uses a small
amount of labeled data alongside a vast amount of unlabeled data to train
models. As in supervised learning, the goal is to train algorithms that can
accurately predict the output variables based on the input. The difference is
that semi-supervised learning uses both labeled and unlabeled data in the
training process. This concept is particularly beneficial when a large amount
of unlabeled data is available, but labeling it all is too time-consuming and
expensive. The semi-supervised learning model uses labeled data to learn a
preliminary representation of the problem (such as the number of classes). At
the same time, it exploits the structure and distribution of unlabeled data. It
is based on several assumptions, including: unlabeled data used in model
training must be relative to the task (if a task is to classify land cover classes,
the images of cats and dogs will not be helpful), cluster assumption, i.e., the
data with similar feature space should belong to the same class. The similarity
can be based on different definitions, such as:

e Smoothness assumption —if data points are close in feature space, then
they are more likely to share the same labels. For example, if pixels in
satellite images have similar reflection values, they likely belong to the
same land cover class.

e Low-density assumption - the decision boundary between different
classes should lie in low-density regions where few or no data exist.

e Manifold assumption - high-dimensional feature datasets comprise
multiple lower-dimensional manifolds on which all points lie, and the
data points on the same manifold belong to the same class. For
example, a Landsat 8 image of 256 x 256 pixels has 393 216 dimensions.
Comparing such a high-dimensional dataset is challenging due to its
complexity and computational resources. Moreover, not all features
are equally important for the specific task. Following proper
dimensionality reduction and feature transformation, similar data
points tend to cluster together.
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Semi-supervised learning can be classified based on the way in which it
incorporates unlabeled data:

e pseudo labeling - model trained on labeled data is used to predict
labels for the unlabeled data (pseudo labels). The model can then be
retrained iteratively by using real and pseudo labels to improve
accuracy. For example, training a Random Forest (RF) model on
labeled data, using that model to classify unlabeled pixels and assign
pseudo classes where predictions are of high confidence, and then
retraining the model using both real and pseudo classes to improve
accuracy.

e unsupervised pre-processing - data transformation techniques are
used to generate better feature representation or reduce noise in raw
data before training an ML model with labeled data. For example,
Principal Component Analysis (PCA) can be used to reduce Sentinel-
2 spectral bands from 10 to 5 while preserving maximum variance in
the cropland classification task.

e Objective function adjustment - modification of the loss function to
enforce smoothness. Instead of minimizing only the usual loss
function (e.g., cross-entropy for classification), additional terms can be
added to promote better generalization (for instance, a consistency
loss can be added to cross-entropy to ensure accurate prediction of
land cover classes if the brightness condition on the satellite image
slightly changes) and reduce overfitting.

Semi-supervised learning has been used for various tasks, including text
classification, image classification, and anomaly detection.

Self-supervised learning is an ML technique that uses unsupervised learning
for tasks that require supervised learning. Instead of relying on human-
annotated labels, self-supervised learning creates output labels directly from
input data. In the pre-training phase, the model learns discriminative features
by solving pretext tasks before applying them to the actual downstream task
(such as classification). Predefined pretext tasks typically involve simple
functions that help models understand the structure of key data features,
which are used to solve real-world problems, enabling models to learn
without human supervision. Self-supervised learning is particularly used in
computer vision and natural language processing, but it has also been
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successfully implemented for remote sensing tasks. For example, the model is
trained on combining different sources of data, such as visible and radar
images, improving its understanding of land cover types from diverse
perspectives, or the model is given multiple time-step satellite images from
the same region, and the task is to predict temporal changes, such as seasonal
variation in vegetation.

Reinforcement learning is a type of ML where an agent learns to make
decisions by interacting with an environment. Unlike supervised learning,
where the model learns from labeled data, in reinforcement learning, an agent
learns by trial and error, receiving feedback through rewards and penalties
based on its actions. The primary aim is to maximize cumulative reward over
time. The agent is any system that can make decisions, such as self-driving
cars. The environment encompasses everything an agent interacts with,
providing information on its current state. The agent uses that information to
determine which action to take. Action changes the state of the environment,
and the agent receives a reward. The reward measures how good or bad an
action was in achieving a goal. For self-driving vehicles, a reward can be
reducing traveling time, remaining on the road, or being in the proper lane,
among other objectives. Over time, the agent learns which actions lead to the
most rewards. According to that agent, adjust strategy to favor actions that
yield higher rewards, altering its decision-making process. The process
continues until the agent reaches its goal. In remote sensing, reinforcement
learning can be beneficial for tasks that involve real-time data analysis and
sequential decision-making.

1.2 Historical development of Al

In recent years, Al and deep learning have made remarkable achievements in
a wide range of applications. However, the development of Al started several
decades ago, stretching back to the 40s. During that period, Al evolved from
theoretical concepts to applications in different fields. There are several
milestones in the development of Al:

e 1943 - Walter Pitts and Warren McCulloch [3] presented the first
mathematical model of neural networks in their paper “A logical
calculus of the ideas immanent in nervous activity”
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e 1950 - Alan Turing published a landmark paper, “Computing
Machinery and Intelligence” [1]. This paper introduced the Turing
test, designed to determine whether a computer can mimic human-
like intelligence. The Turing test became a central concept in Al
serving as a way to test a machine’s ability to exhibit intelligent
behavior equal to that of humans.

e 1952 - Arthur Samuel developed a program for playing checkers at a
champion level

e 1955 - the term “artificial intelligence” was introduced in a workshop
proposal, “A Proposal for the Dartmouth Summer Research Project on
Artificial Intelligence,” submitted by John McCarthy, Marvin Minsky,
Nathaniel Rochester, and Claude Shannon [2]. During this workshop,
a group of prominent scientists has gathered to establish the fields of
Al and ML research.

e 1957 - Frank Rosenblatt designed the first two-layer computer neural
network that enabled pattern recognition, called the Perceptron [4].

e 1957 - Thelaunch of Sputnik 1, the first artificial Earth satellite, marked
the beginning of the space era.

e 1963 - Roger Tomlinson introduced the term Geographic Information
System (GIS).

e 1966 - Thomas Cover and Peter Hart introduced the k Nearest
Neighbor algorithm in their paper “Nearest Neighbor Pattern
classification” [5].

e 1969 - The Harvard Lab for Computer Graphics created the first
vector-based GIS called SYMAP, which allowed for the visualization
of spatial data.

e 1972 - NASA launched Landsat 1. The Landsat mission provides
continuous multispectral imagery of the Earth's surface

e 1978 - First Global Navigation Satellite System satellite, Navstar I, was
launched. It achieved full global coverage in 1995.

e 1986 - Rumelhart, Hinton, and Williams published a paper "Learning
representations by back-propagating errors" [6], in which they used
backpropagation for training neural networks and improving their
ability to learn complex patterns. This research is a fundamental
breakthrough in modern deep learning. It builds on the 1969 research

10
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of Bryson and Ho [7] that first introduced backpropagation for
overcoming the limitation in training multilayer networks.

e 1986 - The SPOT satellite was launched, providing higher resolution
images, allowing better mapping and monitoring of environmental
changes.

e 1988 - Judea Pearl published “Probabilistic Reasoning in Intelligent
Systems,” [8] introducing Bayesian networks as a framework for
probabilistic reasoning and decision making under uncertainty.

e 1989 - Yann LeCun and his team successfully applied the
backpropagation algorithm to Convolution Neural Networks to
recognize handwritten zip code images [9]. This is one of the first
applications of CNNs demonstrating the potential of Al for image
recognition tasks.

e 1995 - Vladimir Vapnik and Corinna Cortes introduced the Support
Vector Machine algorithm [10], widely used in ML for linear and
nonlinear classification tasks.

e 1995 - one of the first applications of Al for processing geospatial data,
such as decision tree-based land cover classification or ANN-based
spatial interaction modeling [10].

e 1997 - Sepp Hochreiter and Jiirgen Schmidhuber introduced Long
Short-Term Memory (LSTM) [11], a type of Recurrent Neural Network
(RNN) designed to capture long-term dependencies in data
effectively.

e 1997 - IBM chess computer, Deep Blue, beats world chess champion
Garry Kasparov in a six-game match. This victory demonstrated that
computers can outperform human intelligence in strategic games.

e 1999 - IKONOS, the first high-resolution satellite with a panhromatic
spatial resolution of 0.82 m and a multispectral resolution of 3.2 m,
was launched.

e 2007 - Fei-Gei Li and her team launch the most massive and
comprehensive databases of annotated images. ImageNet [12]
provides millions of labeled images across thousands of categories to
support the development of visual object recognition software.

e 2009 - Rahat Raina, Anand Madhavan, and Andrew Ng publish
"Large-scale Deep Unsupervised Learning using Graphics

11
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Processors," [13] demonstrating the GPU's superior computational
power over traditional multi-core CPUs for deep learning tasks.

e 2010 - Google Earth Engine (GEE) [14], a cloud-based service for
geospatial processing, was launched. It integrates petabytes of
geospatial data, free planetary-scale processing power, and Al
technology. GEE has been a game-changer for GeoAl development,
impacting both research and practical application.

e 2011 - Apple launches Siri, a virtual assistant integrated into iOS,
allowing users to interact with their devices through voice commands.

e 2012 - Geoffrey Hinton and his team designed the AlexNet [15], a CNN
network that achieves a 16% error rate in the ImageNet Large Scale
Visual Recognition Challenge. This research shows that CNNs can
outperform traditional image classification methods.

e 2014 - Ian Goodfellow and his collaborators in their groundbreaking
paper titled "Generative Adversarial Nets" [16] introduced GAN
frameworks that teach Al how to generate realistic data through
adversarial training between two networks (generator and
discriminator).

e 2015 - Kaiming He and his team introduced ResNet [17], a deep CNN
architecture that introduced the idea of skip connection, allowing
training of much deeper networks without the problem of vanishing
gradients.

e 2015 - Olaf Ronnenberger, Philipp Fischer, and Thomas Brox
introduced U-Net in their paper titled "U-Net: Convolutional
Networks for Biomedical Image Segmentation” [18]. U-Net represents
a turning point for deep learning-based semantic segmentation,
especially for high-resolution images and in tasks requiring spatial
accuracy. In addition, UNet's ability to work effectively with a limited
labeled dataset is a significant advantage in GeoAl.

e 2017 - Vaswani et al. [19] introduced the Transformer, the first
architecture based entirely on self-attention mechanism to enhance
feature representation, achieving substantially faster training
compared with recurrent or convolution models.

e 2020 - OpenAl introduces GPT-3, a groundbreaking natural language
processing algorithm able to generate human-like text, engage in
conversations, write code, translate languages, etc.

12
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e 2021 - DeepMind (a subsidiary of Alphabet) uses its neural network
for accurate prediction of 3D structures of proteins for amino acid
sequences with unprecedented accuracy. DeepMind’s breakthrough
demonstrates that deep learning has the potential to accelerate drug
development and disease research dramatically.

e 2021 - Tesla launched the Full Self-Driving Beta that uses deep
learning to navigate complex driving scenarios.

e 2021-2023 - OpenAl launches DALL-E, followed by DALL-E 2 and
DALL-E 3, generative Al models capable of generating highly detailed
images from textual descriptions.

e 2025 - DeepSeek realizes DeepSeek-V3, a free Al-powered chatbot
aiming to achieve Artificial General Intelligence. They adopt Multi-
head Latent Attention (MLA) and DeepSeekMoE architectures to
achieve efficient inference and cost-effective training, spending only
$5.6 million on computing power for development. The development
of Al models for a fraction of what other companies have been
spending caused shock waves throughout the GPU market.

1.3 Limitations

In recent years, Al has revolutionized multiple industries and transformed
how humans interact with technology. Despite its impressive capabilities, Al
has significant limitations that need to be considered. Those concerns can be
divided into several areas, including data, ethical concerns, and model
interpretability.

1.3.1 Data limitations

Al especially DL, relies on large amounts of data to make accurate decisions
and predictions. This is the most obvious limitation. The rapid advancement
of DL, especially during the 2010s, has been largely enabled by the availability
of vast amounts of data. Despite the progress in storage hardware, the rise of
the internet has made it possible to collect (social media, mobile devices,
Internet of Things, public datasets), store, process, and distribute (cloud
computing, big data technologies) a large dataset, which was a game-changer.
Data limitations can manifest as a lack of data and a lack of quality data.

13
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Lack of data. As mentioned earlier, many Al algorithms require vast amounts
of labeled data, which can be expensive and time-consuming to create,
especially in specific domains. The larger the architecture, the more data is
needed to produce viable results. Although techniques such as fine-tuning
and data augmentation are practical, having a larger dataset is always a
preferred solution.

Data quality and bias. Al models are only as good as the data they are trained
on. If the training data is biased or unrepresentative of the real world, the
model can inherit those biases and lead to inexact outcomes. For example, in
land use classification, if certain geographical areas are underrepresented in
the training dataset (for example, underdeveloped regions), Al models might
perform poorly in those areas. The most ideal way to mitigate such a risk is
by collecting data from broad and diverse geographical areas, as
heterogeneous datasets limit exposure to bias and result in higher accuracy.

1.3.2 Ethical limitations

Al has had a profound impact on the world, but its exact capabilities and
limitations are not clearly defined. In recent years, Al has been integrated into
the critical decision-making process, raising several ethical concerns. One of
the key concerns, particularly in information retrieval, is the tendency to
define a singular ,truth” rather than presenting different perspectives.
Consider, for example, a search for a particular term on the internet. Earlier
search engines would provide millions of different pages, allowing you to
analyze and synthesize information from different sources to draw your own
conclusions. However, Al tools like ChatGPT often provide just one or two
definitive answers, streamlining information but also potentially narrowing
the range of perspective and reducing the critical engagement with multiple
viewpoints. Moreover, there is no guarantee that the provided conclusions
are correct.

As Al becomes more autonomous, determining who is responsible for its
decisions becomes increasingly complex. One of the most discussed examples
is autonomous driving. If an Al driving vehicle causes an accident, who is
responsible: the manufacturer, the software developers, the user, or the Al
itself?

14
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Also, Al-powered systems such as face recognition or video monitoring have
raised concerns regarding security, surveillance, and invasion of privacy.
Although these technologies can be helpful for security purposes, they also
raise discussion about transparency, consent, and the potential for abuse by
governments or corporations. Additionally, in combination with an increase
in sensor capabilities, such as high-resolution satellite or UAV imagery, it can
expose sensitive information about personal activities or locations.

Moreover, Al's capability to automatically perform tasks that are traditionally
done by humans raises concerns about its impact on the economy, income,
and job security. The International Monetary Fund reported [20] that almost
40 percent of global jobs are exposed to Al (up to 60 percent in developed
economies). The report states that half of those may be negatively impacted,
while the rest could have gains in productivity [20].
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2 GEOSPATIAL DATA

Geospatial data refers to information related to locations on the Earth's
surface. Geodata (another name that can be used instead of geospatial data)
describe objects, events, and other real-world phenomena within a specific
geographical area, typically identified by coordinates, addresses, zip codes,
or names. They combine location information (identifying where something
exists or takes place), descriptive attributes (what is present at that location),
and often include temporal information (when it occurs). They are essential
for more efficient decision-making across multiple applications and have

significant economic importance.

Geospatial data can be static, such as the location of an event, or dynamic, like
the movement of vehicles or the spread of an infectious disease, where the
distinction between static and dynamic data depends strongly on the time
scale considered. Geospatial data are collected from many diverse sources in
varying formats. They can include various information such as census data,
satellite imagery, weather data, smartphone data, as well as data from social
networks, IoT sensors, etc. Moreover, integrating geospatial data with
traditional business data can be especially valuable, allowing visualization in
the form of maps, graphs, cartograms, or virtual globes and providing a
deeper understanding of events, monitoring of changes over time, and
recognizing the patterns and insights that might be overlooked in a large data
spreadsheet.

With advancements in technology, its application will continue to grow,
contributing to smarter cities, sustainable environment, economic growth,
and improved quality of life globally.

There are two primary data models used to represent geospatial data. These
models enable real-world geographic objects to be digitally stored in a
database and visualized on maps or computer screens. The vector model is
used for objects with clearly defined boundaries, for which it is precisely
known where they begin and where they end. It uses points, lines, and
polygons to represent features such as buildings, roads, trees, rivers, etc. A
raster model is used for continuous phenomena. It represents data as a grid
of pixels. Each pixel contains a unique value corresponding to a specific
attribute such as temperature or elevation. The raster model is commonly
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used for remote sensing, digital terrain models, and land cover classification,
among other applications.

All geospatial data have four key characteristics: location, scale, accuracy and
resolution. Each geospatial dataset is associated to a location defined within a
Coordinate Reference System (CRS), which provides a numerical framework
to represent points on the Earth’s surface consistently. The scale refers to the
ratio between a distance on the map and the corresponding distance on the
ground, typically measured along representative lines, making it effectively
an average value. Accuracy represents how closely information in the dataset
matches the real world. For instance, positional accuracy represents how close
geospatial objects (features) are to their real-world locations. Resolution refers
to the smallest distinguishable unit in the data (e.g., pixel size in a raster
image, or minimum distance between points in a vector dataset). Higher
resolution means finer detail. The three concepts: scale, resolution and
positional accuracy are closely related.

Other relevant characteristics of the geospatial data are consistency and
completeness. Consistency refers to whether the characteristics of geospatial
objects in the dataset match those in the real world. For example, does a
building in the dataset represent a building in the real world? Completeness
refers to the extent to which instances of features are included in the dataset.
For example, are all buildings in a city presented in the dataset?

Metadata is often defined as “data about data,” and it describes properties,
origin, ownership, quality, history, and other valuable properties. The
primary purpose of metadata is to enable search and evaluation of geospatial
data, to provide information on how to access and use resources effectively.

Accordingly, metadata can be classified into three main types:

e descriptive metadata - provides helpful information for discovering
and identifying data resources. It describes a resource's what (name of
dataset and description), when (when dataset is created and cycles of
update if defined), where (geospatial extent of the dataset based on
geographical coordinates, administrative units or geographical
names), why (why data are created and), who (data sources, provider
and leading target group), and how (how dataset is created and how
to access to the,);
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e evaluation metadata - includes all necessary data needed to determine
if selected data meet all user needs, to assess their characteristic and
quality;

e Structure metadata - includes information necessary for access,
transfer, loading, implementation, and use of data in the final user
application. This type of metadata often contains details about data
dictionaries, data organization, i.e.,, schemas, spatial references,
geometric characteristics, and other information relevant for people
and machines to use geospatial data properly.

Metadata is particularly important because, despite the increasing availability
of geospatial data from diverse sources and the relative ease of locating it,
researchers often face challenges in finding and assessing data due to limited
metadata. Recognizing the critical role of metadata, several standards (ISO

19115-1, ISO 19115-2, ISO 19115-3) have been established to define the
essential elements for describing geospatial datasets and related resources.
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3 REMOTE SENSING

Remote sensing is the science of acquiring information about Earth’s surface

without being in contact with it. It is done by recording the reflected

electromagnetic energy and using non-imaging sensors. The elements of

remorse sensing (Figure 2) are:

Energy source (A) - the first element of remote sensing that illuminates
or provides electromagnetic energy to the target of interest.
Interaction between radiance and atmosphere (B) - as the
electromagnetic energy travels from the source to the target, it passes
through the atmosphere and interacts with it. This interaction is
repeated a second time as the reflected energy travels back from the
target to the sensor. Atmospheric correction is used to minimize this
effect and improve image quality.

Interaction with target (C) - once the energy makes its way to the
target, it interacts with it depending on the properties of both the
target and the radiance.

Recording of reflected energy by the sensor (D) - after the target
reflects energy, it travels back to the sensor that collects and records
the electromagnetic radiation.

Processing (E) - the energy recorded by the sensor has to be
transmitted to a receiving and processing station, where the data are
processed into images.

Interpretation and analysis (F) - the image is interpreted, visually or
digitally, to extract useful information about the target.

Application (G) - the final element of remote sensing is the application
of extracted information for better understanding the target, revealing
some new aspects, monitoring changes over time, and supporting
decision-making processes.
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Figure 2 Elements of remote sensing

3.1 Energy source

Every object on the Earth's surface, due to solar radiation, has energy of a
specific frequency and wavelength, and it emits energy from the
electromagnetic spectrum. Every object is composed of charged particles,
such as protons and electrons, which generate electric fields. These electric
fields influence other charged particles within their range. When charged
particles move, they create an electric current, which in turn produces a
magnetic field. The interaction between changing electric and magnetic fields
generates electromagnetic (EM) radiation, which can be described as either a
wave (electromagnetic waves) or as discrete packets of energy (photons) in
the quantum model of radiation.

The electrical field varies in magnitude in a direction perpendicular to the
direction in which radiation is traveling. In contrast, the magnetic field is
oriented at a right angle to the electrical field. It can be noted that generated
waves are in phase, i.e., when the electric field is maximum, the magnetic
energy is maximum. Two main characteristics of EM radiation are:

e wavelength - is the length of one wave cycle, and it is defined as the
distance between successive wave crests. Wavelength (1) is usually
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measured in nanometers (nm, 1077 meters), micrometers (um,
10_6meters), or centimeters (cm, 10_2meters).

e frequency - number of cycles of a wave passing a fixed point per unit
of time. Frequency is usually represented by a Greek letter v and it is
measured in hertz (Hz), equal to one cycle per second.

The following formula relates wavelength and frequency:
c=Mv

where c is the speed of light, 1 is wavelength and v is frequency. It can be
concluded that frequency and wavelength are inversely related to each other,
i.e. the shorter the wavelength, the higher the frequency and reverse.

The EM spectrum represents the collection of all wavelengths of EM radiation,
which can be categorized into regions based on wavelength and frequency.
The EM spectrum consists of gamma, X, ultraviolet, visible, infrared,
microwaves, and radio waves. The range of gamma and X waves includes
wavelengths less than 0.01 um, and they are unusable in remote sensing due
to their low penetration through the atmosphere. The ultraviolet range
comprises wavelengths between 0.01 um and 0.04 um. This region has the
shortest wavelength that can be practically used in remote sensing. Certain
materials on Earth's surface, primarily rocks and minerals, fluoresce or emit
visible light when illuminated by UV radiation. However, this range is highly
absorbed in the upper layer of the atmosphere by ozone, so its application is
limited.

The range of the visible part of the EM spectrum is defined by the sensitivity
of the human eye and includes wavelengths between 0.4 um to 0.7 um.
Humans perceive the combination of all visible wavelength radiation as
white light because the cones in our retinas respond to the full spectrum of
visible colors simultaneously, but according to the wavelengths in the visible
spectrum, different colors are distinguished from violet (0.4 um - 0.44 pm),
through blue (0.45 ym - 0.5 um), green (0.5 um - 0.57 um), yellow (0.57 ym -
0.59 um), orange (0.59 pm - 0.62 um) to the red (0.62 um - 0.7 um) with the
largest wavelength. Although its portion is small compared to the rest of the
spectrum, it is one of the most used in remote sensing due to its reflection
properties.
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The infrared (IR) portion of the spectrum includes wavelengths between
0.7 um and 100 pm. It can be divided into two categories: reflective IR and
emitted (thermal part). Radiation in reflective IR (0.7 um - 3.0 um) region is
used in remote sensing similarly to radiation in the visible part. The thermal
IR covers a range from approximately 3.0 um to 100.0 um and represents the
radiation that is emitted from the Earth’s surface in the form of heat. Both
parts of the IR spectrum are essential for applications in remote sensing.
Thermal IR is used to monitor temperature variations, making it useful for
tracking water temperature, land surface temperature, and heat emission.
Reflective IR has been widely used for vegetation monitoring. Also, they are
frequently used in geology, geomorphology, agriculture, military
surveillance, and environmental monitoring, aiding in tasks such as mineral
exploration, terrain analysis, crop health assessment, and target detection in
defense applications.

Microwave range includes waves with a wavelength from 1000 um to 1 m.
These are the longest waves that are applied in remote sensing, and their
ability to penetrate the atmosphere is higher than that of the visible spectrum.
Microwaves can penetrate clouds and haze, making them useful for all-
weather and day-night monitoring. They can be emitted from artificial (such
as Synthetic Aperture Radar (SAR) or radar altimetry) or natural sources.

Based on the source of energy, remote sensing can be categorized as passive
and active. Sun Remote sensing that measures the naturally available energy
is called a passive sensor. The sun is often used as a source of energy for
remote sensing. Satellite missions such as Landsat and Sentinel-2 are
examples of passive sensors. Passive sensors can only detect energy when it
is naturally available. As a result, it can only collect data during the day.
Additionally, their shorter wavelengths are unable to penetrate clouds, haze,
and other atmospheric conditions, which limits data acquisition and causes
data gaps.

On the other hand, sensors that provide their own energy source are active.
Aster and Sentinel-1 are examples of this sensor type. Active sensors emit the
energy toward the target of interest and measure the amount of reflected
energy. The main advantage of an active sensor is the possibility to collect
data in all weather conditions and at all times of the day or season.
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Passive sensors are more cost-effective and offer a wide set of observables,
with high resolution. In contrast, active sensors enable observation in all
weather conditions but require moderately complex and sophisticated
processing techniques. The choice between active and passive sensors
depends on specific application requirements, available budget, and
environmental conditions.

3.2 Interaction with atmosphere

EM radiation travels from the source through the atmosphere, interacts with
the target, and the reflected radiation travels again through the atmosphere
before reaching a sensor. Unlike the vacuum of space, the atmosphere
contains gases and particles that interact with and modify the radiation
passing through it. The influence of the atmosphere on radiation is a function
of atmosphere permeability, i.e., the physical characteristics of gases and the
number and size of particles, and is known as the atmospheric effect. The
permeability coefficient shows how much of the radiation that reaches the
upper atmosphere will reach the Earth's surface. The permeability coefficient
varies both spatially and with height. The mechanisms of scattering and
absorption cause the atmospheric effect.

Scattering occurs when EM waves interact with particles in the atmosphere,
causing them to be redirected from their original path. The amount of
scattering depends on several factors, including the wavelength of radiation,
the abundance of particles and gases, and the distance that radiation travels
through the atmosphere. There are three main types of scattering:

e Rayleigh scattering - if the size of particles is smaller than the EM
wavelength, they can result in diffuse and elastic scattering (change in
wavelength) depending on size and dielectricity. It is inversely
proportional to the one-quarter power, meaning that the scattering of
blue light is much higher than that of EM with longer wavelengths.
Rayleigh scattering is dominant in the upper atmosphere, and because
of it, the sky appears blue during the day. During sunrise or sunset,
the light has to travel farther through the atmosphere, and scattering
of shorter wavelengths is more complete, which increases the
percentage of longer wavelengths, i.e., red sky color
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e Mie scattering - if particle size is about the same as wavelength. Dust,
pollen, smoke, and water vapor most often cause this scattering, and
it tends to affect longer wavelengths. Mie scattering occurs in the
lower atmosphere where the presence of these particles is higher.

e Non-selective scattering occurs when particles are much larger than
the wavelength. It scatters all wavelengths equally, causing the white
color of clouds and fog (blue + green + red = white)

Scattering can significantly reduce the amount of information collected by
remote sensing.

Absorption is the process by which the energy of EM is transformed into other
types of energy. Ozone, carbon dioxide, and water vapor are three leading
causes of absorption. Ozone absorbs the ultraviolet range. Carbon dioxide is
also called a greenhouse gas. Absorb the long IR region (area associated with
thermal heating), trapping this heat in the atmosphere. Water vapor absorbs
alarge portion of IR and a short microwave. The combined effects of different
atmospheric layers on absorption can make certain regions of the atmosphere
to become impenetrable in certain parts of the spectrum. Consequently, there
will be no registered energy in remote sensing, which reduces available
information and limits the application.

3.3 Interaction with target

EM radiation that is not scattered or absorbed by the atmosphere can reach
the target and interact with it. There are three forms of interaction: absorption,
transmission, and reflection. The form of interaction is the function of the
radiation wavelength, the properties (physical and chemical characteristics),
and the conditions of the target. Absorption occurs when radiation is
absorbed, and transmission occurs when radiation is passed through an
object. Once transmitted, energy can be absorbed or reflected. The reflection
occurs when energy “bounces” off the target and is redirected. In remote
sensing, the amount of reflected energy is measured. There are two main
types of reflection: specular and diffuse.

If the target surface is smooth, radiation is primarily reflected in a single
direction (specular reflection). On the other hand, if the target surface is
rough, the radiation will be reflected almost uniformly in all directions
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(diffuse reflection). Most of the targets on Earth's surface are between those
two phenomena. The type of reflection is the function of surface roughness in
comparison to the wavelength. If the wavelength of incoming radiation is
much smaller than the surface variation or size of the particles that it is made
from, diffuse reflection will be dominant. For example, fine-grained sand on
abeach appears relatively smooth to long-wavelength microwaves, which can
penetrate the surface and interact with larger features. However, this same
sand may appear rougher in the visible spectrum due to the smaller scale of
surface irregularities compared to the wavelength of visible light.

The target of interest can be detected and analyzed based on its spectral
characteristics. Reflectance describes the interaction of EM radiation with an
object of interest, forming a unique spectral signature which is used for target
identification in remote sensing. Spectral signatures represent the average
value of reflected energy of an object within a specific part of the EM
spectrum. A graph showing a spectral signature is called a spectral curve.

Reflectance can be calculated by using the following expression:

Ly
p[%] =—"- 100
L;
where p Represents reflection, usually expressed as a percentage, L, reflected
radiance measured by the sensor, L; Incident radiance refers to the energy
coming from the sun or another source.

Reflectance is an inherent property of an object. This property allows for
distinguishing between objects based on their spectral reflectance
characteristics, independent of the amount of incoming energy when
normalized or calibrated. Different materials have unique spectral signatures,
while similar objects exhibit variations in reflectance only if their physical
and/or chemical characteristics change (e.g., vegetation stress, soil moisture,
etc.).

Spectral characteristics of vegetation are influenced by factors of leaves,
including orientation and structure. The amount of reflectance for specific
wavelengths is influenced by pigment and leaf thickness, composition (cell
structure), and the amount of water in leaf tissue. In the visible part of the
spectrum, the reflectance of blue and red wavelengths is relatively small
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because these components are absorbed during photosynthesis. In contrast,
green wavelengths are reflected due to the presence of chlorophyll. Leaves
appear greenest in the summer, when chlorophyll concentration is maximum.
During the autumn, the amount of chlorophyll decreased, there is less
absorption and proportionally more reflectance in the red part of the
spectrum, so leaves appear as yellow or red (yellow is a combination of red
and green wavelength). The inner structure of healthy leaves represents a
diffuse reflector in the NIR part of the spectrum. This is because under the top
surface of the leaf (epidermis) (Figure 3), there are primarily two layers of
cells; the top one is the palisade parenchyma consisting of elongated cells
arranged tightly in a vertical orientation. Those cells absorb blue and red light
to create chlorophyll and power photosynthesis. The lower level is the spongy
parenchyma (Figure 4), consisting of irregularly shaped cells with numerous
air spaces between them, allowing for the circulation of gases. The NIR energy
is not affected by these pigments and almost completely penetrates the
palisade parenchyma. When it reaches the spongy parenchyma, the presence
of air spaces causes the refraction of the NIR energy in various directions. This
results in approximately half the energy exiting the leaf from the lower
epidermis and the other half from the top epidermis, towards the sky.
Therefore, the reflection is the highest in the NIR part and depends on the
degree of leaf development, while the SWIR range depends on the amount of
water in the leaf tissue. This region has been widely used for distinguishing
different species, but also for monitoring the health status of vegetation, since
vegetation that is stressed shows higher reflectivity in the SWIR portion of the
spectrum, and healthy vegetation is detected in the NIR.

Water highly absorbs EM radiation. The most essential characteristics are
reflection in the visible and a small portion of the NIR region, while almost all
radiation with wavelengths longer than 1.2 um is absorbed. Due to that,
detection and separation of water bodies is easiest in this region. Therefore,
water absorbs longer wavelengths more than shorter wavelengths.
Consequently, water usually appears as blue or blue-green.

However, changes in the water physicochemical characteristics can
significantly change spectral properties. Clear water reflects most of the
radiance with wavelengths shorter than 0.6 um. However, if the turbidity of
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water changes (due to increased concentration of suspended organic and
inorganic matter), transmission and, therefore, reflection drastically change.

Reflectance (%)

I NR SWIR

” > - .
Leaf Cell Water content, leaf
pigment structure biochemicals

Figure 3 Spectral signature of vegetation

Figure 4 Structure of a healthy leaf

As a result, turbid waters have much higher reflectance in the visible
spectrum compared with clean water.

Reflection of the water also changes with a change in chlorophyll
concentration. An increase in chlorophyll concentration will increase
absorption in the blue part of the spectrum and increase reflectance in the
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green part of the spectrum. Based on this, it is obvious that depending on the
object complexity, the absorption, transmittance, and reflection mechanisms
can completely change.

By comparing the spectral curves of different objects, we can distinguish them
in ways that would not be possible using a single wavelength. For example,
vegetation and water have similar spectral signatures in the visible spectrum
but they are completely different in NIR. Spectral curves can vary
significantly even for the same object, and can vary in space and time.
Understanding which part of the spectrum needs to be analyzed for a specific
target of interest, as well as which factors influence the spectral signature, is
crucial for accurate interpretation of remote sensing data.

3.4 Spectral indices

While the interpretation of visible bands is relatively straightforward, data
collected from a non-visible part of the spectrum or its combination with
visible bands must be processed and analyzed using mathematical
transformations, indices, or predefined intervals to be interpretable. Spectral
indices have been widely used in remote sensing by enhancing specific
features in satellite imagery, making it easier to analyze and interpret
different land cover types, vegetation health, water bodies, etc. These indices
are derived by mathematically combining reflectance values from multiple
spectral bands. The main objective of using the spectral index is to improve
the detection and differentiation of specific features that might be difficult to
distinguish using raw reflectance. The application of spectral signatures
enables large-scale and cost-effective environmental monitoring. By
emphasizing particular spectral properties, indices can be applied in:

e Vegetation monitoring - assessing stress conditions, biomass, plant
health, phenology, etc. Indices such as Normalized Vegetation
Difference Index (NDVI), Soil Adjusted Vegetation Index (SAVI),
Enhanced Vegetation Index (EVI), Fraction of absorbed
photosynthetically active radiation (fPAR), and Normalized
Difference Moisture Index (NDMI) are used.
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e Water body analysis - identification of water bodies, monitoring of
changes in aquatic environment (Normalized Difference Water Index
- NDWI).

e Forestry - Estimating biomass, deforestation monitoring, wildfire
impact assessment (NDVI, SAVI, Normalized Burning Ratio -NBR)

The simple form of indices is the ratio between two spectral bands. In contrast,
normalized difference indices enhance the contrast between two spectral
bands and reduce environmental effects (difference in slope, aspect, shadows,
etc.), and are among the most widely used. Vegetation indices are quantitative
measures that operate by contrasting chlorophyll pigment absorption in R
against the high reflectance of leaf mesophyll in NIR.

The most often used vegetation index is NDVI. It is widely used in vegetation
identification, monitoring of phenology, and vegetation stress. NDVI is
calculated using the following expression:

NDVT — NIR — RED
" NIR + RED

NDVI always ranges from -1 to 1. Pixels with values close to 1 indicate a high
vegetation density, while values below 0 suggest the absence of vegetation.
Healthy vegetation has a high NDVI as it strongly absorbs R and reflects NIR.
In contrast, unhealthy and sparse vegetation increases reflection in visible and
decreases reflection in NIR reflectance, resulting in a lower NDVI value.
However, NDVI is sensitive to soil brightness, soil color, atmospheric
conditions, cloud cover, cloud shadow, and leaf canopy shadow, necessitating
proper remote sensing calibration (radiometric correction, atmospheric
correction, etc.) to improve accuracy.

To reduce NDVI's sensitivity to soil background reflectance, Huete [21]
established SAVI, which can be expressed as follows:
savi=—NR=F) 1)
"~ (NIR+R+1L) ( )
where L is a soil conditioning factor, varying depending on the amount of
green vegetation cover. It can have a value from 0 to 1. In an area with no
green vegetation cover, L will be equal to 1, in an area with moderate green
vegetation cover, L=0.5 (commonly used as a default value), and in an area
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with high vegetation cover, L is close to 0, showing that the soil background
does not affect the extraction of vegetation information. SAVI improves
vegetation detection in mixed land cover types and is more reliable than
NDVI in areas with low vegetation density. However, the L parameter must
be chosen carefully based on vegetation cover, which requires prior
knowledge.

EVI [22] is similar to NDVI but corrects for atmospheric conditions and soil
background effects. It is beneficial in high biomass regions, where NDVI may
oversaturate or hit the maximum value. The formula for EVl is:

G - (NIR — R)

EVI =
(NIR+C;-R—C,-B+1)

where G is the gain factor, L is the canopy background adjustment, C;,C,
coefficients represents atmospheric resistance terms and uses B i.e. blue band
to correct aerosol influences in the R band. It is especially useful for
monitoring forest and high biomass environments where NDVI tends to reach
maximum, making it difficult to detect and monitor changes.

NDWI [23] is one of the most commonly used indices in water body mapping
and management. It enhances water features while minimizing the influence
of vegetation and soil. The standard NDWI formula is:

G — NIR

NDWT = =—N1R

However, it is sensitive to atmospheric conditions, particularly aerosols and
cloud presence.

To address this issue, Xu [24] proposed the Modified Normalized Difference
Water Index (MNDWI), which replaces NIR with SWIR to improve water
body extraction:

G — SWIR

MNDWT = =R
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Table 2 Interpretation of NDVI, SAVI, EVI, NDWI and MNDWTI value

Index >0.5 0.2 to 0.5 0to 0.2 0to-0.2 -0.2>
NDVI Dense, healthy Moderate vegetation | Sparse or Barren land, Water, snow, ice,
vegetation (forests, | (grasslands, shrubs, | stressed degraded soil, highly developed
peak-season crops) | cultivated crops) vegetation, dry | some built-up areas | urban areas
grass (concrete, asphalt)
SAVI Healthy vegetation, | Moderate Sparse Degraded soil, Urban areas, highly
soil-adjusted vegetation, some soil | vegetation, barren land, desert | reflective surfaces,
impact exposed soil regions snow, water
influence
EVI Healthy green Moderate vegetation | Sparse or Degraded land, Urban
vegetation (grasslands, shrubs, | stressed semi-arid areas, infrastructure, snow,
(croplands, semi-arid vegetation, bare | some built-up ice, water
pastures, well- vegetation) land zones
irrigated fields)
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wetlands (better
than NDWI in

urban areas)

pools, irrigated
fields

vegetation with
high water
content,
inundation,

humidity

areas, or Vegetation
with low water

content

NDWI Deep open water Wetlands, saturated | Vegetation with | Dry vegetation, Urban, barren land,
bodies (lakes, vegetation, high moderate water | bare soil, or built- | or non-vegetated
reservoirs, oceans) moisture content, up areas, moderate | areas, drought

inundation, drought
shadows
MNDWTI | Open water, Shallow water, Moist soil or Dry soil, urban Highly urbanized

zones, industrial
areas, deserts, barren

landscapes
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MNDWTI is widely used for urban and flood mapping, where NDWI may
misclassify features. The interpretation of the index value is shown in Table
2.

NBR is used to detect burned areas and assess fire severity by leveraging the
contrast between NIR and SWIR reflectance. Healthy vegetation has high NIR
reflectance and low SWIR reflectance. On another hand, burned areas have
low NIR reflectance but high SWIR reflectance, making NBR an effective post-
tire assessment tool:

NIR — SWIR

NBR = iR SWiR

To measure fire impact and assess burn severity, the difference between pre-
fire and post-fire NBR (ANBR) has been used:

ANBR = NBRyre-fire = NBRyost—fire

NBR has been widely used for post-fire monitoring, wildfire management,
and vegetation recovery studies.

ANBR values can vary from case to case, so interpretation in specific study
areas should be done through field assessment. However, the United States
Geological Survey (USGS) proposed a threshold to interpret the burn severity
[25], which can be seen in Error! Reference source not found..

Table 3 Burn severity labels based on the ANBR, proposed by USGS [25]

Severity level NBR

Enhanced regrowth, high (post-fire) | <-0.251

Enhanced regrowth, low (post-fire) [ -0.25 to 0.10

Unburned -0.10 to 0.10
Low severity 0.10 to 0.27

Moderate-low severity 0.27 to 0.44

Moderate-high severity 0.44 to 0.66

High severity >0.66
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3.5 Characteristics of images

As previously mentioned, geospatial data can be modeled either as raster or

vector formats. Remote sensing data, in particular, are typically represented

as a raster. The term 'resolution’ is commonly used to describe the quality of

a digital image, usually referring to the size of the pixel. However, this

definition alone is insufficient for remote sensing. In this context, four

different types of resolution are used:

Spatial resolution refers to the size of the smallest object that can be
detected in an image. In digital and satellite imagery, resolution is
defined by the size of the pixels. The smallest object that can be
identified in an image cannot be smaller than the pixel size; thus,
spatial resolution represents the dimensions of the pixels on the
Earth's surface. For example, consider a satellite image whose spatial
resolution is 10 m. This means that each pixel covers an area of 10 x 10
m on the Earth's surface, i.e., covers a total area of 100 square meters.
The spatial resolution and pixel size are inversely proportional; that is,
the smaller the pixel size, the higher the spatial resolution.

Spectral resolution is defined as the specific range of EM radiation that
a sensor registers, indicating the sensor's ability to distinguish
between different wavelengths. Each spectral channel (also called a
band) represents a narrow wavelength range in which information is
collected. Higher spectral resolution corresponds to narrower spectral
channels and a greater number of spectral channels. If the spectral
resolution is too coarse, it can lead to a loss of information, hindering
the accurate identification of target objects. Conversely, if the spectral
resolution is too high, both data acquisition and processing become
time-consuming and costly. Based on spectral resolution, satellite
images can be categorized into three types: panchromatic (uses a
single spectral channel), multispectral (comprises a collection of a few
bands of the same area), and hyperspectral (involves the collection of
hundreds of spectral bands). Black-and-white (panchromatic) images
have low spectral resolution because they integrate radiation across
the entire visible spectrum into a single band. In contrast, RGB images
provide higher spectral resolution by capturing radiation separately
in the blue, green, and red regions of the spectrum, though their
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resolution remains lower than that of multispectral or hyperspectral
data.

e Radiometric resolution corresponds to a sensor's sensitivity to detect
slight differences in radiance reflected from the Earth's Surface.
Higher radiometric resolutions enable the detection of subtle changes
within the same spectral bands; therefore, it improves the ability to
distinguish between different features and materials. Radiometric
resolution is typically measured in bits (e.g., 8-bit, 12-bit, 16-bit),
indicating the number of gray levels available for each pixel. For
example, an 8-bit image can represent 256 different intensity levels
(e.g. pixel value ranging from 0 to 255).

e Temporal resolution refers to the frequency at which a sensor can
revisit the same area of Earth. It is inversely proportional to the time
period between two subsequent observations; as the time period
decreases, the temporal resolution increases, enabling accurate
monitoring of changes over time. In remote sensing, temporal
resolution is influenced by the characteristics of the satellite's orbit and
the specifications of the sensor. It is typically measured in days but can
also be expressed in hours or weeks. Higher temporal resolution is
crucial for effectively monitoring changes over time, such as
environmental shifts, seasonal variations, and dynamic events.
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4 MICROWAVE REMOTE SENSING

As already mentioned, the microwaves represent the portion of EM radiation
between infrared and radio waves. This part of EM is characterized by
wavelength from 1 mm to 1 m and frequency from 0.3 to 300 GHz.
Microwaves have much longer wavelengths than visible and infrared
radiation, which makes them largely unaffected by atmospheric particles such
as ozone, carbon dioxide, water vapor, and dust. Moreover, active microwave
sensors operate independently of ambient illumination conditions.

Microwave remote sensing can be divided into two main categories: active
and passive. These two sensor systems are fundamentally different, sharing
only the fact that they both operate in the microwave spectral range. In
passive microwave remote sensing, a sensor detects and records the radiation
that is naturally emitted by objects or surfaces. Natural emission is influenced
by the object's physical properties, such as temperature, moisture, and surface
roughness. In addition, atomic composition and crystal structure also
influence the amount of emitted radiance (for example, ice, due to its crystal
structure, emits more microwave energy than liquid water). Although, due to
longer wavelengths, microwave radiation can penetrate clouds, rain, and
haze, enabling application in all weather conditions, the amount of available
energy is relatively low which requires a wider field of view and,
consequently, leads to lower spatial resolution in passive microwave datasets.
Passive microwave sensors, such as radiometers, are particularly useful for
many climate applications such as monitoring weather conditions, sea ice, or
surface temperature.

Active microwave remote sensing, on the other hand, involves the
transmission of microwave signals toward a target and detects the
backscattering signal i.e. active sensors operated independently of sunlight
eliminating problems due to bad illumination. Active radar can be
categorized into imaging and non-imaging. The most common imaging
active systems are RADAR (RAdio Detection And Ranging) systems,
including Synthetic Aperture Radar (SAR). Similar to passive microwave
systems, a major advantage compared to optical systems is the ability to
observe in almost all-weather conditions and time, day or night.
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The microwave part of the EM spectrum is quite large and it is usually divided

into several bands (wavelength ranges). The most commonly used bands are:
Ku bands, X-band, C-band, S-band and L-band. The description of different
bands is shown in Table 4.

Table 4 Common microwave bands in remote sensing

Band

Frequency
[GHz]

Wavelength
[cm]

Application

P band

03to1l

100 to 30

Penetrates vegetation and soil;
used in biomass studies, vegetation
mapping and soil moisture

monitoring.

L band

1to2

30 to 15

Vegetation, soil moisture, forest
structure, geophysical monitoring;
used in missions like NASA's
SMAP.

S band

2to4

15to 7.5

Weather radar, wave monitoring,
some soil and vegetation studies.

C band

4to8

7.5t03.8

Global monitoring, change
detection, monitoring of ice, ocean;
used in Sentinel-1, RADARSAT.

X band

8to12

3.8t02.5

High-resolution = SAR:  urban
monitoring, ice, snow, sensitive to

surface texture; used in TerraSAR-
X, COSMO-SkyMed.

Ku band

12 to 18

25t01.7

Snow measurement, Ocean surface
wave measurements.

K band

18 to 27

1.7to 1.1

Rain radar, cloud profiling.

Ka band

27 to 40

1.1t0 0.75

High-resolution cloud and
precipitation studies.
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In remote sensing, the polarization of microwaves—that is, the orientation of
the plane in which the transmitted wave oscillates—is an important
characteristic. Depending on the orientation of the transmitted and received
radar wave, the emitted pulse results in a different information. Radar sensors
emit radiation in horizontal (H) or vertical (V) polarization. Similarly, an
antenna can receive horizontally or vertically polarized backscattered energy,
or some radars can receive both. Therefore, the four combinations of
transmitted and received polarization are possible:

HH - horizontal transmit and horizontal receive,
VV - vertical transmit and vertical receive,
HYV - horizontal transmit and vertical receive, and

Ll .

VH - vertical transmit and horizontal receive.

Rough surfaces, such as bare soil or water, are most sensitive to VV scattering,
volumetric scattering is most sensitive to cross-polarized data (HV or VH),
while double bounced scattering is most sensitive to an HH polarized signal.
Therefore, VV polarization is most suitable for bare surfaces, rough surfaces,
vegetation with vertical structures, HV polarization for forest/non forest
distinguishing, while HH polarization is recommended for mapping
flooded/non flooded vegetation, urban areas.

4.1 Radar basics

Imaging radar systems consists of a transmitter, a receiver, an antenna and an
electronic system to process and record the data (Figure 5). The transmitter
generates and emits microwave pulses at specific frequencies to the antenna.
The antenna focuses outgoing microwave energy into a beam, directs toward
the target and receives the reflected echo within the illuminated beam
allowing determination of the direction of the target echo. The duplexer is
used to alternately switch the antenna between transmitters allowing usage
of only one antenna. The duplexer sends the weak echo signal to the receiver.
The receiver amplifies and processes the recorded backscattered signal
returned from the target, while the signal processor converts raw signal data
into interpretable forms. To create an image, each transmitted-received echo
pulse sequence is sampled, and these samples are stored in a range line. As
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the sensor moves, the recorded and processed echo builds up an image of the
surveyed region.

Transmitter

.

Receiver

}
Data

recording

duplexor

Ir's
beam

" target

=P Beam (transmiter -> duplexor -> antenna -> target)
— Echo (target -> antenna -> duplexer -> receiver -> display)

Figure 5 Components of Radar

The operation and data reconstruction principles of radar imagery differ
fundamentally from those of optical sensors. Proper interpretation requires
an understanding of what the radar actually detects: the intensity of the
backscattered signal and the travel time of the returned echo. From this
measured intensity, the backscattering coefficient is then obtained through
radiometric calibration. It is a function of the radar system parameters and the
physical properties of the surface. The backscattering coefficient o, is given
as:

average backscattered energy per unit area
Oy =

incident power per unit area
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The backscattering coefficient expresses the fraction of the radar signal that is
scattered back toward the sensor. In linear units it is always non-negative, but
when expressed in decibels (dB) it can take negative values. This occurs, for
example, over smooth surfaces - like calm water , which scatter most of the
energy away from the radar rather than back to it.

There are three main backscattering mechanisms in radar remote sensing:
surface, double-bounce and volume scattering. Surface scattering (Figure 6
(a)) is strongly dependent on surface roughness and sensor wavelength; it is
characteristic of water, bare soils, roads, etc. The surface roughness (h)
represents the average height variation in the target surface from a perfectly
smooth surface. It can be expressed by using Rayleigh definition, i.e.

A

h <
8sinf

A smooth surface in radar images is represented as black since it acts as a
mirror, reflecting the incoming radar beam at an equal and opposite angle to

the incident angle (away from the antenna). The rough surfaces (h > %) will

reflect the incident radar beam equally into all directions (diffuse scattering).

The double bounce mechanism (Figure 6 (b)) occurs when targets have two
(or more) perpendicular surfaces (such as buildings, tree trunks). The
perpendicular surfaces cause most of the radar energy to be reflected directly
to the antenna due to the double balance. It causes a very strong backscatter
that is not wavelength dependent.

The volumetric scattering occurs when signals penetrate inside the medium
and scatter from different components within the medium, such as branches
in the vegetation (Figure 6 (c)). It is common for natural surfaces due to their
inhomogeneous structure.

The backscattering coefficient and penetration depth of the radar signal are
functions of many parameters, such as wavelength and surface characteristics
(dielectric characteristics, surface roughness, orientation) of the target. The
typical levels of backscattering, depending on target type, are presented in
Table 5.

The dielectric properties of the target dictate how much incoming radiation
will scatter at the surface, penetrate into the target, or get absorbed.
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Figure 6 Radar backscattering mechanisms (a) surface reflection (blue), (b) double bouncing
mechanism (orange) and (c) volumetric mechanism (red)

The penetration increases with the increase in wavelength. Shorter
wavelengths (such as X-band radar) are scattered from the top of the trees,
while longer wavelengths (L-band) will return from the ground in vegetated
areas. Although the bare surfaces (such as glacier ice or alluvium solid) follow
this rule, the penetration is strongly dependent on dielectric properties.

Table 5 Relationship between target type and level of backscattering

Type of the target Level of backscattering

Man-made objects Very high
Terrain slops oriented toward radar
Very rough surfaces
Steep look direction

Rough surfaces High
Dense vegetation

Medium level of vegetation Moderate
Agricultural crops

Moderate rough surfaces

Smooth surfaces Low
Calm waters
Impervious surfaces
Very dry terrain
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The dielectric constant describes a material’s ability to store and transmit
electrical energy when exposed to electromagnetic radiation. It is strongly
influenced by moisture content: dry soil has a low dielectric constant, whereas
water surfaces exhibit very high values. The radar signal’s penetration depth
is inversely related to the dielectric constant—meaning that higher dielectric
values lead to shallower penetration.

When surface scattering dominates, the return signal is strongly affected by
surface roughness. If the roughness height is much smaller than the radar
wavelength, most of the energy is reflected specularly away from the sensor,
producing a weak return (dark pixels). When the roughness height is
comparable to the wavelength, the signal is scattered diffusely in many
directions, resulting in a stronger return. This explains why a surface with the
same height variations can appear rough in X-band but smooth in C-band.
The incidence angle is also important: moving from near range to far range,

the return decreases because less energy is directed back to the sensor.

Most conventional radar uses pulsed radar systems, which transmit short
radar pulses and listen for the return echoes. The distance (range) between the
sensor and the individual target within the range line is calculated based on
the traveling time T (time interval the signal needs to pass twice the distance
between object and antenna) and the known speed of light c:

T=7

While the range to the target can be determined, the radar measurement does
not inherently contain information about the precise direction of the scattered
signal. This ambiguity can be addressed by using two approaches, i.e., real-
aperture radar (RAR) or synthetic aperture radar (SAR).

The RAR (Figure 7 (a)) handles direction ambiguity by reducing the physical
angular size (0,4y;) of the radar beam. The radar beam width is proportional
to the wavelength and inversely proportional to the antenna length, i.e.,
aperture. This means the longer the antenna, the narrower the beam. The
angular width of the antenna is approximately given by
0 A
ant — L_

ant
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where 1 is the wavelength of the signal and L, is the physical size of the

antenna.
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Figure 7 Comparison between RAR and SAR systems

Therefore, the usage of larger antennas will reduce the width of the beam
along the directions, since the range of possible directions from which the
signal could be reflected becomes smaller. Moreover, it increases the spatial
resolution in the azimuth direction.

The radar remote sensing is based on coherent EM waves, i.e., the waves that
are in constant phase with each other over space (spatial coherence) and time
(temporal coherence), allowing the system to measure not just amplitude but
also the phase of the returned signal. Temporal coherence represents the
correlation coefficient between the radar signal phase at different times with
the same observation geometry, and it quantifies the quality of pixel values
between two time periods. Temporal coherence is the main factor limiting the
accuracy in interferometric and tomographic SAR applications. Several
factors can cause decoherence, such as spatial and temporal baselines, thermal
noise, transpiration processes, physical changes, atmospheric conditions, etc.
The temporal coherence usually decreases with increasing temporal baseline,
while the spatial coherence usually decreases with increasing spatial baseline.
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4.2 Radar viewing geometry

The platform carrying the radar sensor moves along the orbit flight direction
with the nadir directly beneath the platform. The sequence of short
microwave pulses of pulse length (z,,) is transmitted perpendicularly to flight
direction and it illuminates an area, i.e., a swath, with offset from the nadir.
The direction along-track is called azimuth, and the direction across track is
called range.

Radar sensors are side-looking instruments. The portion of the image swath
closest to the nadir track of the radar platform is called the near range, while
the portion farthest from the nadir is called the far range. The incidence angle
of the system is the angle between the radar beam and the local vertical.
Moving from near to far range, the incidence angle increases. The look angle
is the angle at which the radar observes the surface. Together with the
incidence angle of the sensor and the local incidence angle, which varies
depending on terrain slope and Earth curvature, it characterizes the radar
viewing geometry. It is defined as the angle between the radar beam and the
local surface normal. The radar sensor measures the radial line of sight
distance between antenna and object. This line is called slant range, i.e. slant
range distance. The true horizontal distance along the ground corresponding
to each point measured in slant range is called ground range (Figure 8).

To form a two-dimensional image, the echoes are sorted by their arrival time
in both directions. A SAR image consists of pixels that are associated with a
small area on the Earth’s surface called a resolution cell. Each pixel value
represents the coherent sum of the echoes from all scatterers within the
resolution cell, i.e.

N
- i
Sp = Z a,e'¥n
n=1

where a, represents the amplitude from scatterer n and ¢, is the phase of
scatterer n within the p resolution cell.
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Figure 8 Geometric properties of radar

Pixel value is a complex number that contains amplitude and phase
information of the backscattered echo within the corresponding resolution
cell. Amplitude represents the magnitude of the scattered signal while phase
describes the signal position within its oscillation cycle.

Different rows are associated with different azimuth locations, while different
columns represent different slant range locations.

The radar image spatial resolution in slant range and azimuth direction is
defined by pulse length and antenna beam width, respectively. Due to the
different parameters that determine the spatial resolution in range and
azimuth resolution, it is obvious that the spatial resolution in the two
directions is different. For radar image processing and interpretation, it is
useful to resample the image data to a regular pixel spacing in both directions.

In slant range direction the echoes from near-range swath edges arrive sooner
than from far-range. The ability of radar to distinguish objects in range
direction is defined by range resolution. The range resolution is defined as the
distance that two objects on the ground have to be apart to give two different
echoes in the return signal i.e. two objects will be resolved in range direction
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if they are separated by at least half a pulse length. The range resolution
depends on the bandwidth (B,) or pulse duration (7,) of the transmitted

signal, i.e.

The beamwidth is inversely related to the pulse duration, which represents
the duration of a single transmitted radar pulse. Although it is independent
of the range, the ground range resolution will depend on the local incidence
angle, i.e.
C
Oor = 3B sind

The equation shows that the range resolution is not constant across the swath;
it degrades with increasing distance from nadir. This behavior is the opposite
of that observed in optical systems.

The azimuth resolution refers to the capability of the radar system to
distinguish between objects located at different angles in the horizontal plane.
It is a function of the beam width 6, and the range r and can be expressed
as:

8a = OgntT

Azimuth resolution linearly decreases as range increases. Based on the
equation, it can be concluded that the azimuth resolution changes from the
near-range to the far-range edge of the swath. Since radar beamwidth is
inversely proportional to antenna length, a longer antenna will produce finer

resolution.

4.3 Synthetic Aperture Radar

On one hand, to provide the azimuth resolution of a few meters, the RAR
would require an antenna length of several kilometers. On other hand, the
physical size of the antenna that radar platforms carry is limited. To overcome
this limitation, the forward motion of the smaller antenna along the azimuth
direction over time is used to simulate a very long antenna (synthetic
aperture).
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In 1951, Carl Wiely discovered that the resolution of radar images depends on
the Doppler beamwidth of the echo rather than the long-trach footprint width
of the beam pattern. The Doppler effect represents the shift in frequency of
the wave caused by the relative motion of the sensor with respect to the target,
i.e.,, a receding source (moving away from the observer) exhibits a lower
frequency, while an approaching source (moving toward the observer)
exhibits a higher frequency than the emitted frequency. Since two target
points are separated in the azimuth direction they have slightly different
speeds in any time point to the antenna. Consequently, the signal echoed from
each target will have a frequency shift. The SAR uses the Doppler shift to
identify target position.

The synthesis aperture concept is based on the fact that a target on the Earth
surface is observed by many consecutive radar pulses. As the radar platform
moves, the relatively small antenna of size L, (and corresponding azimuth
resolution) illuminates the target from several positions. The target T at range
R enters a beam when antenna is at ps¢q,¢+ position and leaves the beam at pe,4
position (Figure 9). The backscattered signals from each radar pulse are
recorded for as long as the target remains within the antenna beam. The
echoes collected during this time are then coherently combined to simulate a
much longer antenna—known as the synthetic aperture—than the actual
physical one. The target that is offset by the x from the central antenna axis
(Rp) will have Doppler frequency shift (f;):
2v

fa = R
where v is the speed of the radar system platform and the target. The azimuth
resolution is linearly related to the Doppler frequency resolution &, i.e.

Ar
8 = 20 Sf d
The 6, depends on the time that target spent within the beam i.e. the Doppler
frequency shift can be more precisely determined if the total time duration
that target stays within the radar beam is longer. Therefore, the &, can be

approximate as

v
S, ~ Ton
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where the length of synthetic aperture is equivalent to the distance the radar
moves while the target stays within the beam and it can be calculated using
the following expression

A

R
Lant

Lgy =

As a result, the maximum achievable azimuth resolution of the SAR is
approximately equal to half the length of a real antenna and it is independent
of the range and the wavelength. Although targets farther from the sensor
stay in the beam longer (due to wider beamwidth), and closer targets are
observed for a shorter time, this geometric effect is balanced so that the
azimuth resolution remains constant across the entire image swath. The
ability of SAR to achieve high and uniform resolution regardless of range is
its key advantage, making it widely used in both airborne and spaceborne
radar systems.

Figure 9 Geometry of observation using SAR for target T at along-track position 0 (Doppler
shift 0). The pstart and pend represents position when target T entered and leaved the radar
beam respectively
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4.4 Distortions in radar images

4.4.1 Geometric properties

Due to side looking viewing geometry, radar images exhibit geometric
distortion which are caused by the relation between the local topography
(surface slope and similar terrain features) and incidence angle. Radar
imagery is typically affected by three geometric distortions: foreshortening,
layover, and shadow (Figure 10).

In side looking geometry, if the radar beam reaches the base of a tall target
before it reaches the top, the sensor-facing slope appears foreshortened i.e. a
symmetrical mountain would appear as leaning toward the sensor side. As
radar measures distance in slant range, the length of the slope will be
compressed in the resulting image. The foreshortened depends on incidence
angle 6 and the slope angle (@), and it decreases with an increase in the
incidence angle. The distortion is at its maximum if the radar beam is almost
perpendicular to the slope. The echoes that come from sensor-facing slopes
are stored into fewer pixels than it should be resulting in high digital
numbers. Since echoes from different objects are combined the foreshortened
areas in the radar image are very bright.

The layover is an extreme case of foreshortening and it occurs in areas where
slopes are steeper than the incidence angle (6 < a). In layover situations the
radar beam reaches the top of the slope earlier than the bottom, the slope is
imaged upside down in slant range image. Due to that, the echo for slopes
will overlay with image information at other areas. Layover effect decreases
with increasing inclined angle and those areas are very bright on the image.

In the case of slops that are facing away from the sensor, the radar beam
cannot illuminate the ground surface. Therefore, there is no energy that can
be backscattered to the sensor and those regions remain dark in the image.
Shadow effect increases as the incidence angle increases from near to far
range.

The influence of all tree effects is related to the incidence angle. Although
increasing the incidence angle can reduce foreshortening and layover, it also
produces more shadow in the image.
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Figure 10 Geometric distortion of radar images

Due to that, the selected incidence angle should provide balance between
foreshortening and layover on one side and shadow on another side.
Foreshortened areas can be corrected by applying radiometric correction
based on a digital elevation model.

4.4.2 Radiometric properties

In addition to geometrical distortion, all radar images, to some degree, exhibit
a salt-and-pepper-like texture known as speckle. The speckle effect is caused
by the interference of the different echoes within each resolution cell. The
backscattered signal that forms one pixel comes from an area that contains
numerous individual features that scatter radar beams. As a result, the
backscattering signal from one pixel is a coherent sum of the thousand
individual scattering contributions. With those scattering elements differing
in position, orientation and height within the cell, the phase of the individual
scatterers varies randomly, so that the scattering response of a single pixel
results from the vector sum of numerous random contributions. The strength
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of the summation vector depends on the relative phase of the scattered signal.
If scatterers are in phase, constructive interference will produce large
amplitude and bright pixels. On another hand, if two or more returning waves
are of phase (phases differs by ~ 180°) destructive interference occurs, causing
them to completely or partially cancel each other, which leads to lower
amplitude and dark pixels. This interference causes both the amplitude and
phase of the summed backscatter vector to vary randomly from pixel to pixel,
resulting in the characteristic grainy appearance.

Speckle degrades radar image quality, making both visual and digital
interpretation more complex. Although challenging to handle, several
effective speckle filters and multi-look techniques have been developed to
reduce it prior to image interpretation.

The multi-look technique divides the radar beam into several narrower sub-
beams. Each sub-beam represents an independent look and the final image is
created by averaging these multiple looks. It reduces speckle noise and it is
performed during data acquisition.

On another hand, spackle filtering is performed on the output image to reduce
local noise while trying to preserve lines and edges to maintain sharpness of
image, preserve line and point target contrast, retain of mean values in
homogeneous regions and texture information. Therefore, speckle filters
need to balance between radiometric (noise removal) and spatial resolution
(detail preservation). The type of target (homogeneous or point scatter) needs
to be considered when designing the filters. For the targets with one or a few
dominant radar returns within its resolution cell, such as buildings or poles,
there is little or no random interference (Figure 11). Speckles are minimal, and
the backscattered echo is a function of the reflection coefficient of the
individual scatterer. In natural terrains (even in seemingly homogeneous
areas such as grasslands or rivers) that contain many small scatterers
randomly distributed within resolution cells and none of them provides a
much stronger echo than others, the speckle noise is random and fully
uncorrelated.

Taking that into consideration, two general frameworks are used: spatial
filters and similar samples. The spatial averaging filter reduces speckle noise
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by applying the standard algorithm to the target pixel neighborhood within a
small moving window (usually 3x3, 5x5, 7x7, ...).

2 Y

A AR

(a) (b)

Figure 11 Modelling scattering mechanism inside a SAR resolution cell. (a) point scatterer -
with one or more dominant scatterers within resolution, (b) multiple scatterers where there is
no dominant scatterer.

For example, the Boxcar filter is a pure spatial averaging filter in which the
target pixel value will be replaced by the mean of the pixels in a moving
window. Although it has several advantages, including reduction of the
standard deviation of noise in homogeneous areas, simple application, and
preservation of mean value, it leads to loss of resolution. However, simple
averaging cannot remove multiplicative speckle noise, and more
sophisticated algorithms need to be used. They are usually based on a
Bayesian technique that models radar backscattering as a product of true
backscattering and multiplicative noise, based on prior information about the
signal model or its distribution given as

Yp = XpSp

where y, is the amplitude or intensity of the pth pixel in the noise SAR image,
x, represents a noise-free backscattering and s,, the speckle noise at the pth
pixel. The s, is modeled as a stationary random process, independent of x,,
with unit mean and a relative variance that characterizes speckle. Considering
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that the real and imaginary parts of the collected complex noisy images are
independent and identically distributed, they can be modeled as complex
Gaussian variables with zero mean and variance of ¢ /2. Since the real and
imaginary parts are Gaussian, the probability distribution function (pdf) of
the amplitude can be described following the Rayleigh distribution model:

2LF La®
R 2| -
o (L—D1" exP( o’ )

where f; is the Rayleigh pdf of amplitude, L is the number of looks, a

fa(a) =

represents pixel’s values in an amplitude image (with a=y)

The y, can be observed as a random variable whose mean is equal to x,.
Although the speckle noise does not significantly influence the mean value, it
increases the variance. The primary aim is therefore to reduce variance and
estimate the mean of noise-free backscattering. The expectation of y,, is equal
to the expected value of true backscattering, i.e. E(y,) = E(xp) since the
speckle noise has a unit mean. The spatial averaging of similar pixels in the
image can be used to approximate x,, as:

L
1
X = ZZ Yp;
i=1

One of the most widely used filters based on this methodology is the Lee filter.

The Lee filter uses the local mean and variance of all pixels within the moving
window to estimate noise-free reflectivity by a linear combination of the local
mean and the noise measurement as follows:

X = ax + by

where 4 and b are determined by applying the minimum mean square error
criterion, i.e.

a=1—-bieX=x+b(y—x)

here parameter b = variance) s used to assess the heterogeneity of the local
variance(y)

region and balance between local mean and original pixel value. In a
homogeneous region, b=0 and the filter replace the pixel value with a local
mean. In heterogeneous areas, b = 1, such as edges or textured regions, the
filter preserves details by relying more to original pixel value. In regions with
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moderate heterogeneity, the output pixel value will represent a linear
combination between local mean and original pixel value. While Lee’s filter
works well in homogeneous areas, some noise around edges can still remain.

To address those limitations the Refined Lee filter is proposed. It uses a 7x7
moving window to detect edges by comparing means and variance along
different directions. If an edge is detected the algorithm uses local gradients
to estimate its orientation. Local mean and variance are calculated by using
only pixels within edge-oriented window and then the £ = ax + by is applied;
otherwise, the estimation of £ is performed using all pixels in the local region.
The filter provides good results on edges and in high-contrast areas.

Kuan filter relies on the same assumption as Lee filter but its weighting
function is calculated based on the equivalent number of looks which can
reduce the noise in the edge area.

In recent years, the Convolution Neural Network (CNN), which will be
discussed in a subsequent chapter of the book, has been widely used to image
classification and various image processing tasks including SAR image
despeckling. Those approaches are data-driven since algorithms learn a
mapping from noisy input images to output based on training data. Training
data for despeckling with CNN contains the noisy SAR data and
corresponding noise-free reference data. Since it is not possible to collect the
noise-free SAR images, two strategies can be employed: temporal
multilooking and synthesis strategies. The synthesis strategy uses optical
images to simulate noisy SAR images by applying statistical spackle models
while the temporal multilook strategy is based on reducing noise by temporal
averaging images over a long time-series.
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4.5 SAR Interferometry

SAR interferometry is a well-established remote sensing technique for precise
measurement of geophysical parameters of the Earth’s surface. It uses the
phase difference between pairs of coherent radar signals to measure the range
between radar and target. The phase of the radar signal represents the
position within the wave cycle corresponding to the distance traveled by the
radar signal to the target and back. Phase difference refers to the relative shift
between two waves, either in time or space. Two waves of the same frequency
are considered in-phase, if their peaks are perfectly aligned. The total phase
of the returning echo is given by

2r

=2

+ Qs

where 2r is round-trip distance, ¢, is the noise (speckle). An image of phase
information is known as interferogram.

4.5.1 SAR interferometry geometry

A SAR satellite observes the same area from slightly different positions or at
different times. The distance between satellites in the plane perpendicular to
the orbit is called the interferometer baseline (B) which can be decomposed
into horizontal/vertical components (By,B,) while its projection
perpendicular to slant range is the perpendicular baseline (B,) (Figure 12).
Taking into account the geometry of SAR configuration the following
mathematical relationship can be obtained:

B, = Bcos(6 — a) = Bpcos8 + B,sinf
By, = Bcosa
B, = Bsina
where a is baseline orientation.

The signal of the resolution cell in the first image and the signal of the
corresponding pixel on second image will be given as
l‘(ZTEZ%)'F(pSl

iy = lizle and phase ¢; = arg(i;) = 2712% + g
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iy = lirle!C"T) 5 and phase ¢, = arg(i;) = 202

2 =iz phase ¢, = arg(i;) = 2m—=+¢s,

The first phase component is deterministic (proportional to range distance)
while the second is stochastic (speckle). The interferogram is created under
the assumption that the phase difference is independent of the scattering
mechanism (the scattering component remains unchanged: ¢g5; = ¢s;) by
coregistering two images and performing a pixel-by-pixel multiplication of
their complex signals, i.e.:

—4—nAr
i7i5 = |iziz|le 1
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Figure 12 Geometry of a satellite interferometric system. B1 represent the perpendicular
baseline

This process multiplies the corresponding amplitudes and computes the
difference of the corresponding phases at each point producing a new
complex image called interferogram. The interferometric phase of each pixel
depends only on the difference in path length between the two SAR images.
This difference can be caused by elevation differences, motion or deformation.
The interferometric phase is given by:
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24r
Ap = ZHT + 2N

where ¢ is interferometric phase, N represents the number of full wavelength
cycles. The phase difference is the measure of the target displacement vector
over the time interval between acquisitions and can be approximated by

Ar = Bsin(0 — a)

If the measurements have been made from different locations in space and at
different times, the interferometric phase is proportional to the difference in
the signal path lengths between the two acquisitions:

4 4 B, hy
Ap = 1 (A‘pflat + APtopo + APaisp + APaim) = 1 (Aq’flat + rsinf + AT)

where 6 is local incidence angle. The 4¢f,,; represents the phase difference
due to the Earth's curvature and satellite orbit. The orbit information provided
by satellites can be used to estimate and remove the flat-earth interferometric
phase components. This process is known as interferogram flattening. The
A@iop, Tepresents the phase caused by the terrain elevation variation relative
to reference height and it can be removed if the digital terrain model (DEM)
is available. If two SAR images are not collected simultaneously, the
propagation of radar beams is affected by differences in the atmosphere. The
atmospheric delay is caused by spatial and temporal variation in the
atmosphere conditions (such as temperature, humidity, pressure) affecting
both elevation and deformation measurements. It can significantly impact the
accuracy of deformation estimates, but can be mitigated using statistical
methods or auxiliary data for atmospheric modeling.

4.5.2 DEM generation

The phase variation between two points on the flattened interferogram
directly correspond to the actual change in terrain elevation. However, the
flattened interferogram provides an ambiguous measurement of the relative
terrain altitude since the interferometric phase is wrapped between —m and 7.
The actual phase shift between two waves is usually larger than this range.
The process of restoring continuous phase value by adding or subtracting the
correct number of full cycles to the interferometric fringes - which represents
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the full range of the phase values in an interferogram from 0 to 2m) is called
phase unwrapping.

With reference to the geometry, the local height h of the ground point is given
as

ho = H —r7cos(6)
where H is the satellite flying height, r; is the distance between the scatters
and radar antenna 1. Meanwhile, the interferometric phase difference

= 24T Lo Ay = M0
Ap =21 N +2nN ie. Ar = g

Taking into account the acquisition geometry (Figure 13) and applying the
cosine’s rule to the triangle (r, = r; + 4r) it is evident that

2_.2_p2
(ry + 4r)? = 17 + B> = 2r;Bcos(n/2 — (6 — @) i.e. sin(6 — a) = WAZ)r—BrIB
1

Where B is baseline.
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Figure 13 SAR interferometric geometry
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The altitude difference corresponding to two adjacent fringes is called the
altitude ambiguity (h,). It is defined as the elevation difference that
produces an interferometric phase change of 27t after interferogram
flattening, and it is inversely proportional to the perpendicular baseline:

_ ARsin@
¢ 2B,

Based on the equation it can be concluded that the higher the baseline the
more accurate the altitude measurement. However, an increase in the
perpendicular baseline increases the decorrelation noise in interferometric
phases.

If two observed targets T; and T, are located at the same range but different
heights (Figure 14) then the difference in range implies a different
interferometric phase at each point, caused by the height difference (4h =
hy —h;). The phase-to-height sensitivity represents how much the
interferometric phase difference changes for a given height difference. It
increases with longer spatial baseline, shorter wavelength, and smaller
incidence angles.
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r+ Ar

T, [Ah

Ih Ch

Figure 14 Illustration of the phase-to-height sensitivity in interferometric SAR.
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4.5.3 Differential interferometry

If some of the point scatterers on the Earth surface slightly change their
relative position between two SAR acquisitions (for example due to
landslides, earthquakes, etc.), an additional phase term appears in the
interferometric phase:

4
Agﬂd = Td

where d is relative scatter displacement projected on the slant range direction.
This means that after the interferogram flattening, the interferometric phase
contains both topographic and motion components, i.e.

4m B hr 4m

Ap; = —— —_—d
Pa Arsin9+ A

where the first component represents the topographic phase while second
represents the displacement phase. The fundamental equation for detecting
and measuring changes is given by:

d A o, 212
~47r( Pa Pa 301)

where By, is the baseline between SAR acquisitions 1 and 2 and By; is the
reference perpendicular baseline used for generating the modeled altitude
phase. If a DEM is available, the differential interferogram can be obtained by
subtracting the modeled phase contribution due to terrain elevation from the
interferometric phase, thereby isolating the displacement signal. The
measured displacement is not vertical but along the slant range and it
represents the slant range component of the three-dimensional surface
displacement vector under the assumption that the surface within a pixel
deforms homogeneously. INSAR measures small-scale vertical movements,
but large displacements cannot be detected directly because the phase
difference is limited to half the radar wavelength. When displacements exceed
this limit, phase unwrapping is needed to recover the total movement. The
relative accuracy of detected displacements is on the order of millimeters,
whereas the absolute accuracy of DEMs is much lower (e.g., 10-15 m for ERS
data), since the differential phase is far more sensitive to displacement than to

topography.
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Differential interferogram has various applications including co-seismic and
post-seismic displacement fields related to earthquakes, dynamics of glaciers
and ice sheets, deflation and inflation of volcanoes, land subsidence (mining
activity, exploitation of gas or oil.
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5 PHOTOGRAMMETRY

Photogrammetry is the branch of remote sensing that extracts geometric
information on a target area from a series of overlapping photographs taken
from different positions. The main distinction between remote sensing and
photogrammetry lies in their applications. Remote sensing typically uses data
either from individual images, for tasks like classification, or from time series
of images, for change detection, to derive information about the area of
interest. It primarily relies on spectral analysis and the monitoring of large
regions. In contrast, photogrammetry focuses on accurate geometric
measurements and 3D reconstruction.

Analog photogrammetry is based on the stereo-pair, i.e. two images of the
same area taken from two different viewpoints are used to directly derive 3
dimensional points, enabling measurement of heights. The basic principle of
stereoscopy is binocular vision: by observing an object from two different
perspectives, it is possible to perceive depth. By analyzing the parallax effect
- the apparent shift of an object between the two images - it is possible to
determine the depth of the object. More details can be found in [22].

In recent years, advancements in IT technologies and computer vision
techniques, coupled with progress in sensor technology, have led to the
development of Unmanned Aerial Vehicle (UAV) photogrammetry. UAV is a
relatively new technology that combines the traditional photogrammetry
principles with computer vision. Traditional photogrammetry contributes
fundamental principles for accurate 3D reconstruction, such as collinearity
equation, bundle block adjustment, camera calibration, etc. On the other hand,
computer vision enhances the UAV photogrammetry with image matching
and Structure from Motion (SfM) algorithms. SfM uses multiple series of
overlapping photos from a variety of perspectives to create the 3D set of
points (X, Y, Z coordinates) with associated RGB color information. Deep
Learning (DL) and Artificial Intelligence (AI) enhance classification, object
detection, and semantic segmentation, making UAV photogrammetry a
powerful tool for a wide range of close-range applications. They enable near
real-time processing, rapid data acquisition, and real-time transmission to
ground stations, offering a flexible and low-cost alternative to traditional
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photogrammetry. In addition, UAV images can be used for high resolution
texture mapping on existing 3D models. However, there are limitations in the
use of UAV that need to be considered. UAVs, particularly low-cost models,
have limited payload capacity, which necessitates the use of lightweight
sensors. As a result, small- or medium-format amateur cameras are often
employed, requiring a larger number of images to achieve the same coverage
and comparable resolution as large-format cameras. Additionally, payload
limitations require the use of lightweight navigation units, leading to reduced
sensor orientation accuracy. The flight range is also constrained by the radio
link distance and the pilot’s proficiency.

5.1 Basic principles of photogrammetry

To perform accurate 3D measurements based on 2D photos, the information
lost in the acquisition process needs to be reconstructed. This is achieved by
reconstructing a viewing ray for each ground point, often referred to as a
feature. A viewing ray can be defined as the line from the feature, passing
through the projective center of the camera to the corresponding pixel in the
image sensor. However, a single viewing ray cannot unambiguously
determine the feature’s position, as the feature could lie anywhere along the
line. To resolve this ambiguity, a second image, collected from a slightly
different position, is used. Knowing the orientation and position of the
camera, the distance of the feature (and its coordinate) can be computed by
calculating the spatial intersection of two or more viewing rays. For faster
processing and higher-quality 3D reconstruction, it is recommended —but not
mandatory —to capture all photos simultaneously and use the same camera.

The perspective ray can be modeled as a pyramid with a rectangular base.
Knowing the shape and size of the pyramid is essential for photogrammetry.
Three parameters are needed for this purpose: width (SW) and height (SH) of
the digital sensor (base of the pyramid) and focal length (height of pyramid)
(Figure 15). However, the pyramid is not geometrically perfect, the ray
passing through the camera lens follows a complex curved path, creating
radial and tangential distortion. The exact shape of the distorted pyramid is
determined during camera calibration. There are three main approaches to
camera calibration: laboratory calibration, test-field calibration and self-
calibration.
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A digital camera consists of a two-dimensional array of charged-coupled
device (CCD) elements, known as a full-frame sensor, which is mounted in
the focal plane (image plane). Light rays from all points in the scene pass
through the lens center before reaching the CCD element. During image
acquisition, all CCDs are exposed simultaneously, producing a digital frame.
Digital cameras are classified by the number of pixels in the digital image
which corresponds to the number of CCD elements. Generally, the higher the
number of CCDs (pixels) in the sensor, the more expensive the camera is. For
example, a 16 megapixels camera has a sensor with 4000 pixels x 4000 pixels.

The optical axis (principal axis) is defined as a straight line joining the two
centers of a lens’s spherical surfaces. The optical axis intersects the image
plane at the principal point. When the light rays that are parallel to the optical
axis enter the lens they converge or diverge to a specific point called focus
point. The distance from the focal point to the center of the lens is the focal
distance. It determines the angle Field Of View (FOV) and magnification level
(the longer focal length, the higher magnification will be). The FOV represents
the extent of the real world that the sensor can capture at a given moment. For
a given sensor size, the angular FOV increases as the focal length decreases.
Conversely, a shorter focal length provides wider ground coverage at a given
flight height. The horizontal FOV () is the function of sensor width while
vertical FOV (p) is the function of sensor height. In photogrammetry wider
angles are preferable since they provide a lower flight height and increased
swath width. The focal length cannot be too short, as this would result in
excessive distortion. Typically, the focal length should be similar to the sensor
height. Information about sensor characteristics are saved in image metadata.

Ground coverage represents the ground surface area covered by a single
photo. Ground coverage is a function of the sensor characteristics and the
flight height (it increases quadratically with increase of height). It is not
influenced by sensor resolution. If the ground is flat, the ground coverage is a
rectangle with dimension a * b which can be calculated using the following
expression:

a=2-h'tan(%)

b=2-h'tan<§)
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where the h is the distance to the object.
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Figure 15 (a) lens, (b) (c) geometry of digital camera

The Ground Sampling Distance (GSD) is the distance between two
consecutive pixel centers measured on the ground. The larger the GSD, the
lower the spatial resolution of the image. It depends on sensor size, focal
length and flight height. For standard cameras (FOV 72° and 16 MP) flying at
120 m, the GSD is approximately 3 cm. Increasing the flight height negatively
affects the GSD in a linear manner, meaning that lower flight heights result in
higher spatial resolution. In contrast, the relationship between GSD and
megapixels is not linear; increasing the number of megapixels does not
significantly improve the GSD. The GSD should be chosen based on the
specific application, allowing the flight height and camera specifications to be
adjusted according to project requirements.

5.2 Camera parameters

In modeling the geometry of camera three coordinate systems must be
considered (Figure 16):

1. World coordinate system (WCS),

2. Camera coordinate system (camera frame (CF)) uses the camera center
(C) as origin and optical axis as the Z-axis, and

3. Image coordinate system (image frame (IF)) measures pixel location in
the image plan.
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In order to represent the 3D point P of an object in an image, it is necessary to
map the object position from the WCS location (P(X, Y, Z)) to camera
coordinates (p(u, v, w)) and then to project camera coordinates onto the image
plain to obtain the pixel coordinates (p(x’, y’)). To do so, following expression
can be used

x = PX

where x is homogeneous image coordinates, P is camera matrix and X is
homogeneous world coordinates.

World Coordinate System Camera Frame Sensor frame

Figure 16 Image coordinate system (a) world coordinate system, (b) camera frame, and (c)
sensor frame

5.2.1 Image coordinate system

A pinhole camera can be constructed by placing a barrier with a small hole
between the 3D object and sensor. Because of the aperture only a fraction of
light emitted by objects will hit a sensor allowing one-to-one mapping
between points on 3D objects and sensors. The film is commonly referred to
as the image plane, while the aperture represents the center of the camera (and
it is denoted with C). Let P = [x y z]” be the point of an object visible to the
pinhole camera. The 3D point P will be projected onto the image plane
resulting in the point P’ = [x" y']” on this plane IT'. Furthermore, the pinhole
itself can also be projected onto the image plain resulting in a new point C'.
The coordinate system [u, v,w] centred at the pinhole and w axis coincided
with the optical axis is known as camera coordinate system.

The point P defined with X, Y, and Z coordinate in world coordinate system
is projected on the image-plain by dividing them by their Z component i.e.
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In a digital camera, the lens collects the light form object over a wider area
and directs it to an image plane where an array of CCD sensors converts light
to a digital image. Thus, the relationship between the point P in 3D space and
its corresponding point P" on the image plane can be expressed by

e e [ YT

P oy =[r7 73]

where z' is the distance between the focal point and the image plane (in the
pinhole camera model z' = f, while in a lens-based camera z' = f + z).
However, the pixel coordinates in the digital image are defined in a different
reference system than the ideal image plane. In the image plane model, the
origin is located at the principal point C', where the optical axis intersects the
plane. By contrast, in a digital image, the origin of the coordinate system is
usually placed at the top-left corner of the sensor array. Because of this, the
2D coordinates on the image plane and 2D coordinates on the digital image
are related by a translation vector [€x Cy]. Consequently, the mapping
becomes:

D X Y T
P =[x y]' = fE+cx fE+cy

Moreover, in a digital camera the image plane is discretized into pixels, i.e.
the point location on the digital image is expressed in pixel coordinates while
the points on the image plane are represented in physical measurements. As
a consequence, two parameters, p,, and pj that represent the width and height
of the CCD sensor (usually expressed in um), need to be introduced (Figure
17 (b)). In most cases, pixels are squares, i.e. p,, = pp. Under these conditions,
the previous mapping can be expressed as

S, X Y T
P =[x Y]Tz fpwf-l'cx fphE+Cy

The transformation from P — P’ is not linear and therefore it cannot be
expressed as a standard matrix-vector product. To overcome this problem, the
coordinates are represented in homogeneous form. This means introducing
the new coordinate P' = (x’,y’,1) and P = (X,Y,Z,1) in an augmented space.
Homogeneous coordinates are obtained by appending an additional
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dimension to the vector, with the convention that the last coordinate is equal
to 1 after normalization. Using homogeneous coordinates, the mapping can
be expressed compactly as

fpwx + ¢z fow 0 ¢ O ); a 0 ¢ O
P'=|fppx+cyz|=| 0 fp ¢ Of|,|=[0 B ¢, O|P=MP
z 0 0 1 ol 0 0 1 0

This can be transformed in

a 0 Cyx
P' = MP = [0 g |l 0lP=K[I 0]P
0 0 1

where K represents the camera intrinsic matrix, @ = f - p,, is focal length in x
direction (in pixels), f = f - py is focal length in y direction (in pixels), while
¢x and c, represents the coordinates of the principal point in pixels. The
camera matrix contains all essential parameters of the camera (two for focal
length, two for translation and one for skewness) and these are collectively

known as intrinsic camera parameters.

Moreover, in real cameras the image axes may be not perfectly orthogonal due
to sensor manufacturing imperfections; in this case the camera intrinsic matrix

is given by:
a —acotl c,
K=o / sind v
0 0 1

The camera matrix describes the transformation of a 3D point in the camera
coordinate system into its corresponding point P* on the 2D image plane.
However, the location of objects in the real world is represented in a different
system, namely the world reference system. Therefore, an additional
transformation must be introduced to relate points from world reference
system (P,) to the camera frame (P). This transformation is defined by a
rotation matrix R and translation vector ti.e.

P=[o il&
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where R is the rotation matrix of the world coordinate system defined in the
camera frame and t is the position of the world coordinate system’s origin in
the camera frame.
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Figure 17 Intrinsic orientation (a) The central projection model. The image plane is a distance
f of camera origin. (b) Image plane and discrete pixels

The R and t are known as extrinsic parameters and they do not depend on
the camera characteristics (Figure 18). Consequently, the point P, can be
computed in image frame as

P =K|R,t]|B, = MP,

where M is a 3x4 matrix known as a full projection matrix and includes both
intrinsic and extrinsic parameters. It has 11 eleven degrees of freedom: 5
intrinsic parameters (focal lengths, principal point coordinates and skew), 3
parameters from rotation and 3 from extrinsic translation.

Rotation of points in a 3D space can be represented as a product of three
successive rotations around the coordinate axes, a process known as a 3D
Euclidean transformation. The rotation matrix R is orthonormal, satisfying the
conditions: RRT = I and |R| = 1.

The camera extrinsic and intrinsic parameters are estimated through camera
calibration. The underlying image model is based on an ideal projection in a
pinhole camera, in which straight lines in reality are transformed into straight
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lines in the photo; however, these lines can appear as curved lines due to lens
imperfection, an effect known as lens distortion.

A
z

Figure 18 Extrinsic parameters

The most common geometrical distortion is the radial one, in which straight
lines appear to be curved. It is caused by the spherical shape of the lens, and
it increases with the distance from the optical axis. The image edges can be
curved outward (barrel distortion (Figure 19 (a))) or inward (pincushion
distortion (Figure 19 (b))) from the image center.

@) (b)

Figure 19 (a) Barrel distortion, (b) Pincushion distortion
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The tangential distortion occurs when the lens and the image plane are not
parallel, and its effect is generally smaller than the radial distortion. Many
wide-angle lenses have noticeable reflection, especially lenses with short focal
lengths. Lens distortion alters the shape of the object, and therefore reduces
the accuracy of the model. Therefore, it must be accounted for during camera
calibration.

Camera calibration is typically performed by capturing several images of
planar checkerboard patterns at different positions and orientations. The real
2D coordinates of corners and corresponding coordinates are then used to
determine the intrinsic and extrinsic parameters.

5.3 Geometry of oblique images

Generally, the images can be classified based on the camera tilt relative to the
vertical axis into: vertical photos (camera tilt under 3°), low oblique (horizon
is not visible), and high oblique (horizon is visible). The oblique image has
higher resolution and greater total area captured compared with vertical
images (Figure 20). Also, they offer extensive information on the side view of
the ground object that cannot be obtained from a vertical image, thus leading
to greatly increased redundant information. In the past, redundant
information represented a challenge for traditional photogrammetry since it
struggled to match corresponding pixels across multiple images due to
changes in perspective and varying light conditions. This is especially
challenging for oblique images. However, the redundant information is the
key to the success of the SfM algorithm, thus a combination of vertical and
oblique images of target objects will improve 3D reconstruction but also
increase processing time.

The principal plane of an oblique aerial image is the vertical plane that passes
through the camera optical axis and the vertical line from the projection
center; it intersects the oblique image plane at the principal line. The principal
line passes through the image nadir point and the principal point. It is
oriented in the direction of the biggest inclination in an oblique aerial image.
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Figure 20 Comparison between the ground covered area per pixel on vertical and oblique
images

The nadir point N’ (i.e., image nadir point) is the intersection of the vertical
from the perspective center with the image. The ground nadir point (N)
represents the intersection of the vertical from the perspective center with the
ground surface. The geometry of the oblique image is shown at Figure 21.

The three angles of tilt (1), swing (s) and azimuth (a) completely define the
angular orientation of the oblique image. The azimuth is the clockwise
horizontal angle measured from the ground Y axis (usually north) to the
datum principal line. The tilt angle is the angle between the vertical and the
camera optical axis; it determines the magnitude of tilt of an image. If the tilt
angle is zero, the image is vertical. The swing angle is the clockwise angle

measured at an oblique image plane from the positive y-axis to the nadir
point.

The isocenter is the intersection of the bisector of the tilt angle and the oblique
image plane. The isocenter lies on the principal line, the oblique image plane,
and the plane of the equivalent truly vertical image. In an oblique aerial
image, the displacement caused by tilt is radial with respect to the isocenter.
This means that points on the image appear shifted along lines radiating from
the isocenter. The key characteristic of this radial displacement is that angles
measured from the isocenter in the image are true, meaning they are equal to
the actual angles measured from the corresponding ground isocenter. This
property is useful in photogrammetry because it allows certain angular

measurements to be made directly on oblique images, despite the presence of
tilt.
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Figure 21 Geometry of oblique image

In vertical photos the object distance changes only due to variations in
topography. In oblique images, the scale of the image is affected by the
magnitude and angular orientation of the tilt as well as topography variation.
Due to that, the scale of point on an oblique image is not the same in all
directions i.e. x-scale (scale of lines perpendicular to the principal plane), the
y-scale (scale of lines parallel to the principal plane) and z-scale (scale of
vertical lines) are not the same. The shorter the object distance, the larger the
scale. The scale of an oblique image varies along the principle line.

Image displacements caused by relief on an oblique image depend on the
flying height of the aircraft, height of object above the reference ground level,
tilt of the camera and the location of the object in the image (objects farther
from the principal point or isocenter are displaced more). Suppose that point
T is located on the top of the building corner and point B at the bottom of the
same corner. On 2D maps those two points will coincide since their X and Y
coordinates are the same. However, in the aerial image the top of the building
appears shifted outward, i.e. point T moves away from nadir, while point B
remains close to its true position. The distance between two photo points is
called relief displacement and it is caused by the height difference between T
and B. The direction of relief displacement (Figure 22) is radial with respect
to the nadir point.
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Figure 22 Relief displacement (d) (H is flight height [m], Ah is elevation difference between
two points on vertical object [m] and rr and rs is radial distance from the principle point (PP)
to displaced image)

5.4 Mission planning

The first step in the planning process is to understand the client's needs
ensuring that the overall products are aligned with those requirements. A
wide range of products can be delivered including aerial images, orthophotos,
digital elevation models, digital surface models, cross sections, point clouds
and digital maps for GIS. Beyond the type of the products and their accuracy,
factors such as the location of the project, the size, shape, topography and
vegetation cover, the availability of GCP etc. will influence the procedures,
costs and scheduling of surveys.

Therefore, the project planning can be organized into following categories:

e Selection of instruments and methodology to achieve the needed
accuracy,

e Mission planning, and
e Ground control planning

Typically, the selection process starts with selecting the platform as well as
imaging and navigation sensor. Regarding the platform, the payload capacity,
range and degree of autonomy must be considered. There are two main types
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of UAV platforms: fixed wings and multi-rotor. Both of them have advantages
and disadvantages. Multi-rotor unmanned aerial vehicles (UAVs) are
relatively easy to operate and provide satisfactory flight autonomy. Their
capability for vertical takeoff and landing enhances sensor safety and allows
for greater operational flexibility, as no extensive area is required for launch
or recovery. These characteristics make them particularly suitable for surveys
conducted in complex environments. Their main limitation, however, lies in
restricted flight duration, which in turn constrains the area that can be
covered.

Fixed-wing UAVs, on the other hand, benefit from aerodynamic efficiency,
which enables longer range, extended flight endurance, and wider spatial
coverage. Nonetheless, they require a runway-like surface for takeoff and
landing, as well as skilled piloting to ensure safe recovery and to minimize
the risk of damage to both the platform and its sensors. Fixed-wing UAVs are
generally larger in size, support higher payload capacities, and are associated
with higher acquisition and operational costs.

The GNSS/INS system provides a real time precise positioning and
orientation which allows the UAV to fly along a predefined path even in
windy conditions, guaranteeing sufficient image coverage and overlap. Both
UAV based GNSS and INS units are optimized for size, cost and power
consumption limiting the transportation of high quality devices like those
used in the airborne camera or LiDAR sensors. Although the professional
surveying UAVs are equipped with RTK/PPK GNSS and IMU that can
achieve centimeter-level accuracy, many lower-cost UAVs, which are often
used in data collection, rely on the less-accurate, single-frequency GNSS
receiver leading to accuracy of the final product in meter or decimeter range.
Modeling errors in sensor position due to low-cost GNSS receivers is as
important as camera calibration in photogrammetry. Poor GNSS accuracy can
cause distortions, misalignments, and errors in 3D reconstruction, affecting
the overall spatial accuracy of the resulting product. Therefore, compensation
for GNSS-induced errors—through error modeling, the use of ground control
points (GCPs), or post-processing techniques such as PPK or RTK
corrections—is just as essential as accurate camera calibration. In applications
with lower metric accuracy requirements, the raw accuracy of direct
GNSS/INS measurements may be sufficient.
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In photogrammetric surveys the variety of cameras, from low-grade customer
cameras to digital single-lens reflex cameras, can be used. The type of used
camera and the image resolution can influence the final product accuracy.
UAVs most often use non metric digital cameras with low quality lenses and
shutters that are not typically designed for photogrammetric survey due to
their light weight and low cost. Those cameras have good radiometric quality
but low geometrical quality due to lens distortion. Wide lenses (shorter focal
length) are generally recommended for photogrammetric surveys. A camera
with a time-lapse function is required when operating most aerial platforms,
unless the interval between photographs is manually controlled.

In order to achieve the homogeneous radiometric quality, the use of automatic
white balance is not recommended since it can cause color shifts between
images leading to inconsistencies in the orthophoto. The dominant use of
automatic exposure control should be avoided. Exposure settings will change
for each image, leading to varying brightness and colors, which reduce the
quality of products. Additionally, if shutter speed is reduced (longer exposure
time) and flight speed is increased, image might become blurred due to the
UAV movement, affecting feature detection and image matching in the
processing phase. The camera with manual settings will provide better control
over exposure and focus. On the other hand, the manual control require
understanding and proper adjustment of:

e exposure time - to avoid motion blur, exposure time should be shorter
that the time required to cover one GSD,

e Sensor sensitivity - need to be adjusted to maintain correct exposure
without noise,

e Aperture (F-number) - Lower F-number (larger apertures) allow more
light to reach the sensor. This is useful in low-light conditions but may
affect depth of field.

A typical survey with UAV systems requires a mission planning and GCPs
measurement (required for georeferencing). The mission planning is an
important step in photogrammetry as the image geometry has a strong
influence on the quality of the resulting product. Mission planning includes
analysis of: application, the study area, the sensor to be used (resolution and
focal length), the flight characteristics (law and legal limitations, technical
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limitations, flight height, flight speed, front and side overlap, camera
orientation, resolution and accuracy), and GCP consideration.

Based on quality requirements (the expected resolution and accuracy) defined
in line with clients’ requirements, several parameters are defined before flight.
The flight attitude determines the spatial resolution of images, flight duration,
area covered and number of images per area unit. Flight attitude is influenced
by the value of the GSD and the sensor parameters. The following equations
are used to calculate the above ground level (AGL) and smallest value of both
equation is chosen:

AGL, :f * GSD = HR
sw

AGL, :f * GSD * VR
SH

where f is the focal distance [mm], HR and VR are the horizontal and vertical
resolutions of the sensor [px], SW is sensor width [mm] and SH is the sensor
height [mm]. The low flight height results in high spatial resolution,
minimizes the effect of the altitude error, reduces covered ground area, and
increases the flight duration, data volume and processing time.

In flat or almost flat terrains UAV usually flies horizontally and maintains a
constant height. In the complex terrain it is recommended to use terrain
following i.e. to maintain a relatively constant AGL in each line since the
vertical Root Mean Square Error (RMSE) can increase. The change in the
distance between sensor and object of interest results in the overlap reduction
and can become critically low in very steep areas with fewer images overall
in steeper. Although terrain following provides more uniform spatial
resolution the accurate terrain model is required for flight planning.

In conventional photogrammetry, a front overlap of 55 - 60 % and a side
overall of 15 to 25 % is typically recommended. However, StM benefits from
image redundancy and a higher degree of overlap increases the accuracy of
the generated product. Usually it is recommended at least 80 % of front
overlap and 60-70 % of side overlap. Front overlap defines distance between
consecutive images and it depends on shutter speed assuming that the flight
speed is constant. Side overlap influences the distance between flight lines.
Front (of) and side overlap (o;) can be calculated using following expression:
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dr * f
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of—<1 P SH)*IOO

ds * f
os—(l—h*sw>*100

where d; is the distance between consecutive images [m], d is distance
between flight lines [m], f is the focal length [mm], /i is distance between the
sensor and the object [m], SW and SH are the sensor width and height [mm]
respectively.

There is a positive relationship between the image overlap and accuracy of
the resulting product. The increase of the front overlap can significantly
reduce the root mean square error (RMSE) while increasing the side overlap
increases the time of the flight and data processing but has a lower impact on
the height accuracy. However, exaggerated overlaps lead to increased
processing time without improving the quality of the final product.

The UAV flight speed is an important parameter that affects the image quality
and power consumption. In order to define the optimal UAV speed, it is
necessary to analyse several factors such as flight speed regulations, the wind
speed and direction, the camera's shutter speed, and vertical overlap.
Maximum wind speed at which the UAV is sensitive is usually defined by the
manufacturer since it increases power consumption. Additionally, the high
wind speed tilts the UAV leading to large pitch and roll angles and decreases
the overall UAV stability. However, the flight speed has a critical impact on
the image quality, primarily due to motion blur. Motion blur, which reduces
image sharpness and detail, can negatively impact the photogrammetry
process. It is usually expressed as a percentage of the GSD. Roth et al. [26]
suggest that flight speed should be determined using the following
expression:

GSD * §
S=——
Ly

where S is the UAV speed [m/s], § is the maximum motion blur [px] and [, is
shutter speed [s]. The same authors recommended motion blur to be kept
below 50 % [26].
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The flight pattern determines the path that the UAV will follow. It is usually
designed as parallel flight lines as predefined. Flight patterns can be
automatically generated in flight planning software by specifying a few basic
parameters. However, the single look direction in gridded image blocks
typically lacks oblique images and therefore sufficient geometric information
in complex scenes, leading to artificial doming due to error accumulation in
the SfM process.

Various flight configurations, such as single grid (Figure 23 (a)), double grid
(Figure 23 (b)), circular mission (Figure 23 (c)) or a combination of them have
been used. Single grid missions are recommended for generating 2D
products, while double grid missions are beneficial for generating precise 3D

reconstruction.
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Figure 23 (a) single grid mission, (b) double grid mission, and (c) circular mission. The blue
dots represent the position where the image will be collected. Frontal and side overlap are
also shown.

The GCPs are used for georeferencing resulting data and to improve the
estimation of intrinsic and extrinsic parameters of the camera in the SftM
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process. The ground control involves several factors, such as the number and
distribution of GCP and their accuracy.

GCP needs to be easily identifiable in an image, distinct from the surrounding
area, and visible on multiple images. The size of the reference target needs to
match the model resolution in order to allow precise identification on the
images. Some software provides preconstructed coded targets as GCP,
enabling automatic detection.

The accuracy of ground control points (GCPs) is primarily determined by the
measuring instruments used. It is essential to ensure that a sufficient number
of GCPs is employed to achieve the desired photogrammetric accuracy.
Increasing the number of GCPs generally improves the resulting accuracy, but
beyond a certain point, additional GCPs provide little to no further benefit.
The spatial distribution of GCPs also plays a critical role: targets should be
evenly distributed across the study area, both horizontally and vertically. A
combination of edge distribution and stratified distribution is often
considered best practice. In some cases, direct georeferencing—without
GCPs—can be performed if the platform is equipped with a survey-grade
GNSS/RTK receiver.

According to the ASPRS standard [27], several conditions must be satisfied in
order to assess the product accuracy: the coordinates of the GCPs must be
independently surveyed with at least three times higher accuracy than the
tested product; at least 20 GCP (depending on study area size) should be
used, regardless of the project size. For an orthophoto with an horizontal
accuracy of 1 cm, the GCP points should be surveyed with horizontal RMSE
=0.25 cm and vertical RMSE = 0.5 cm. Clearly, RTK GNSS cannot deliver this
level of accuracy. However, if the spatial resolution of the orthophoto is 15
cm, the GCPs should have RMSExy; of 2.5 cm, considering the required aerial
triangulation RMSEyy, of 7.5 cm (i.e., 2 of the orthophot’s pixel size) and
therefore RTK GNSS may suffice [27].

Table 6 shows the horizontal accuracy for planimetric data [27] and
orthophotography. RMSE, is the radial accuracy, i.e. RMSE, =

J RMSE% + RMSEZ, while Table 7 presents the vertical accuracy for DEM
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Table 6 The horizontal accuracy for planimetric data [27] and orthophotography

Accuracy | RMSEzin NVA at | VVA | Appropriate MNRD
class non- 95 % at 95% | contour [pts/m?]
vegetated interval / MNPS
terrain [cm] supported by | [m]
the RMSEz
I 1.0 2.0 29 3cm 20/0.224
I 2.5 49 7.4 7.5 cm 16/0.250
II 5.0 9.8 14.7 15 cm 8/0.354
v 10.0 19.6 29.4 30 cm 2/0.707
Vv 12.5 245 36.8 37.5 cm 1/1.000
VI 20.0 39.2 58.8 60 cm 0.5/1.414
VII 33.3 65.3 98.0 1m 0.25/2.000
VIII 66.7 130.7 196.0 [2m 0.1/3.162
IX 100.0 196.0 2940 |3m 0.05/4.472
X 333.3 653.3 980.0 |10m 0.01/10.000
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Table 7 Vertical accuracy examples for DEM [27] where NVA at 95 % is non-vegetated
vertical accuracy at 95% confidence level, VVA is vegetated vertical accuracy at 95"
percentile, MNPD is minimum nominal return density, and MNPS is maximum nominal

pulse space

Accuracy | RMSEz  in | NVA | VVA [ Appropriate MNRD
class non- at 95| at contour interval [ [pts/m?]
vegetated % 95% | supported by the | /MNPS
terrain [cm] RMSEz [m]
I 1.0 2.0 2.9 3cm 20/0.224
I 2.5 4.9 7.4 7.5 cm 16/0.250
I 5.0 9.8 147 | 15cm 8/0.354
1Y 10.0 196 (294 |30cm 2/0.707
Vv 12.5 245 |36.8 [37.5cm 1/1.000
VI 20.0 392 588 |[60cm 0.5/1.414
VII 33.3 653 980 |[1m 0.25/2.000
VIII 66.7 130.7 [196.0 |2m 0.1/3.162
IX 100.0 196.0 [294.0 |3m 0.05/4.472
X 333.3 653.3 1980.0 [10m 0.01/10.000
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5.5 SfM

SfM operates on the same principle as stereoscopic photogrammetry i.e. if a
ground point, referred to as a feature, is identifiable in two or more
overlapping, offset images, its 3D coordinates can be computed. However,
there are fundamental differences compared to conventional
photogrammetry since the geometry of the scene (K), camera position and
orientation (R,t) are estimated simultaneously This is achieved through
iterative bundle adjustment applied to highly redundant sets of matching
features that are automatically extracted from multiple images.

5.5.1 SfM workflow

As mentioned, the SfM reconstructs camera orientation and scene geometry
simultaneously through automatic identification of matching features in
multiple images (Figure 24). Due to that, the key problem is that the SfM
address is detection and marching features on images from different angles.
SfM can be categorized to incremental methods and global methods.
Incremental SfM starts with a minimal subset (two or three views) for the
initial reconstruction and progressively integrates new images from
associated 3D structure while performing bundle adjustment ensuring
reconstruction accuracy. On another hang, global SfM solves all camera poses
and 3D points simultaneously avoiding accumulation error. The estimated
camera pose is then used to initialize triangulation followed by global bundle
adjustment. Global SfM is faster but less robust than increment, especially if
camera intrinsic parameters are not known in advance. SfM consists of several
stages (Figure 25):

1) automatic identification of homogeneous features in individual images.
Most commonly the Scale Invariant Feature Transform (SIFT) [28]
algorithm is used.

2) Match corresponding features between images,

3) Choose two image that provide stable estimation of relative camera pose,

4) Estimate Essential matrix/Fundamental matrix and extract camera pose
(R, t),

5) Construct 2D viewing rays from images,

6) Use triangulation to estimate 3D position and generate sparse point cloud,
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7) Refine the SfM model (poses and point) using bundle adjustment, and
8) Use multi view stereo to densify the model generating a dense point
cloud.

K, Ry, t
v C; K3, R3, t3

Kz,Rz, tz

Figure 24 Structure from Motion

Keypoints 2D feature detection + descriptors

Detect a robust feature T e (SIFT, ORB)

Find reliable correspondence Feature matching Descriptor matching + RANSAC

Estimate epipolar geometry

and camera pose Geometry 5,7, 8 -point algorithm
Estimate initial 3D point

position Triangulation Least squere

Refine all poses and 3D points - .

gloabally Optimization Bundle adjustment
Generate dense point cloud Densification Multi-view stereo

Figure 25 Structure from Motion workflow
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5.,5.2 SIFT

SIFT consists of four stages: feature detection, feature description, indexing
and matching and model verification. The feature detection starts with
detection of stable features across all possible scales. For each octave the initial
image is repeatedly convolved with Gaussian functions (G (k‘0)) to generate
a set of blurred images, each separated in scale space by constant factor k.
Adjacent Gaussian images are subtracted to compute the Difference of
Gaussians (DoG) and this procedure is repeated for all octaves. The Gaussian
image is down-sampled by a factor of 2, and the process is repeated (Figure
26). Local extrema of the DoG are found by comparing each pixel to its 26
neighbors in the 3x3 region at the current scale (8 pixels) and at adjacent scales
(9 pixels per scale) (Figure 27).

Scale

Next octave

i

>

Scale

First octave

DoG

Figure 26 Convolving the initial image with a Gaussian to create a set of scales (on left) and
subtracting the adjacent image to generate a DoG (on right)

If the pixel value is the maximum or minimum among all compared pixels, it
is selected as a candidate for a keypoint. Since the location of an extremum is
unlikely to coincide exactly with a pixel and is more likely to lie between
neighboring pixels, sub-pixel localization is performed using a Taylor series
expansion.
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Figure 27 Detecting maxima and minima of the DoG image. The X represents a pixel that is
compared with 26 neighboring pixels (marked with an orange circle)

The derivative is set to 0 to find the location of the extremum %

3’D~1aD
dx? ox

X=-

The points with low contrast are generally less reliable than the high for
feature points. Due to that D(X) is used to filter candidate key points with low
contrast by setting a threshold (discard all points with D(X) < threshold). In
addition, edge points that have high contrast in one direction and low in other,
are filtered to ensure stability.

To achieve rotation invariance, a consistent orientation is assigned to each
keypoint based on local image properties. An orientation histogram is created
from the local gradient orientation of the sample point within the keypoint's
neighborhood. The peak of the oriented histogram that corresponds to the
dominant direction is identified, and the orientation and sum of magnitude is
assigned to the keypoint (Figure 28).

Due to that, the keypoints are invariant to image rotation and scale and robust
across a range of affine distortion, noise, and change in illumination
conditions. The SIFT can automatically extract thousands of key points from
images over all ranges of scales, ensuring robustness even in extracting small
objects in a cluttered environment.
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Assigning an image location, scale, and orientation for each key point is
followed by the computation of a local feature descriptor which needs to be
invariant to those transformations. The created descriptor needs to be highly
distinctive to allow features to be matched in large datasets but invariant on
changes in illumination or 3D viewpoint.

To compute the descriptor, for each keypoint 8x8 neighborhood from DoG
levels is identified (Figure 27) and subtracted by the orientation of key points
(i.e. align orientation of neighborhood to x-axis). After that gradient
magnitude and orientation at each image sample point in the region around
the keypoint are calculated and weighted by Gaussian, Sum of the weighted
gradient magnitude at the near direction and orientation histogram for each
4x4 region is created. The histogram array represents the image descriptor.
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Figure 28 Feature description (a) image gradient magnitude and orientation (b) keypoint
descriptor

The number of detected key points is a function of the number of scale
samples, image texture and resolution. Therefore, the sharpness, textures, and
resolution of images determine the quality of the resulting product. The
higher spatial resolution, the higher number of keypoints will be detected and
therefore the higher quality of products.

Feature matching for feature in image A is performed by finding its nearest
neighbor in image B. Since nearest neighbor search may be too slow for large
databases the SIFT uses a best-bin-first algorithm that returns the closest
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neighbor with high probability. Descriptor vectors may match more than one
reference pose database. For each pose 4D Hough transform is used to identify
clusters. Each key point votes for all pose(s). The correct interpretation is
ensured by counting votes for the same pose of an object within clusters of
keypoint . In the end each keypoint contains 4 parameters: 2D location, scale,
orientation and each matched keypoint within the database.

Figure 29 SIFT feature matching

Matched points are based on the assumption that the features have a similar
appearance in both images, and due to that this process usually results in
outliers (i.e. wrong matches due to repetitive features, change in viewpoints,
image noise, occlusion, blur etc). For accurate 3D reconstruction, outliers must
be removed. Matching of corresponding points between two images is a 2D
search problem (Figure 29). However, it can be reduced to a 1D search by
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using an additional constraint that the corresponding points must lie on an
epipolar line on another image.

5.5.3 Epipolar geometry

In multi-view geometry, the relationship between the camera position, a 3D
point, and its projection onto the image plane is known as epipolar geometry.
The single point P,, is observed from two different viewpoints (C;, C;). The
line that connects the camera's center represents the base line. The camera
centers C; and C, and point B, will lie in a single plane, known as the epipolar
plane. The real point P will be projected onto the image planes of the two
cameras P; and P,. The intersection of the epipolar plane and image plane is
an epipolar line (I; and [;). The point in which the baseline (the distance
between two camera centers) intersects the two image planes is known as the
epipole e; and e,. Moreover, the epipolar lines intersect the baseline in the
epipole, and all epipolar lines intersect in the epipole (Figure 30). In practice,
it is more efficient to coincide the scanlines with epipolar lines, making the
correspondence search very effective.

Rectification is the process of projecting each image onto a common plane,
parallel to the baseline, by rotating the original cameras about their optical
centers. If image planes are parallel to each other (i.e. there is no relative
rotation between cameras), the baseline will be parallel to the image plane,
epipoles will be located at infinity and the epipolar lines are parallel to an axis
of each image (usually x-axis). Since epipolar lines are horizontal and parallel,
the corresponding point will be located along the horizontal lines (i.e. they
must have the same y coordinate) of the rectified image and search becomes
faster and computationally less expensive.

The horizontal displacement between corresponding points is called
disparity. The disparity associated with each corresponding pixel of the image
is called a disparity map. It is a grayscale image without any texture. Disparity
is inversely proportional to the distance from the camera. The objects that are
closer to the camera will have larger disparity and will appear brighter on the

disparity map.
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Image plane

Epipolar line

k‘ epipole j

Figure 30 Epipolar geometry

Epipolar geometry depends only on the relative pose (position and
orientation) and internal parameters of the two cameras, i.e. the position of
the camera centres and image planes. It does not depend on the scene
structure (3D points external to the camera). However, the exact location of
point P,, is not known, but its projection to image planes can be determined.
Based on that and known camera location (C;, C;) the epipolar plane can be
defined. Epipolar planes and image planes will determine the epipolar lines.
By definition, potential matches for P have to lie on the corresponding
epipolar line, [, and potential matches for P have to lie on the corresponding
epipolar line l;. Due to that, it is possible to determine strong constraints
between image pairs.

The epipolar constraint can be expressed by

PTEP =0
where E is the Essential matrix and P and P’ are conjugate points in the image
coordinate. The E is defined by the following expression

E =[Tx]R

where [T, ]R represents the relative pose of camera one with respect to camera
two.
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It has five degrees of freedom and it is completely defined by 3 rotations and
2 translations.

Moreover, the relationship between the corresponding set of points in two
images from different views can be written as

PTFP =0

where F is a 3x3 fundamental matrix, which is similar to the Essential matrix,
but it contains the 7 degrees of freedom i.e., it contains information about
camera matrices (K; and K5), relative translation T and rotation R between the
cameras i.e. F = K; [T, ]RK; !

The epipolar line along which the correspondent points in the image must lie

is expressed by P 'le = 0 where [, = F (The epipolar line on the second image
is a function of the point P; in the first image).

The relationship between the Fundamental and Essential matrix is given by

E = KIFK;

5.5.3.1 Eight-point algorithm

A fundamental matrix can be estimated if the number of corresponding points
between two images is higher than 8 without knowing extrinsic and intrinsic
parameters by using the eight-point algorithm. The correct point
correspondence is essential for fundamental matrix estimation. Each pair of
correspondent points P = (x,y,1)7, P = (x',y’,1)"need to meet epipolar
constraint P FP, = ( resulting in a homogeneous linear system, i.e.

fi f2
[x v 1|fa fs [ ]—0
fr fs

Each corresponding pair will result in one independent equation, given as

x'xfi+x'yHho txX'fs+y'xfa+y'yvfs+y' fetxf; tyfe+fo=0

Since this constraint is linear, it only constrains one degree of freedom. Due to
that, we need a minimum of eight correspondences to determine the
Fundamental matrix, resulting in a homogeneous linear system with nine
unknowns. It is given as following:
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This can be compactly written as
Af =0
The least-squares solution of F is computed by performing singular value

decomposition (SVD) on image coordinates. To do so, we minimize ||Af]||

. 2 . . .
subject to | |f] | = 1 where A is an 8 x 9 matrix built from the correspondences
and f is a vectorized form of the F matrix

The eight-point algorithm is extremely sensitive to outliers, i.e., for small
variations in input variables, there are large changes in the F matrix. Due to
that, the estimated F matrix may not be precise. The main challenge is that the
correspondence keypoint will have large values for coordinates, such as P; =
(1758,2048,1). If the keypoints are located in the same part of the image than
both vectors P; and Pi’ will be similar, and therefore, A matrix will have one
very large singular value. To solve this problem the normalized image
coordinates can be used. First the origin is shifted to image center (translation)

. . . o 2
and distance of image point from origin is scaled by the factor #
mean distance

The matrix F is estimated by using a regular least-squares eight-point
algorithm and then denormalized results to obtain the F matrix for regular
coordinate space.

5.54 RANSAC

The Random Sample Consensus (RANSAC) algorithm is used to obtain a
better estimation of the fundamental matrix. RANSAC [29] is an algorithm for
robust fitting of models that uses a minimal number of points from which a
model can be computed (for example minimal number of points to compute
line is 2), rather than using all data points and then enlarge this set with points
that fit with a predefined tolerance (inliers). It is very efficient at finding the
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inlier set even in the presence of a large number of outliers. Due to that,
RANSAC is applied to compute Fundamental matrices to detect the
uncorrected correspondences, matched by SIFT algorithm, and only point
pairs that satisfy the epipolar constraints are used.

RANSAC loop consists of six steps (Figure 31):

Randomly select n points,

Calculate the model parameters that fit the data in the sample,
Calculate the residual error for each data point,

Select the data that support current hypothesis,

Repeat this process from 1 to k times, and

Select the transformation with the maximum number of inliers

obtained within k interactions.

The higher the number of interactions k, the lower the number of outliers will
be. The number of iterations can be determined by using an expression

_ log(1 — p)
“log(1 — wh)

where p is the probability of finding set of point that don't contain the outliers,
w is the proportion of inliers in the data, and # is the number of points needed
to estimate the model. For example, if we assume that 50 % of the
corresponding points are inliers (w = 50%), and the desired probability is p =
99%. The needed number of interactions for the eight-point algorithm is 1177.
So the number of corresponding points does not influence the number of
iterations. Since RANSAC is based on the random hypothesis generation
process it is non-deterministic, i.e., for each run, different results will be
obtained.

The RANSAC is very effective at finding inlier, even in the presence of a high
number of noise. Due to that, the eight point algorithm and RANSAC are
applied together for SfM to separate outliers and provide the best estimation
of the fundamental matrix.
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Figure 31 RANSAC algorithm steps

As already mentioned, these inputs are the corresponding key points created
by the SIFT algorithm that need epipolar constraint. First, the eight points are
randomly selected in order to estimate the fundamental matrix. The model is
tested against all other points and those that fit (i.e. inliers) support this
model. The model is repaired k times and the model that has the most inliers

will be selected.
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Figure 32 One interaction of eight point RANSAC (a) the image pair and corresponded key
points donated by arrow, (b) overlapping keypoint from image 2 to image 1 (the arrows donate
the motion vector of keypoint) (c) randomly selecting 8 corresponding points (marked by
magenta vector) and using them to estimate the F (d) using estimated F matrix to detect inliers
(yellow arrow) outliers (red arrow).
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First, a viewing ray for that feature must be reconstructed from each image.
A viewing ray can be defined as the line from the feature, passing through the
projective center of the camera to the corresponding pixel in the image sensor.
Second, considering that we know the orientation and position of the camera,
the distance of the feature (and its coordinate) can be computed by calculating
the spatial intersection of several viewing rays (Figure 32).

5.5.5 Stereo vision and triangulation

Stereo vision is a technique for 3D reconstruction based on obtained disparity
between corresponding pixels from two images taken from slightly different
viewpoints, and then apply the principle of triangle similarity to calculate
depth information between object and the cameras. It is based on a binocular
vision that our brain uses to perceive depth from the left and right image i.e.
we perceive depth by using disparity from the left and right eyes, resulting
from the eyes' horizontal separation.

Stereo vision consists of two main steps: matching and reconstruction.
Matching resolves the correspondence problem ie., finding the
corresponding pixel between images, which is a challenging task due to
variation in illumination, blurring, and noise. The process of detection
features, finding correspondents and estimation of the fundamental matrix is
already explained in previous sections. Reconstruction uses the camera
intrinsic parameters (K and K ) and extrinsic parameters (R and t) to
reconstruct a viewing ray (I and !') defined by camera center and image
locations (C; and C,). The 3D location of the point PY can be computed as the
intersection of [ and [ based on triangulation. On the Figure 33, the position
of point P is defined by (x, y, z) coordinates, the P" is observed by camera
with pose C; and p}” represents the image-plan projection of observed point
while x; and x; are pixel coordinates in the left and right image respectively.
Based on geometry, the depth of the point can be computed from the
properties of similar triangles
z_ I—f

b b—x;+x,

where fis focal length, b is baseline.
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Due to feature uncertainty, precision of camera calibration, noise and
numerical errors, they will not intersect exactly. Instead, triangulation usually
computes the best approximation of a 3D point, by minimizing the distance
between viewing rays. Different algorithms such as linear triangulation,
midpoint method or nonlinear triangulation can be used.

The resulting 3D points are estimated locally from a subset of views and
therefore are not globally consistent.
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Figure 33 Triangulation with rectified images - top-down view

SfM uses similar principles as stereo and triangulation across multiple images
to build a global sparse point cloud of the scene. The aim of the stereo vision
is to reconstruct the 3D from images assuming that K, R, t are known while
SfM aims to reconstruct 3D scenes and estimate camera poses simultaneously
from multiple images. It can be categorized into incremental, global and
hybrid approaches. In incremental SfM, the process starts with selection of
the initial pair of images. There are several factors that need to be considered
when choosing the stereo paras for initial SfM estimation: (1) if almost
identical views are selected it will result with high uncertainty in
triangulation, (2) very different view will lead to low overlap and high camera
uncertainty (3) the larger baseline often provides better triangulation
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accuracy. Usually, the two views are selected based on the maximum number
of triangulation points (many overlapping cameras) for initial reconstruction.
The selection of the initial pair is crucial for StM quality of reconstruction and
performance. After that the 8-point algorithm (or 5-point if using Essential
matrix) is applied to estimate the F or E matrix followed by triangulate 3D
points from corresponding points in the two images forming initial sparse 3D
reconstruction and the pose of two cameras. Then the next image is added to
the initial reconstruction sequentially. Based on given 2D-3D correspondence
(from existing 3D points that are visible in the added image) the new camera
pose is estimated followed by triangulation to compute new 3D points and
optimization of existing points that are visible on this image. This process is
repeated incrementally until all images are registered and the spares point
cloud is completed. The application of incremental SfM for reconstructing
large-scale scenes is not always ideal due to drift (due to accumulation of
errors) as the number of images increases leading to low efficiency and time-
consuming repetitive bundle adjustment.

In contrast to incremental SfM, global SfM solves the position of all images
simultaneously using the view graph as input. The process starts with image-
based feature extraction and matching followed by pairwise pose estimation
and construction of the initial view graph of the input images where each
node represents the camera and each edge links cameras that have enough
matching points (relative orientation). The problem is usually solved in two
separate steps i.e. radiation and translation averaging steps. The all relative
rotations are used to compute global orientation for all cameras by applying
rotation averaging that solves global rotation so that the inconsistency
between relative and global rotation are minimized. After that, translation
averaging is performed to determine the global camera position that is
maximally consistent with pairwise relative translation.

The increment methods provide highly accurate and robust results, but it is
computationally intensive. Global SfM is much faster and efficient, but does
not as effectively remove outliers, resulting in lower accuracy and robustness.

The SfM is subject to some unique ambiguities since it tries to recover both
object structure and the camera motion without any prior knowledge. First of
all, ambiguity in object shape due to small viewpoint variation. If camera
intrinsics are not known or not used in reconstruction, the resulting model is
ambiguous by arbitrary 3D projective transformations. Due to that,
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reconstructed models may appear distorted i.e. lines may not remain parallel,
and angles may not be preserved. To resolve projective ambiguity, a
calibrated SfM approach or self-calibration can be used. If constraints on the
camera calibration matrix or scene are Affine, ambiguity can be observed as
more restricted projective ambiguity when the SfM assumes an affine camera
model (orthographic projection). In this access, reconstruction is only accurate
up to an affine transformation, i.e., it preserves parallel lines and volume ratio
but not true angles and lengths.

The next most often ambiguity is the scale (for a perspective camera) or depth
(for an orthographic camera) ambiguity. It has some unique disadvantages
such as ambiguity in the absolute scale of the scene that cannot be determined.
Without a reference measurement, it is impossible to recover the absolute
scale of the scene. For example, the bigger object at a longer distance and the
smaller object at a closer distance may yield the same projection.

5.5.6 Bundle adjustment

Bundle adjustment is an optimization process that simultaneously adjusts all
camera poses and all 3D feature coordinates (scene geometry) to minimize the
total projection error in order to provide the most accurate reconstruction of
structure and motion. The “bundle” refers to viewing rays that are adjusted
optimally together in one bundle. The camera model and estimated camera
pose can be used to reproject the estimated 3D feature coordinates onto the
image plane. The reprojected error is the image-plane distance between the
reprojected and observed position of the feature in the image plane (Figure
34).

It optimizes the structure and motion (R and t) by minimizing the sum of
squared reprojection error, and it is commonly used after least square
estimation of R and t (after the 8-point algorithm). I.e.,, bundle adjustment
extends two-view reprojection minimization to multi-view scenarios. Since
not all corresponding points are visible for each camera, it calculates the
reprojection error for only the observations that are visible from all cameras.
The most common approach is the Levenberg-Marquardt algorithm. It
combines the Gauss-Newton algorithm and gradient descent, resulting in fast
convergence and robustness.
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Figure 34 Bundle adjustment

To formalize the multi-image alignment, let's consider the N different camera
poses with known camera parameters and a collection of n feature points. The
camera at the pose C; observes point P/ and image-plane coordinates are
represented by pij The estimated value of the image-plane projection of the jth
feature point in the i*" image donated by Pij . The refined position of the feature
point P7 is calculated by minimizing the sum of reprojection errors, i.e.:

—_—

. 2
PJ ~arg rr;)ijnZ'i,j ||n(cl. - P K;) — Pij||

The number of unknown parameters in this system is 6N + 3 n, i.e., six
unknowns for each camera pose and three unknowns for each feature point.
Since one camera is considered the reference, the number of unknowns is is
6-(N—1)+ 3-n, while the number of measurements is 2-N -n, as the
projection of each feature point onto the image plane is measured.

Bundle adjustment calculates the optimal relative pose and position not
absolute position. In addition, scale ambiguity also applies here since changes
in focal length and z-axis translation.
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5.5.7 Multi-view stereo

In SfM the sparsity of feature matching points leads to spares point cloud.
However, for most applications highly detailed and robust 3D point clouds
are beneficial. To overcome this limitation, the multi-view stereo technique is
often used to improve reconstruction.

Multi-view stereo has the same principles as the classical stereo, but it benefits
from a large number of images and images with more varied perspectives.
The multi-view stereo can be formulated as the simultaneous estimation of
depth maps at key frames while optimizing not only photometric consistency
(intensity or color similarity) and smoothness consistency but also the
geometrical consistency (consistency of estimated disparity across multiple
views). It provides more accurate depth maps and complete dense 3D scene
models since it attempts to find a match for almost all pixels in an image. For
example, if pixel size on the ground level (ground sampling distance) is 5 cm
for state-of-the-art systems, a point density of hundreds of points per square
meter can be achieved. This is much higher compared to the traditional
LiDAR point clouds.

In SfM, multi-view stereo can be observed as a post-processing stage. The
process began with taking the camera parameters and the sparse model
obtained by SfM as input. After that, each image is considered as a reference
and pair selection is performed where for each reference image, a subset of
neighboring views with good overlaps and viewing angles is selected to
improve depth estimation quality. A high number of matching points across
images is essential, along with large angles between the sparse 3D points and
the optical center of the image, to ensure accurate and stable reconstruction.
The multi-view algorithm is used to compute the depth map by comparing
multiple neighboring views with a reference image. This involves pixel-wise
or patch-wise photogrammetric matching, where each pixel is matched across
the views to find its most likely depth estimation using stereo principles such
as plane-sweeping stereo, patch matched stereo or deep learning based MVS.
The depth maps from multiple views are merged, and dense point clouds are
obtained. This fusion step involves filtering out noise or inconsistent depth
estimation and combining overlapping measurements to create a unified 3D
surface.
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6 LIDAR

Light Detection and Ranging (LiDAR) is a remote sensing technology that
uses laser pulses to measure the distance between the sensor and target. A
laser (Light Amplification by Stimulated Emission of Radiation) is a device
that generates a coherent beam of light through the process of stimulated
emission. When atoms or molecules in the active laser medium (gain medium)
absorb external energy, their electrons transition to an excited state, moving
to higher energy levels.

Each electron orbit corresponds to a specific energy level. For an electron to
move to a higher orbit, it must absorb a photon with an energy exactly equal
to the difference between its current and target energy levels. However,
electrons do not remain in an excited state for long; they quickly return to
their ground state, releasing a photon. The emitted photon is identical to the
photon that was absorbed. This emitted photon can then stimulate other
excited atoms to release additional photons of the same wavelength, phase,
and direction. This chain reaction leads to the amplification of light, resulting
in a powerful, coherent laser beam.

The key characteristics of a laser are:

e Coherence — laser beam exhibits spatial and temporal coherence,
meaning that light waves have a constant phase over both space and
time. This is an important property since high coherence results in an
extremely high power.

e Monochromatic — A laser emits light in a single wavelength (or very
narrow range of wavelengths), unlike ordinary light sources that
consist of multiple wavelengths.

e High intensity — in contrast to natural light that spreads in all
directions, laser beams are highly directional and spread minimally
over long distances; the intensity of the laser beam reaching the target
is high. This enables different applications such as cutting, welding,
and long-distance measurement. In remote sensing, high intensity
provides a high-flying height, ensuring that enough energy returns
from the target to the detector.
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e C(Collimation — Laser beams are highly directional and spread
minimally over long distances, making them useful for applications
that require precision. The narrower beam ensures better range

accuracy.

6.1 Principles of LIDAR

The laser scanners can be categorized by the principle of the distance

measurement on:

e time of flight principle
e phase-based principle.

Time of flight (Figure 35) measures the difference in time between emitting a
pulse and detecting its return (i.e. echo). The distance to the target of interest
can be determined by the following expression:

D _C-t
T2

where D is the distance between scanner and target object that reflects the
laser pulse (range), c is the speed of light, and t is the time-of-flight.

Figure 35 LiDAR distance measurement based on the time-of-flight principle
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These scanners use discrete laser pulses for distance measurement and they
are commonly known as pulse scanners. The pulse frequency is limited
because the transmitter cannot send the next pulse until the receiver detects
the previous one. Electronic measurement of time is crucial for this type of
distance measurement. For instance, since the speed of light is approximately
300 000 km/s, it can be calculated that 3 nanoseconds (ns) are required for light
to travel 1 meter. This means that to achieve a length measurement accuracy
of 1 millimeter, it is necessary to measure a time interval of just 3 picoseconds

(ps)-

Phase-based principles (Figure 36) modulate the amplitude of the emitted
laser in sine-wave-like patterns. When the laser light is reflected by the object
and received by the scanner, the waves seem to be delayed or shifted
compared to the waves that are currently emitted. This shift is the basis for
the distance measurement; it is directly proportional to the distance of the
object.

The x, y, z coordinates of each point are then calculated by using angle
encoders to measure the mirror rotation and horizontal rotation of the scanner

i.e.

_ 4o | _c_~t __ cip
t_er-fm’D_ =>D_4rt-fm

Where the c is the speed of light, t is period of time from laser emission to
detection of the reflected signal, ¢ is phase shift and f,,, is a modulated
frequency.

As sine waves form an identical repeating pattern, ambiguity can arise if the
phase shift is larger than one complete cycle of the wave. Because the sine
waves repeat, any actual phase shift that is larger than one sine wave will
appear identical to a corresponding phase shift within a single cycle.

Therefore, in this type of system max distance is limited to that in which phase
shift is smaller than one sine wave. The equation for max distance that
guarantee the uniqueness of results is:

c

Zamb =
2 fmodulated
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Meaning that if the wavelength is 300 m the max distance from objects is 150
m. Therefore, the long sine waves are used to avoid this ambiguity.
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Figure 36 Phase-based distance measurement

Unfortunately, it is more difficult to determine the phase shift accurately if the
sine waveforms a long slope. It can be determined more accurately if the slope
is short and steep. This means, for accuracy reasons, short sine waves are
preferred. To provide a larger max distance two or more frequency
modulations are used. An approximate measurement is made based on the
low frequency i.e. large wavelengths, and then a precise measurement is
made by using high frequency. The largest wavelength provides an
unambiguous measurement, while the shortest wavelength defines the
precision that can be provided. Scanners based on phase-time measurement
are faster and have a better resolution but lower precision compared with the
time of flight-based scanners.

The accuracy of phase-based scanners is limited by several factors:

e Frequency Modulation: Variations in frequency modulation can
introduce errors in measuring the phase shift, affecting the overall
accuracy of the distance measurement.

e Accuracy of phase shift measurement: The precision of the phase shift
measurement directly impacts the accuracy of the distance
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calculations. Any errors in this measurement will influence the final
distance result.

e Stability of the oscillation modulation: The stability of the modulator
that generates the oscillation is crucial. Fluctuations or instabilities in
the modulator can lead to variations in the emitted signal, causing
inaccuracies in the phase measurement.

e Air turbulence: Air turbulence can distort the propagating wave,
leading to variations in the phase measurement.

LiDAR scanners can be mounted on a static (tripod) or dynamic platform.
When a scanner is placed at one position during data acquisition, that is static
laser scanning. If the scanner is positioned close to the Earth's surface, this
method is known as terrestrial laser scanning (TLS). The advantage of static
laser scanning is high precision and high density of the resulting point cloud.

In contrast, dynamic laser scanning the device is mounted on a mobile
platform. The examples of platforms for dynamic laser scanning are plains,
cars, Unmanned aerial vehicle (UAV), trains etc. This approach allows for the
rapid collection of data over large areas, although it may result in slightly
lower precision compared to static scanning.

Additionally, handheld LiDAR scanners are becoming increasingly popular
and even some of the latest smartphones have a LiDAR sensor. While
handheld scanners may offer lower precision than tripod-mounted systems,
their ease of use, due to their compact size and effectiveness, makes them ideal
for use in certain situations. Making them valuable tools in various
applications.

6.2 Components of LIDAR

The LiDAR systems are used for rapid measurement of the Earth’s surface,
achieving a sampling rate greater than 150 000 pulses per second. The
resulting product is a highly dense and accurate georeferenced point cloud.
The three-dimensional coordinates (e.g., X, Y, Z or latitude, longitude, and
elevation) of the target object are computer-based on the: (1) time of flight, (2)
the angle at which the pulse was emitted, and (3) the absolute location of the
sensor on or above the Earth's surface.
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To ensure high accuracy, it is essential to determine these components within
a centimeter or so. This presents a challenge, as aircraft typically fly at speeds
of 160 to 320 kilometers per hour, while experiencing altitude fluctuation and
keeping track of hundreds of thousands of lidar pulses per second. Due to
that, apart from the laser scanner, the LiDAR system uses a GNSS and an
Inertial Navigation System (INS) to provide precise positioning and
orientation data (Figure 37).

GNSS provides the global position and orientation of the laser scanner,
needed for georeferencing, i.e., to convert distance measurement into 3D
points measurement in a global coordinate system such as WGS84. To achieve
a highly accurate global position, differential GNSS (DGNSS) is employed.
DGNSS enhances the accuracy of GNSS by using a ground-based reference
station with a precisely known position. These stations continuously compare
their actual position with the position determined by GNSS and broadcast the
difference as a correction signal. The aircraft receives these correction signals
from nearby DGNSS stations and applies them to refine its own GNSS
position. By using DGNSS, the accuracy of the GNSS position can be
improved from several meters to a few centimeters, significantly enhancing
the precision of LIDAR-derived geospatial data.

To obtain the accurate orientation of the laser scanner, the INS of the aircraft
is used. The INS accurately measures the aircraft's rotation around the X, Y,
and Z axes using an inertial measurement unit (IMU). The X axis (roll) is
aligned with the direction of the aircraft’s flight, the Y axis (Pitch) lies in the
horizontal plane and it is perpendicular to the X axis, and the Z axis (yaw) is
in the vertical plane and it is perpendicular to the X and Y axes. Once the
orientation of the laser scanner is determined, the direction in which the laser
pulse is emitted can be accurately calculated.

By combining the global position and orientation of the laser scanner with the
distance measurement from the laser pulse, the georeferenced 3D coordinates
of the points on the target object that reflected the laser pulse can be
computed. In a typical commercial system, distance is measured with an
accuracy of 2-3 cm, GNSS error is between 5-10 cm, and IMU error is 27 cm at
a flight height of 3000 m. Consequently, the absolute accuracy of LiDAR-
derived elevation is between 10 and 20 cm, while relative accuracy is even
higher.
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Figure 37 An airborne LiDAR system

6.3 Echo detection

In a LiDAR, one emitted pulse can lead to multiple echoes since a single laser
pulse can interact with multiple surfaces. Since the laser pulses are typically
emitted with slight divergence, their footprint on the ground spans several
centimeters in diameter. This means that when a pulse encounters an object,
part of the energy may be reflected while the remaining energy continues past
the object, allowing it to interact with additional surfaces.

Once the reflected pulse is received by the sensor, it forms a waveform that
represents the received signal power (amplitude) over time (t). The system
detects echoes based on a predefined threshold—an echo is recorded
whenever the signal power exceeds this threshold. This enables LiDAR to
capture multiple returns from a single pulse, which is essential for mapping
vegetation, buildings, and terrain with high accuracy.
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An echo can also be referred to as a return. For each return, the return number
and the number of returns are recorded. Return number refers to the position
of a specific return within a single laser pulse, i.e., the first return is the first
echo received from an emitted laser pulse, and the last return is the last
received echo (see Figure 38). The return number can, in some cases, be used
to determine if an echo was reflected on vegetation or ground (ground should
then be the last return). The number of returns is the total number of returns
for a given pulse.
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Figure 38 Multiple return LiDAR system

Multiple return systems can capture up to five returns per pulse, increasing
the amount of data and ability to comprehensively analyses 3D structures
such as forest canopy. There are typical for semi-transparent objects,
overhanging objects (such as power lines), or abrupt surface discontinuities
(building edges) A tree is particularly interesting because it often causes
multiple echoes (one or more on branches and one on the ground below).
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6.4 Laser properties

As mentioned above, the LiDAR operates using laser pulses at specific
wavelengths. To select the optimal wavelength several factors need to be
considered such as:

e Atmospheric scattering - how much of the signal is lost by traveling
through the atmosphere,

e Absorption capacity of vegetation - how much of the signal is lost
because it is absorbed by vegetation,

e Sunlight interference - Undesired light in the LiDAR signal due to
direct sunlight or scattered sunlight, which can introduce noise in the
measurements,

e Safety - The degree to which a laser wavelength is absorbed by the
human eye. The wavelength must be chosen so that it is not absorbed
by the eye so much, and

e Application - as different wavelengths interact with surfaces in a
unique way.

Near-infrared wavelengths (typically between 1040 and 1550 nm) are most
widely used in LiDAR systems, as they provide strong reflection from
vegetation and the built environment. The attenuation of near-infrared pulses
in the atmosphere is minimal when the atmosphere is cool, dry and clean.
However, the presence of water vapor and carbon dioxide increases
attenuated severely. Green LiDAR is used primarily for bathymetric
applications due to its ability to penetrate water efficiently.

Scanning frequency represents the number of pulses emitted by laser in one
second. It is directly related to the density of echos. The higher frequency at
constant aircraft speed and a standard height above target will result in a
higher number of returns and higher accuracy due to increased number of
measurement points collected over area. Moreover, the high-frequency
system can finer detail by operating on an aircraft that flies higher and faster
than an aircraft equipped with a lower frequency system, thereby reducing
flying time and acquisition costs.

The laser scanner is fixed to the aircraft and it typically includes rotating
optical elements, such as mirrors or prisms. The mirrors are used to direct
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emitted laser pulses in a cross-trac direction i.e. perpendicular to the direction
of flight. This scanning mechanism significantly increases the ground covered
per flight distance. The different configurations of rotating optics, and
therefore different scanning patterns, can be used. A few common types are:
zig-zag, parallel line, and elliptical patterns. Scanning patterns represent the
spatial distribution of returns that would be expected from a flat surface. The
zig-zag pattern (Figure 39 (a)) uses oscillating mirrors that direct laser pulses
across the swath width in both directions of the scene. Although the spacing
between points is preserved, it yields a much higher density on scan edges
(non-uniform density). In the parallel line pattern (Figure 39 (b)), a rotating
polygonal mirror is used to direct pulses across swaths in one direction of the
scan only. The elliptical pattern is generated by using a rotation mirror that
revolves about an axis perpendicular to the rotation mirror. With this pattern,
the point density at the swath edge is higher (Figure 39(c)), which is beneficial
for connecting neighboring swaths. It is clear the point density is affected by
the scanning pattern. In practice, uniform patterns such as parallel lines and
ecliptic patterns are preferred.
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Figure 39 (a) zig-zag pattern, (b) parallel pattern, (c) elliptical pattern
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The scanning angle is the angle at which the beam axis is directed away from
the “focal” plane of the LIDAR instrument. It controls an area of ground being
observed in a single flight line. The maximum scan angle is up to 30° in both
directions from the vertical. Positive and negative angles represent pulses
emitted to the right (starboard side) and to the left (port side) of the nadir,
respectively. The scanning angle and flight height determine the scan swath.
A narrow scan angle range limits the swath width, increases costs, and
reduces efficiency. On the other hand, larger scan angles can introduce
distortion, especially on steep terrain. Additionally, the laser footprint
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increases at higher angles, affecting spatial resolution. For example, a study
shows that for DEM production in steep terrains, the scan angle should be
kept less than 15° [30]. For forest application, the often recommended scan
angle is between 15 to 20 degrees [31]. However, using a wider scan angle can
be beneficial in forest applications since the chance of detecting the ground
and penetrating deeper into dense forests is higher for vertically incident
beams (especially with newer systems capable of detecting multiple echoes
with lower intensity).

The swath width is given by:
0
Sw =2h - tan (5)

where 6 is scan angle range. At flight height of 500 m and scan angle range of
40 the swath width will be ~364 m.

Laser beam forms the footprint, the ground area illuminated by laser beam,
known as Instantaneous Field of View (IFOV). Although the laser beam has
low divergence (i.e. very narrow beam), with increase of the distance from
source the size of the beam also increases (beam divergence). Due to that the
laser footprint is not a point but an area. If the aircraft is perfectly horizontal
and the laser beam is perpendicular to the ground, IFOV will be circular. As
laser signal moves from vertical, the beam will be elongated in the direction
of scanning, forming an ellipse. Additionally, the distribution of pulse energy
is not uniform over the extent of IFOV and it decreases radially from the
center.

The IFOV is a measure of spatial resolution of the LiDAR system. Thus, the
point density within the point cloud will relate to the IFOV. Large IFOV will
reduce the density but increase the coverage, leading to a lower signal-to-
noise ratio. If IFOV is small, the sensor can determine the point position more
precisely since it covers a smaller area.

The diameter of IFOV on the ground can be computed by:

h-y

IFOV = ——
Cos(einst)

where h is the altitude of the aircraft above ground level, 8,5 is the
instantaneous scan angle, and y is the divergence of the laser beam. Typical
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laser beam divergence ranges from 0.1 to 1.0 millirad. The change of IFOV for
different scan angles at laser divergence of 0.5 millirad, and distance of 500 m
from the instrument is shown in the Table 8.

Table 8 Change of IFOV considering different scan angles

Binst hinst IFOV

0° 500 0.2500

10° | 500/cos(10)=507.63 | 0.2538

20° | 500/cos(20)=532.38 | 0.2662

30° [ 500/cos(30)=577.35 | 0.2887

The minimum detectable object within the footprint depends primarily on its
reflectivity rather than on the object size. For example, a power cable with a
diameter of 1 cm is detectable, while a dark tree branch with a diameter of 3
cm will not be detectable. Moreover, the return pulse can be detectable even
if it covers a small area of the target within the laser footprint if that area has
high reflectivity (Figure 40 (a)). In addition to reflectivity, several factors like
range, laser power, atmospheric conditions, terrain inclination, 3D structure,
and type of reflectivity (diffuse, spectral or both) influence detectability and
accuracy. For flat surfaces with high homogenize reflectivity in the laser
footprint, the reflected pulse will be very similar to received on. There will not
be range averaging of various targets, resulting in good accuracy. On another
hand, if multiple irregular surfaces close to each other reflect the received
pulse, the reflected pulses are combined to a wider pulse with lower
magnitude and longer rising time, resulting in range averaging and lower
range accuracy. In addition to surface roughness, the measured range
depends on surface slope. The laser pulses on the steep slope will be wider
than on the flat surfaces and the measured range is an average of the range of
the laser footprint. For example, if a beam is emitted with a scanning angle of
12 degrees down the 100-percent slope (45 %) the incident angle to the ground
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will be 57 degrees i.e. the IFOV will be 0.5446 compared with 0.2555 on the
flat surface (Figure 40 (b) and (c)).
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Figure 40 Interaction between laser beam and target (a) laser footprint partially covers a
highly reflective object (b) laser pulse on a flat surface, and (c) laser footprint on a steep
surface

Minimum separation between objects along the pulse path defines the vertical
resolution of the Laser data. Usually, the returned pulse has a lower
amplitude and wider width compared with the received pulse. The minimum
vertical separable objects will be a function of pulse width (duration of a laser
pulse as it travels from the sensor to the target and back).

Footprint spacing (Figure 41) is the nominal distance between the centers of
consecutive beams along and between scanning lines, which, along with the
beam divergence, determines the spatial resolution of LiDAR data.

The footprint spacing is a function of:

e Scanning frequency (number of emitted pulses per second [Hz]),
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e The flight height - the maximum flight height depends mainly on
transmitted power, while the minimum depends on national
regulations and eye safety distance

e The speed of aircraft, and

e Scanning angle.

Footprint .
* spacing >

|¢— Swath width —hl

Figure 41 LiDAR horizontal resolution

6.5 Data characteristics

In addition to the previously mentioned number of returns and return
number, several attributes are usually available for each detected point.

Pulse density is the direct function of footprint spacing over a hypothetically
flat plane, and it can be calculated by pulse density = 1/ footprint spacing. It is
the most consistent measure of LiDAR spatial resolution.

Return density represents the number of returns per unit square area (for
example, 7 points per square meter). It is usually defined based on the
application for which data is being collected. Return density is controlled by
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specifications and operation mode of a LiDAR system (flight height, flying
speed, scan angle, scan frequency, scan pattern, variation in acceleration and
attitude) and type of target (geometry and reflectivity). For example, return
density generated by 5 returns capable systems over forest will be much
higher than the density generated over pasture or water surfaces.
Recommended return density for the specific DEM accuracy class is presented
in Table 7

Intensity is an attribute that describes the peak intensity value of the returned
laser signal received by the sensor. It represents the reflective properties of the
target, surface roughness, spreading loss, and atmospheric attenuation. High
reflective surfaces, such as roads, dry soil, have higher intensity. Intensity is
often used in feature detection and extraction, and can be used as a substitute
for aerial imagery when they are not available. However, intensity is relative
and values off the same target will vary from flight to flight or elevation to
elevation, due to:

e Dependence on bidirectional reflectance distribution effect - describes
how EM radiation is reflected at different angles. Since intensity
depends on the angle of incidence and viewing geometry, its value
may change significantly even for the same object,

e The distance of the laser instrument - the intensity will decrease with
increasing distance due to atmospheric attenuation and energy
dispersion,

e The total number of returns identified - the intensity varies depending
on which return is recorded (first, second, last), and

e The rank of the return.

Moreover, to prevent hardware damage in case of extremely high amounts of
backscattered energy due to the presence of high reflective targets, the
receiver sensitivity is reduced practically instantaneously. However,
increasing sensitivity for weak returns usually takes several seconds. Taking
that into account, the presence of a single high-reflectivity target in one flight
line can lead to a substantial discrepancy in the mean intensity of returns on
the overlapping part of two adjacent flight lines. The fluctuations in the
energy emitted by the laser also introduce variability in intensity values.
Those fluctuations are likely more pronounced for high-frequency systems.
Due to that, the application of intensity in point cloud classification is
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challenging. Intensity is recorded in 8 bits (value from 0 to 255), 12 bits (0 to
1023), or in 16 bits (0 to 65535).

GPS time is an indication of the precise time that the pulse was emitted. This
attribute can be used as a unique identifier for a pulse.

End-of-scan-line is a binary attribute (true or false) indicating whether the
parent beam marked the edge of scanning lines.

Scan angle attribute indicating an instantaneous scan angle. Usually recorded
in degrees.

6.6 Stripes and blocks

Data in airborne laser scanning is acquired strip-wise. The strip represents the
set of points collected during one flyout. In order to scan larger areas, multiple
flyouts, i.e., multiple strips next to each other with an overlap to avoid gaps,
are needed (Figure 42). Larger overlaps are preferred to increase accuracy in
strip adjustment and increase return density. Usually, an overlap between 20-
30% is needed, depending on the geomorphological characteristics of the
region being surveyed. Due to that, an overlap area of two overlapped strips
will be surveyed twice, resulting in higher point density, increased data
volume, and non-uniform distribution of points.

The set of all scanning strips represents the scanning blocks. The block design
should include additional crossing flight strips and control areas. Their
number is a function of the size and shape of the block. Each data strip must
be covered by one crossing strip. The GNSS/IMU drift can result in misaligned
or shifted point clouds between strips. Higher precision can be achieved by
applying the strip adjustment. To increase redundancy and confidence in
adjustment, it is recommended that control areas be covered by a crossing
strip. A longer data strip is covered by more than one strip to reduce errors
caused by GNSS accuracy variations. For control areas, usually long and wide
flat areas (such as football fields) are required so that the uncertainty of the
horizontal position would not affect its vertical component. Control points on
the surface are measured with high precision in the local control network. The
coordinates of control points should have at least 3 times better accuracy than
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a LiDAR scanner. Those points are used for absolute accuracy analysis, which
is necessary to calibrate the LIiDAR system.

If there are discrepancies between overlapping laser scanner strips in height
and planimetry, it is necessary to perform the strip adjustment. Those
misalignments in the absolute and relative orientation of the point cloud are
caused by systematic errors.

The discrepancies in ground control features imply errors in absolute
orientation. Absolute orientation refers to the correct georeferencing of a
LiDAR dataset in a global coordinate system. Relative orientation describes
the orientation of strips with respect to each other, maintaining internal
consistency. It does not consider absolute positioning but ensures that
overlapping areas do not have mismatches. Relative accuracy is calculated
between data overlapping swaths. The higher the swath overlap, the more
precise the assessment would be.

Various strip adjustment methods have been used to eliminate the
inconsistency in elevation, position, and accuracy. Those methods can be
roughly categorized into two categories: data-driven approach (strip
adjustment) and sensor system-driven (calibration) approach.

Sensor system-driven methods are based on the physical sensor model
relating the system parameters to the ground LiDAR coordinates. These
methods require the original observations (GPS, IMU, and the laser
measurements) or at least the trajectory and the time-tagged point clouds.
This data is not always available to the end-user.

Data-driven approaches rely solely on the LiDAR point cloud itself. In this
approach, the systematic errors are removed by applying translation and
rotation models e.g., a seven-parameter rigid body transformation or even a
simple vertical shift. In order to provide both planimetric and vertical
constraints for LiDAR strips, the relationship between matched conjunction
features, such as lines and surfaces, needs to be established in order to
calculate transformation parameters. This process includes the segmentation
process, feature extraction, feature matching on the target point cloud, and
then performing strip adjustment calculation.
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Both sensor system-driven and data-driven methods need control elements or
tie elements. Currently used control or tie elements are mainly lines and
surfaces.

Figure 42 Strip configuration (blue) of the block, including three control areas (yellow)

1.1 Data Quality Control

Quality control of LiDAR data involves evaluation of return coordinates
accuracy and precision, compliance with acquisition specifications, and data
spatial consistency and completeness. Each sensor in an airborne LiDAR
system can potentially generate errors, contaminating the laser data with
systematic and random errors. The sources of errors in airplane LiDAR
surveys are:

Distance measurement error,

Scan angle measurement errors,

Error of aircraft position,

Error in measuring aircraft orientation
Device installation error,

Geoid normal error, and

Error caused due to time deviations (syndication error and
interpolation error).
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Random errors in LiDAR systems are most often caused by random
fluctuation in measurement, such as inherent sensor noise, noise in recording
scanning angles, range noise, platform instability, etc.. The magnitude of
random errors is calculated during system calibration. Due to that, periodic
calibration of LiDAR systems is needed. Random errors affect the absolute
accuracy of returned coordinates, but also the relative accuracy. For example,
the influence of attitude noise in the GNSS/IMU derived orientation will vary
with scan angle, affecting less nadir regions compared with the off-nadir
regions. Randomness can be reduced by averaging or repeating
measurements.

Bias in GNSS, aircraft attitude, scanning angle, and time measurement course
systematic errors. The device installation error, i.e. the three-dimensional
offset between the GNSS unit and the laser pulse emission, would cause the
systematic error independent of the flight height, but dependent on the flight
direction. In multi-pass LiDAR, the strips may not align properly. An error
in measuring the scanning angle can cause the return coordinate errors that
increase with flight height and flight direction. This type of error produces a
fixed amount of bias that can not be reduced by averaging, but it can be
reduced when their sources are known.

Typical error values that occur in an aircraft laser scanning system are
presented in Table 9.

Spatial completeness is a key quality factor of airborne LiDAR data. It
represents the lack of continuity or scanning uniformity in LiDAR datasets.
The scanning uniformity is represented by variability in pulse density or
return density over the same objects. There are two types of data density: local
and mean density. Mean density is calculated by dividing the all point
number with the whole project area. High return density does not guarantee
a uniform point distribution. Mean density is a general measure of dataset
resolution, but it can not reflect the spatial completeness, so local density is
needed. The local density computes the number of points within a defined
neighborhood. Its variations occur due to variations in flight height, the
distance between adjacent flight lines, or instability of the aircraft's attitude.
For example, turbulence during data collection causes continuous variations
of aircraft pitch and roll, causing the aircraft to deviate from its ideal scanning
path, leading to gaps in data over certain areas despite the swath overlap. The
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local density highly influences the performance of data processing techniques
and the quality of the created products. All the local density values in an area
form a density distribution map.

Table 9 Typical error values that occur in an aircraft laser scanning system

Error Typical Value
Geoid normal error 0.017°
IMU error 0.01°

Device installation error (rotation between laser scanner | 0.3°/0.01°
and IMU)

Scan angle measurement errors e=0.02°
At=0.03°
Distance measurement error 5-10 cm

Device installation error (translation between laser [ 3 cm
scanner and IMU)

Device installation error (translation between GNSS and | 3 cm
IMU)

GNSS error 10 cm

Error caused due to time deviations 1 cm

Accurate assessment of the error budget requires field surveying on the
ground and of objects that are clearly observable in the resulting point cloud.

The vertical accuracy depends on the quality of INS, integration with GNSS
and methods of post-processing. As already mentioned, the effect of attitude
error on the 3D accuracy increases with flying height and the scan angle. In
recent years, vertical accuracy is measured against the LIDAR surface in GCP.
The LiDAR surface can be modeled using Triangulation Irregular Network or
other interpolation methods. The orthogonal distance between the GCP and
LiDAR surface represents vertical error. Using multiple GCP, the statistics
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such as the maximum vertical errors per DEM accuracy class are presented in
Table 7.

The positional accuracy depends mainly on the quality of DGNSS post
processing, but other factors such as GNSS satellite constellation during flight,
the number of satellites, the distribution and distance of ground reference
stations, the accuracy of IMU (roll, pitch, and heading), the flight height, and
scanner accuracy are also included. The assessment of positional accuracy is
usually based on comparison between GCP coordinates and their conjugate
points from the LiDAR dataset. However, the assessment of positional
accuracy is not an easy task since point clouds are abstract and cannot be
easily compared with discrete objects.

6.6.1 Data format

The result of the airborne LiDAR survey is a point cloud. A point cloud is a
discrete set of data points in a 3D coordinate system. It allows the individual
spatial measurements to be combined into a meaningful 3D representation of
objects or environments. The point cloud is characterized by an enormous
number of points (from a few thousand to a few million points). In addition
to X, Y, and Z coordinates, each point can be described by several attributes
such as R, G, B color, classification etc. Due to its characteristics, several
formats can be used for point cloud storage. Point clouds differ fundamentally
from classical raster and vector formats, meaning that traditional processing
and analyzing methods of raster and vector data cannot be applied directly
on point clouds. The two main categories of point cloud formats are ASCII
and binary. ASCII uses human-readable text characters to represent X, Y and
Z coordinates of each point. The benefit of text-based format lines is the fact
that content of text files are usually well supported and easily accessible via a
text editor. For example, the use of a delimited format, where each line
contains data for single return makes it easy to integrate data into popular
SQL databases where it can be queried and rearranged as needed. However,
they are large in size resulting in very slow reading and interpretation even
for a small number of points. In addition, the metadata is lost. ASCII file
format includes xyz, obj, ptx, asc.

The American Society for Remote Sensing (ASPRS) introduced the LAS file
format as an alternative to the ASCII file format. LAS is a public binary file
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format for the interchange of 3D point clouds between different data users. It
maintains metadata specific to the LIDAR while not being overly complex. A
LAS file contains information about points in one of the point data record
formats defined by the specification. The current version, LAS 1.4, allows 11
point data record formats (from 0-10), the preferred formats are 6-10 since
they have improved several aspects of the core information in the point data
records (improvement of classification scheme and waveform storage). All
points must be of the same format within the files. The various formats differ
in the available data fields.

The LAS 1.4 defines Variable Length Record and Extended Variable Length
Record. The number of bytes used per point data record is explicitly given in
the public header block. The Extended Variable Length Record enables the
definition of additional user-defined fields in “extra bytes” to the field given
by specification. The LAS file format is not compressed. However, an open-
source project, LASzip, defines the open file format LAZ, significantly
reducing file size up to 90% while maintaining precision, making it ideal for
large-scale applications such as terrain modeling, forestry analysis, and
autonomous navigation. LAS and LAZ formats provide interoperability with
various software used in the analysis and visualization of LIDAR data.
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7 REFERENCE FRAME

A reference frame is a three-dimensional coordinate system that describes the
Earth's body and provides the foundation for determining position on Earth
and in space. Many applications require precise global frames, such as
geodetic survey, engineering, cadaster, photogrammetry, geophysics,
hydrology, climatology, etc. Also, it allows the quantification of changes due
to geodynamic processes and climate change. For example, in order to assess
sea level variation, an accurate global reference that remains stable in the long
term is needed. The global reference frame ensures a uniform basis for
geospatial data. Geodata doesn't have value without a reference frame; thus,
it has an elementary role in modern society.

Reference frame includes the following concepts: reference surface, datum,
and coordinate system.

All human activities and all measurements are performed on the Earth's
surface. The primary aim is to present collected information on various maps.
However, due to the irregular distribution of the third dimension, i.e., vertical
variations between mountains and valleys, it is impossible to approximate the
shape of the Earth with any reasonably simple mathematical function. To
overcome this, all measurements must be projected orthogonally onto a
mathematical figure that closely approximates the Earth's shape and
dimensions. Once this projection is made, the measurements can then be
transformed onto a two-dimensional plane (i.e. map).

As a first-order approximation, the sphere could be used for small-scale
mapping purposes (from 1: 1 000 000) or when very high accuracy is not
required. However, the sphere does not meet accuracy requirements when
high precision is required and ellipsoids need to be used.

The Earth’s ellipsoid is any ellipsoid that approximates the Earth’s surface. In

geodesy and cartography, a rotation ellipsoid with small flattening is used. It

is a surface resulting from rotating an ellipse around its semi-minor axis. The

size of the ellipsoid can be defined by using a semi-major axis (1), a semi-

minor axis (b), and flattening (f). Flattering is a parameter that emphasizes the
a-b

difference between the sphere and the ellipsoid, and it is equal to f = —=.
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Some of the most used ellipsoids are: Bessel (1841), WGS84, and GRSS80.

The most accurate approximation is the geoid. The geoid is an equipotential
surface of Earth's gravity field, ideally still sea surface extended under land
mass, and it is always orthogonal to Earth's gravity direction at every point.
It can be simplified by imagining that the entire Earth's surface is covered by
water. If the current and other influences, such as winds and tides, were
absent, the result would be an ideally still sea whose surface is affected only
by Earth’s gravity and rotation.

The geodetic datum describes the orientation and position of the ellipsoid in
relation to Earth. At least seven parameters are needed to define a global
datum: three for the determination of origin, three for the determination of
the orientation of the reference ellipsoid, and a scale factor (usually in parts
per million (ppm) units). The horizontal geodetic datum is a reference for
defining 2D coordinates on a reference surface (ellipsoid or sphere). A vertical
geodetic datum is a basis for the definition of heights.

7.1 Vertical geodetic datum

Since Earth’s gravity field is irregular due to variations in mass distribution,
the geoid is undulated rather than a perfectly smooth surface. Depending on
the mass deviation in land mass, the geoid will be below (where mass
deficiency exists) or above (where a mass surplus exists) the reference
ellipsoid. The deviation between the geoid and reference ellipsoid is called
geoid undulation (N) (Figure 43).

N=h—-H

where N is the geoid undulation, h is ellipsoidal height, and H is orthometric
height.

The geoid is used to describe height and a reference surface for the
measurement of land elevation and water depths on Earth (vertical datum).
Since the geoid is a theoretical surface and the actual sea surface is constantly
affected by tides, currents, and waves, tide gauges (mareographs) are used to
record sea levels over several years. By averaging these long-term
measurements, short-term fluctuations are eliminated, resulting in the Mean
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Sea Level (MSL). MSL serves as an approximation of the geoid and is
commonly used as a reference surface for measuring elevations.

vertical « * normal

Ellipsoid  «

ocean

Figure 43 Vertical datum

Every country or a group of countries has established the mean sea level
measuring points located near the area of concern (local vertical datum). For
ex-Yugoslavia, the local mean sea level is derived through the mareograph in
Trieste (zero height). All elevations in ex-YU are measured relative to the
Trieste tide gauge using geodetic leveling. The result is orthometric heights,
i.e.,, heights above local sea level. The orthometric height, the distance
between the geoid and a point on the topographic surface, measured along a
normal, is crucial for many engineering and geoscience applications.

There are several realizations of the local vertical datum (the height reference
system for specific regions). They are approximately parallel to the geoid but
offset by a couple of meters due to local conditions (currents, tide,
temperature difference, etc.) at the specific location.

The use of the Global Navigation Satellite System (GNSS) to determine height
has been widely used. However, the GNSS determines height with respect to
the reference ellipsoid, i.e., ellipsoidal heights. To convert ellipsoid heights to
orthometric, the geoid undulation is required.

In addition to local measurement, satellite missions, such as Gravity Recovery
and Climate Experiment (GRACE) and Gravity field and steady-state Ocean
Circulation Explorer (GOCE), have significantly improved geoid
determination by providing global gravity field measurements. Those
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satellite-derived global geoid models, such as EGM 2008 or EGM 96, are
widely used in geodesy and navigation to convert GNSS measurements to
orthometric heights. However, the global gravity model doesn't completely
represent the Earth's gravity field because their resolution and accuracy are
limited. Typically, a combination of GNSS leveling and global vertical datum
provides absolute accuracy from centimeter to decimeter [30], [31].

7.2 Horizontal datum

There are two primary types of horizontal datums: the global horizontal
datum and the local horizontal datum.

As the demand for interoperability in geodetic measurements increases, there
is a growing need for a global reference surface that ensures coherent and
consistent results across various disciplines, such as astronomy, geophysics,
and other Earth sciences. The parameters of this ellipsoid, its placement, and
orientation within the Earth should closely match the shape of the global
geoid. Therefore, during their determination, specific conditions are set to
ensure an accurate approximation. Among these conditions, the rotational
axis of the ellipsoid must align with the Earth's axis of rotation, and the
geometric center of the ellipsoid must coincide with the center of the Earth's
gravity (geocentric). In addition to these requirements, if the ellipsoid's
volume is made equal to that of the geoid and the sum of the squared
distances between the geoid surface and the ellipsoid is minimized, such an
ellipsoid is referred to as the global reference surface.

In contrast to global datum, the local horizontal datums are reference surfaces
that apply to specific countries or regions. Local datum positioning the
ellipsoid to provide the best fit to the geoid in the area of interest. In this way,
the difference between the reference ellipsoid and geoid could be ignored. The
orientation of the ellipsoid is defined by the fundamental point (¢, 4, h) and
an azimuth to an additional point. The local horizontal datum is determined
through a triangulation network. There are several hundred local horizontal
datums in the world. In ex-YU, the fundamental point is Hermannskogel,
located near Vienna, and the underlying ellipsoid is the Bessel ellipsoid.

A global reference frame provides a uniform basis for geospatial data,
ensuring interoperability, consistency, and the combination of measurements
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collected by ground or space-based sensors. It is needed for the precise orbit
of satellites, all navigation, and change detection. A geodetic reference system
provides a basis for a uniform global coordinate system in which every point
on the Earth can be described by unique coordinates.

7.2.1 ITRS

The fundamental global geodetic reference system in use today is the
International Terrestrial Reference System (ITRS). The ITRS is a geocentric
coordinate system (its origin is at the center of mass of the whole Earth,
including oceans and atmosphere) with three orthogonal coordinate axes (X,
Y, Z) co-rotating with the Earth in its diurnal motion in space. The Z-axis
points to the historical direction of the Earth's mean axis of rotation. The X-
axis is oriented towards the mean Greenwich meridian, and it is orthogonal
to the Z-axis. The Y-axis completes the right-handed reference coordinate
system. The scale unit is the meter.

The ITRS is realized through the International Terrestrial Reference Frame by
determining the 3D coordinates of firmly anchored points. Those points
represent observation stations distributed worldwide. Their coordinates are
computed consistently with the system definition by space geodetic
observation techniques.

ITREF serves as the foundation for many global and local geodetic datums such
as WGS84 and ETRF (European Terrestrial Reference Frame). The ITRF2020-
u2023 is the latest realisation of ITRS. It represents the update of ITRF 2020
[30], extending its data coverage by including observations from 2021 to 2024.
The frame parameters (origin, scale, and orientation) are the same as ITRF2020
[32].

7.2.2 WGS84

WGS84 is a global geodetic reference system used in various applications,
including positioning, navigation, and mapping. It is the standard coordinate
system used by the Global Positioning System (GPS), and it is maintained by
the US National Geospatial-Intelligence Agency. WGS84 defines a global
Cartesian coordinate system (X, Y, Z) with its origin at the Earth’s center of
mass. The Z-axis points the direction of the BIH Conventional Pole (epoch
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1984). The X-axis passes through the intersection of the Greenwich meridian,
and the plane passes through the origin, and it is normal to the Z-axis. The Y-
axis completes a right-handed orthogonal coordinate system. The origin of
WGS 84 is periodic refinement. The current realization WGS84 (G2139) aligns
closely with ITRF 2020 to within one centimeter in each 3D component [33].

7.3 Coordinate systems on an ellipsoid

The geodetic coordinates are geodetic latitude, geodetic longitude, and
height. They are also referred to as ellipsoidal coordinates (Figure 44).

Geodetic latitude is defined by the angle from the equatorial plane to the
normal to the ellipsoid at the given point. It is usually marked with a Greek
letter ¢ and it can have a value in the interval between 0 and 90 on North and
South (=3 < ¢ <73).

Geodetic longitude is defined by the angle that the prime meridian (the
meridian of the Greenwich observatory near London) makes to the meridian
plane of a given point. It can have value in the interval [0,180] on the East and
West and is marked with the Greek letter 4.

Geodetic coordinates uniquely define the position of any point on the
ellipsoid. However, to determine a point's position on the actual Earth's
surface, the distance from the ellipsoid to the point along the ellipsoidal
normal is required. This distance is known as the ellipsoidal height (h).

In this coordinate system:

e Latitude and longitude define the horizontal position of a point on the
ellipsoid.

e Ellipsoidal height (h) represents the vertical distance of the point
above or below the ellipsoid.

While latitude and longitude provide a reference for horizontal positioning,
ellipsoidal height is essential for determining elevation relative to the
mathematical model of the Earth's shape.
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Figure 44 Geodetic coordinates latitude (¢) and longitude (A)

7.3.1 3D Cartesian coordinate system

Geodetic coordinates @, 4, h can be transformed to an Earth-centred, Cartesian
three-dimensional system using the following equations (Figure 45):

X = (N + h)cosgpcosA
Y = (N + h)cosgsini
Z = (N(1—e?) + h)sing

2 2
a a—b . . . . . . .
where N = ——— e? = ——,ais the semi-major axis, b is the semi-minor

Ji-eZsinZ¢’

axis of the ellipsoid.
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Figure 45 3D Cartesian coordinate system

7.3.2 2D Cartesian coordinate system

In geodesy, the 2D Cartesian coordinate system in the plane is often used. It
consists of two perpendicular coordinate axes that intersect at a single point
(O), called the origin. The horizontal axis is called the abscissa axis and is
denoted by the symbol “X’". The vertical axis is called the ordinate axis and is
denoted by the symbol “Y".

The position of a point in this system is defined by two perpendicular
coordinates: the ordinate (y) and the abscissa (x), which are measured along
their respective coordinate axes from the origin.

7.4 Cartographic projection

One of the primary tasks in geodesy and cartography is map production. To
represent part of Earth on a flat paper map or computer screen, the curved
surface must be mapped onto the 2D plane. Meaning that each point on the
reference surface with geodetic coordinates (¢, 1) must be transformed to a set
of Cartesian coordinates (X, y). This mathematical transformation, known as
cartographic projection, establishes the functional relationship between
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points' coordinates on an ellipsoid and their corresponding coordinates in the
plane. However, this process inevitably includes distortion since it is
impossible to represent a curved surface on a map without distortion of
angles, length, or area. Based on the type of distortion, projection can be
classified as conform (equality of angles, i.e., shape preservation), equivalent
(there is no deformation of area), and conditional (most often equidistant, i.e.,
there is no deformation of length). Cartographic projection allows for the
computation and analysis of distortion, assessment of spatial distribution, and
effective management of these factors in mapping.

Historically, maps were created using geometric projections—tangible
methods where one could literally imagine projecting the Earth’s curved
surface onto a flat sheet or developable surfaces using a light source inside a
globe. The map projection can be classified based on the: type of surface
(cylindrical, conical, or azimuthal (Figure 46)), point of secancy (tangent or
secant), and aspect (normal, transversal, or oblique). In normal projection, the
main orientation of the projection surface (the rotation axis of a cone or
cylinder, or normal on a plane and ellipsoid in tangent point for azimuthal
projection) is parallel to the Earth's rotation axis. In transversal projection, the
main orientation of the projection surface is perpendicular to the Earth's
rotation axis, while in oblique projection, they form an angle between 0° and
90°.

These projections maintained an intuitive, visual link between the round
Earth and the flat map, preserving certain geometric properties such as
distances, angles, or areas depending on the projection type. Geometric
projections were widely used in the past because they could be physically
constructed or measured, making them easy to understand and interpret.

Modern cartography, however, relies on analytical (or analytic) projections,
which are defined by mathematical formulas rather than physical
constructions. Analytical projections do not necessarily have a direct
geometric interpretation, but some can be seen as refinements of older
geometric projections—for example, the Gauss-Kriiger projection can be
derived from a transverse Mercator cylindrical projection. The main
advantage of analytical projections is their precision, computational
efficiency, and flexibility, allowing maps to be tailored to preserve specific
properties such as area, shape, or distances in a given region. As a result,
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analytical projections have become the standard in today’s digital
cartography and GIS, replacing the geometric methods of the past while
building conceptually on their foundations.

(@) (b) ©

Figure 46 Developable surfaces used in cartographic projection (a) cylinder (cylindrical
projection), (b) cone (conical projection), and (c) plane (azimuthal projection)

7.4.1 Universal Transverse Mercator projection

The Universal Transverse Mercator (UTM) projection is an analytical
projection that can be considered a derivation of the transverse secant
cylindrical conformal projection. It represents the modification of the Gauss-
Kriiger projection. It allows for the representation of the entire Earth within a
single coordinate system with limitations for polar areas (north of 84°N and
south of 80°S), for which the Universal Polar Stereographic projection should
be used.

UTM specifications:

e The whole world is divided into 60 zones, each 6 degrees of longitude
wide, starting at the International Date Line (180°) and moving
eastward. Zones are numbered from 1 to 60, with Zone 1 covering
longitudes from 180° to 174°W (Figure 47).

e [t covers an area from 84° north latitude to 80° South latitude. Each
zone is divided into subzones, each 8 degrees of latitude, starting at
80°S and moving northward. The subzones are marked by letters of
the English alphabet from C to X. Letters I and O are omitted due to
their similarity with 1 and 0. The first row covers the latitude from
80°N to 72°N. Letters A and B and W and Z are used for polar areas.
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A scale factor is 0.9996 on the central meridian of the zone, i.e., the
scale error is 0.4 m/km.

Each zone has a coordinate system. The origin is defined at the central
meridian and equator. The position of points is defined by coordinates
easting and northing (E, N). The easting indicates distance in meters
from the central meridian, while the Northing indicates the distance
from the equator.

To avoid negative coordinates for positions located west of the central
meridian, the false easting of 500,000 m is assigned. The equator has
been given a Northing value of 0 m for positions north of the equator,
and a false northing value of 10 000 000 m for positions south of the
equator.

UTM is one of the most important cartographic projections, which was

primarily developed by the military in the 20th century. However, UTM is

widely used in Earth observation, photogrammetry, cadastral, etc. UTM is

particularly effective for large-scale mapping as it maintains relative accuracy

and minimizes distortion within each zone. Due to relatively small

deformation, precision georeferencing of images and precise navigation,

UTM became very popular.

One disadvantage of the UTM is that multiple coordinate systems must be

used for large areas, which can lead to confusion.
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Figure 47 UTM zones of the World
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7.4.2 EPSG code

The EPSG code is a unique identifier assigned to a specific coordinate
reference system, projection, or datum. EPSG stands for European Petroleum
Survey Group and is a scientific organisation that maintains a geodetic
parameter database. Each entity is assigned a unique EPSG code between 1024
and 32767, ensuring consistency across different GIS applications. The EPSG
code is very important since there are many different coordinate systems
defined for different areas. By using the EPSG code, there is no need for
manual specification of parameters, ensuring spatial accuracy, consistency,
and efficiency in geospatial data processing.

The EPSG code represents a different geodetic parameter set, which includes:
Coordinate reference system, projection, datum, and units. Some of the
frequently used codes are:

e EPSG:4326 - WGS 84, a geographic coordinate system with latitude
and longitude in degrees,

e EPSG:3857 - Pseudo Mercator, used in web mapping applications
(Google Maps, OpenStreetMap, Bing Maps, etc.) with coordinates in
meters,

e EPSG:32633 - UTM Zone 33N (WGS84), and

e EPSG: 32733 - UTM Zone 33S (WGS84).
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8 UNSUPERVISED LEARNING

Four of the most common aims of remote sensing data analysis are clustering,
dimension reduction, regression, and classification.

8.1 Clustering

Clusters are groups of objects that share common characteristics. Clustering
is the process of dividing a dataset into such groups, so that the objects within
each cluster are as similar as possible to one another, while being as different
as possible from objects in other clusters. In practice, this means minimizing
the distance between data points within the same cluster and maximizing the
distance between points belonging to different clusters. The main challenge
lies in defining what “similarity” means. Clustering is one of the most widely
used techniques in unsupervised learning, where the goal is to discover
hidden patterns in data that are not labeled in advance.

All clustering techniques consist of two main steps: calculating the similarity
measure between data samples (distance) and applying a clustering algorithm
to group similar objects. The similarity measure can be defined as the distance
between different data points, and it represents the strength of the
relationship between two data samples. It can be defined in different ways
depending on the particular application, and it is significant for clustering.
The most commonly used distance measures are Minkowski distance,
Euclidean distance, Manhattan distance, Chebyshev metrics etc. (Figure 48).
Minkowski distance is a generalized similarity metric and can be used for
both ordinal and nominal variables. It is given by

n 1/p
Dixyy = <Z|Xi - }’i|p>
i=1
where X, Y are independent variable vectors of n length and parameter p
controls the type of distance used. If p =1 the distance becomes the
Manhattan distance, for p =2 the Euclidean distance and for p = oo the
Chebyshev distance. Euclidean distance measures the straight-line (shortest)
distance between two points. Manhattan distance, also called city-block or
taxicab distance, is the sum of the absolute differences across all dimensions.
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Instead of taking the direct path, it measures distance as if movement is
restricted to a grid, like walking along city blocks. Chebyshev distance,
sometimes referred to as the maximum metric, is determined by the largest
absolute difference along any single dimension. It can be visualized as the
number of moves a king would need on a chessboard to travel from one
square to another. Cosine similarity, instead, measures the cosine of the angle
between two vectors, capturing their orientation while ignoring their
magnitude.

The clustering is an optimization problem. The aim is to find clusters that
optimize an objective function that is subject to the same constraint. i.e., it is
necessary to define an objective function that minimizes the distance within
the cluster. However, pure minimization of distance is not a solution since the
result can be that each data point represents a cluster. Therefore, constraints
such as defining the number of clusters in advance or setting a minimum

distance between clusters are often required.

(]
@
‘ (a) . ®)
@
o b
© () '

Figure 48 Similarity measures (a) Euclidean distance, (b) Manhattan distance, (c) Chebyshev
distance, (d) Cosine similarity.
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Cluster algorithms can be classified into several categories, including;:

e Exclusive clustering: each observation belongs to only one definite
cluster (such as K-means),

e Overlapping clustering, which uses fuzzy sets to cluster data so that
each point can belong to two or more clusters with different degrees
of membership (for example, fuzzy c-means),

e Hierarchical clustering, which has two versions: agglomerative
clustering and divisive clustering. Agglomerative clustering works in
a bottom-up approach. It is initialized by setting each sample as its
own cluster and merging the closest (most similar) pairs in each step.
Divisive clustering uses a top-down principle i.e. it starts from one
cluster containing all data points. At each step, the clusters are
successively split into smaller clusters according to some dissimilarity,

e Density-based clusters, which are based on the assumption that the
clusters are dense regions in space separated by sparse regions. It is
used to find non-linear shape structures (for example, Density-Based
Spatial Clustering of Applications with Noise (DBSCAN)), and

e Probabilistic clustering: data points are clustered based on the
likelihood that they belong to a particular distribution. The Gaussian
Mixture Model is one of the most used methods.

8.1.1 K-means

K-means clustering is an interactive centroid-based process that groups
unlabeled data points into K non-overlapping clusters by using mathematical
distance measure. It is one of the most widely used unsupervised ML
algorithms. The aim is to minimize the sum of distances between data points
and their centroids. The k-means clustering algorithm consists of a few steps:

1. Users specify a number of clusters K {c,...,c% } .
2. Algorithms initialize K centroids so that they are placed as far as
possible from each other. Calculate the centroids of clusters such as

i— L
G

3. Each data point is assigned to the closest centroid based on a distance

vec) X Where i represents the i-th iteration.
i

metric (usually Euclidean distance) i.e., minimizing an objective

138



Introduction to Geospatial Artificial Intelligence

function. For the objective function, which represents the quality of
clustering, the sum of error (SE) is often used
J=3K, Dixec; (X — u;)? where x represents the data sample and wu;

represents the centroid to which x has been assigned u; = %erci X.
L

4. After points are assigned to clusters, the centroids are recalculated.
The new centroid is the mean of all the data points within the cluster.

5. This process is repeated iteratively until centroids no longer change or
a predefined number of iterations is reached.

K-means is an efficient, relatively fast, and scalable clustering algorithm. One
of the biggest challenges is selecting the number of clusters K and sensitivity
to randomly chosen centroids. If initial centroids are poorly selected,
algorithms can get stuck in local optimums that are very different from the
global optimum. Due to that, usually multiple runs are performed, and a
solution that minimizes the similarity measure is chosen. Another key issue
in clustering is selecting the optimal number of clusters. The appropriate
number of clusters can be chosen based on prior knowledge about data or by
using a heuristic approach.

Example: Classify the Sentinel-2 image into 2 classes: forest and non-
forest.

a4

As seen in the previous chapters, a satellite image consists of multiple bands
such as Red, Green, Blue, Near-infrared etc, and each pixel is represented as
a vector of its spectral values across different bands. Application of the k-
means algorithm starts with defining the k number of clusters (in this case, the
number of classes that we want to identify on the satellite image). The k
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clusters' centroids are randomly initialized in spectral space. Each pixel is
assigned to a cluster whose centroid is closed based on Euclidean distance in
spectral space. After that, the centroids are updated by averaging the spectral
values of all pixels in each cluster. The process is repeated until the centroids
no longer change significantly.

8.2 Hierarchical clustering

Hierarchical clustering is implemented through a splitting (divisive) or
merging (agglomerative) approach. It uses distance measures where the
number of clusters is unknown. It shows the hierarchy of merging or division
of clusters via a tree-based diagram called a dendrogram. In the dendrogram,
each level represents one interaction of the algorithm. The agglomerative
algorithm works by grouping data one by one based on the distance measure
of all pairwise distances between the data points. For a given set of data points
x; wherei =1,...,N

e Start by assigning each point to a cluster ¢; = x;. The number of
clusters will be equal to the number of data points K = {cy,..., cy}.

e Find the pair of nearest clusters (ci, cj) such that D(ci, cj) < D(ci/, cji),
ve; # c} € K and merge them into one cluster c,. Delete ¢;, ¢; from K
and insert ¢y so that cluster number is equal to N-1.

e Compute the similarity between the new clusters and each of the old
clusters.

e The process continues until all items are classed into a single class of
size N. By using the dendrogram, the number of actually present
clusters is determined.

The distance can be defined in different ways, distinguishing:

e Single linkage clustering (Figure 49 (a)) - The distance between one
cluster and another cluster is equal to the shortest distance (shortest
edge between two nodes in the graph) from any member of one cluster
and any member of the other cluster. It provides good performance
for long, elongated clusters and nonconvex shapes, but it is sensitive
to noise.

e Complete-linkage clustering (Figure 49 (b)) - The distance between
one cluster and another cluster is equal to the greatest distance from
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any member of the cluster to any member of another cluster. It is less
sensitive to outliers, but it tends to create a compact and spherical-
shaped cluster, and

e Average-linkage clustering (Figure 49 (c)) - The distance between one
cluster and another cluster is equal to the average distance from any
member of one cluster to any member of another cluster.

The main advantage of hierarchical approaches, beyond their ease of
implementation, is that they do not require prior knowledge of the number of
clusters. However, they are highly sensitive to noise and outliers and struggle
to handle clusters of different sizes or complex shapes. In addition,
hierarchical methods are computationally expensive, which limits their
scalability to large datasets.

Another challenge of hierarchical clustering is the absence of an explicit global
cost function, which makes it difficult to objectively determine the correct
number of clusters from the dendrogram. In a dendrogram, the bottom nodes
correspond to individual data points, while internal nodes represent clusters
formed through successive merging. The vertical axis indicates similarity
(also referred to as cluster height): shorter branches reflect higher similarity,
whereas longer branches indicate lower similarity. Clusters are defined by
drawing a horizontal cut across the dendrogram at a chosen similarity level,
with all points connected below the cut belonging to the same cluster.

(@) (b) (c)

Figure 49 Similarity measures in hierarchical clustering (a) single-linking, (b) complete-
linking, and (c) average-linking

8.2.1 Density-Based Spatial Clustering of Application
with Noise (DBSCAN)

DBSCAN is a simple and effective density-based clustering algorithm that
enables the identification of clusters with random shapes and sizes. The
principle is that clusters correspond to regions with a high density of points,
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whereas noise is associated with areas of low point density. The DBSCAN is
defined by two parameters ¢ and minPts. € represents the radius used to
define neighbors, i.e. if the distance between two points is lower or equal to &,
the points are considered as neighborhood points, while minPts defines the
minimal number of points within the & region.

For a given data set X containing a total of i =1,..., N objects, DBSCAN
formulates a local density as density(x;) in the neighborhood of the i-th point
as the total number of points in its neighborhood density(x;) = count(N ¢ (xi))
where N.(x;) represents estimation of local density, ie. N.(x;) =
(x;Vj, distance(x;, x;) < €). Based on the number of points in a neighborhood,
objects can be classified into three categories (Figure 50):

e core points (X.qre) - if at least minPts are in the neighborhood of object
Xi,

e border point (Xporqer) - if the number object belongs to the
neighborhood of x.,,. and local density is less than minPts, and

® noise point (X,se) - if in the neighborhood of radius ¢, there are fewer
than minPts of an object and none of them is the core point.

The point x; is density reachable if it is in the neighborhood of x4, The
process begins by picking an unvisited point x;. If a point x; is identified as a
core point, it forms a new cluster (x.;) and all points that are density-reachable
from x.; are added to the cluster. The cluster is then expanded recursively by
examining the neighbors of each neighbor. Points that are not assigned to any
cluster after the process are considered noise.

minPts = 8
» Border point
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Figure 50 Graphical presentation of key definitions in DBSCAN (a) cluster, (b) core data
point, (c) border data point, (d) density reachable object
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One of the main advantages of DBSCAN is that it does not require
specification of the number of clusters. Moreover, it is capable of efficiently
handling noisy data, finding arbitrary-shaped and sized clusters, and it is
mostly insensitive to point ordering within the database. However, it has
some limitations.

The algorithm is highly sensitive to the user-specified parameters global
density threshold e. If ¢ parameter is too high, the algorithm may merge
distinct clusters into a single cluster that should remain separate. On the other
hand, low ¢ value results in misclassifying objects as noise if the density
within the cluster is not satisfied. Therefore, accurate results can be obtained
if the parameter is set to its optimal value. The chosen value plays a critical
role in the clustering outcome. Another challenge is dealing with datasets
with high-density variations since DBSCAN uses a fixed ¢ for all points. € and
minPts parameters are not flexible to handle large differences, resulting in
missing sparse or merging dense clusters. Moreover, dealing with high
dimensionality is limited since the data space grows exponentially with the
increase of dimensionality (a phenomenon known as curse of dimensionality).
As a result, most high-dimensional datasets are sparse, and since DBSCAN
relies on a fixed density threshold, many points may be incorrectly labeled as
noise. High dimensionality also increases computational cost and can degrade
performance. To address these challenges, preprocessing steps such as
dimensionality reduction can be applied before clustering.

8.3 Dimensionality reduction

The number of input features in a given dataset is known as dimensionality.
Although having multiple features can help distinguish between different
objects, handling high-dimensional datasets is challenging due to the curse of
dimensionality. Redundant or irrelevant variables can degrade algorithm
performance, and the computational cost increases significantly.
Dimensionality reduction aims to reduce the number of features that are used
to represent objects while preserving their essential structure and patterns.
For example, in remote sensing, high-dimensional data such as hyperspectral
images often contain redundant or irrelevant information that can lead to
overfitting and require more memory and longer processing time.
Dimensionality reduction helps mitigate these issues by reducing the number

143



Introduction to Geospatial Artificial Intelligence

of features to a manageable size while maintaining the integrity of the original
data set.

The reduction of feature number can be made by:

e Feature selection - aims to identify the most relevant features while
discarding the less significant. Common approaches include filtering,
wrapper methods, and embedded, and

e Feature extraction - aims to create new features by combining the
existing ones, providing the dimensionality reduction without

missing relevant information.

Filtering methods use statistical techniques such as correlation or Chi-square
tests to select optimal features. In terms of computation, they are very fast and
computationally inexpensive.

Wrapper methods are based on using classification techniques (SVM (see
Section 12), decision tree (see Section 13). The model is trained by iteratively
using a subset of features. The feature subset used for training can be created
by using methods such as forward selection (Start with no features and
iteratively keep adding one at a time) or backward elimination (it starts with
all features and after each iteration it removes the least significant). It will
continue until the addition/removal of new features does not improve model
performance. This approach allows the creation of an optimal subset for
model training, thus resulting in higher accuracy, but it is computationally
intensive since it requires training and evaluating the model multiple times.

Embedded methods combine feature selection into the training process. The
model identifies the most relevant features based on the built-in mechanisms
such as Lasso (L1 regularization) and Elastic net (L1 and L2 regularization)
regularization or tree methods (see Section 9.14). Embedded methods are
more computationally efficient than wrapped methods and more accurate
than filter methods.

An underfitted model occurs when it does not have enough parameters or
complexity to capture the patterns in the underlying system, resulting in poor
performance even on the training data. On another hand, including too many
features can lead to overfitting (the model works well on training data, but it
fails during testing). One common solution to reduce overfitting is
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dimensionality reduction, which eliminates redundant or irrelevant features,
helping the model focus on the most informative variables and improving its
generalization ability.

8.3.1 Principal component analysis

Principal component analysis (PCA) is one of the most commonly used
dimension reduction methods. It represents the process of identifying the
principal components of samples, i.e. the variables that capture the most
important patterns in the data. These components are linear combinations of
the original features and are designed to explain the maximum possible
variance in the dataset with fewer dimensions. Essentially, it transforms the
data into a smaller set of features while preserving as much information as
possible. Each component is independent and orthogonal, i.e., each principal
component (PC) does not depend on another. PC is based on the analysis of
the correlation or the covariance structure in the set of measurements X on m
variables for n observations. If the covariance is positive, then the two
variables increase or decrease together (correlated), while a negative
covariance means that one variable increases when another decreases (the two
variables are inversely correlated).

Eigenvectors of the covariance matrix are computed to determine the PCs of
the data. Each eigenvector represents a direction in the feature space along
which the data varies the most, and the corresponding eigenvalue indicates
the amount of variance captured along that direction. Let A be an mxm
covariance matrix. If there exists a nonzero vector x in R™ such that Ax = Ax,
the scalar 4 is called the eigenvalue of A and x eigenvector of A. 1 represents
the amount of variance explained by the corresponding PC, while the vector
x (mx1) represents the direction of that component in the feature space. We
can rewrite Ax = Ax as (A — AL,)x = 0 where [,,, is the mxm identity matrix.

For a nonzero solution (x # 0) this homogeneous system must have no
unique solution for x ie., det(A—AL,)=0. The determinant gives
polynomial equation of degree m in A. Solving this polynomial gives all the
eigenvalues 1;,..., 4, of A. The determined A values are substituted back into
the equation (A — A;1)x; = 0 to calculate the corresponding eigenvectors x.
The eigenvector with the largest eigenvalue 4; is the direction of greatest
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variation (also known as first PC), while m*" larges 4,, is m** PC (4; > 1, >

A3...) (Figure 51).

Let's consider a image with two attributes NDVI and NDWI each with 3
samples.

NDV1, 1 NDWI, —1
NDVI =|NDVI;|=| 0 | NDWI = |[NDWI;| = [ 1
NDVI, —1 NDWI, 0

These four attributes can be combined into matrix of attributes S
NDVI, NDWI, 1 -1
-1 0

NDVI, NDWI,
NDVI; NDWI,

From the matrix, we can compute a covariance matrix A

2 -1

_ cTeo

A=STS = [_1 X ]

g =

deta—=[>"" Tl]=-n*-1=2-41+3=0

A] :3, andlz =1
To find x, we substitute the two eigenvalues into matrix

0 A=l
For 4; = 3, we will have
g = S O
x; + x; = 0 = x; = —x,, therefor all vectors [ — 1]7 are solutions.

For 4, = 1, we will have
eyl

x; — x; = 0 = x; = x,, therefor all vectors [1 1]T are solutions.

The matrix of eigenvectors can be explained as a rigid rotation in a high-

dimensional space in which the covariance matrix is diagonal. When this

transformation is applied to the original data, it is projected onto a principal
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direction (the axis corresponding to the highest variance). The projection of
original data onto each eigenvector gives an idea about the importance of the
feature to the object. The larger values in the corresponding component of the
principal vector mean that the feature is important in explaining the
variability of the data.
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Figure 51 Graphical representation of a PCA transformation in 2D.

Principal components are new variables formed as linear combinations of the
initial variables. Those combinations are done in such a way that PCs are
uncorrelated (i.e., orthogonal to each other). There are as many PCs as
variables in the data, but they are designed in such a way that most of the
information within the initial variables is compressed into the first
components. The first PC corresponds to the direction of maximum variance
in the dataset, while the second PC is orthogonal to the first and captures the
maximum remaining variance, and so on. To reduce dimensionality, the PCs
are ranked in order of decreasing eigenvalue, and only enough components
are retained to preserve a desired percentage of the total variance —commonly
around 85-95%. In this way, dimensionality is reduced without losing much
information since components with low information are discarded. However,
a key limitation is that PCs are often less interpretable, as they are
combinations of original variables and do not have a direct, intuitive meaning.
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Principal component analysis (PCA) is based on analyzing the variance in the
data and does not require any tuning parameters. It is non-iterative and does
not suffer from issues related to local optima. Additionally, directions with
small variance typically capture mostly noise, so retaining only the top
principal components can effectively reduce noise in the data. However, PCA
is limited to linear projections and therefore may not perform well when the
underlying structure of the data is nonlinear.
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9 OPTIMIZATION

Imagine standing on a hill, trying to figure out which direction to throw the
ball to get downhill the fastest. To determine that direction, we need to know
how steep the ground is and in which direction it goes down. The slope of a
line is the rate of the vertical change (change in the y-coordinate (rise)) for the
corresponding change in the x coordinates (run) for points on the line. This is
the basic idea of gradient-based optimization. In reality, the slope of the
terrain is not constant, and it changes from point to point. Due to that, for
nonlinear functions, the rise over run presents the average rate of change
between points. The main idea is to measure the slope between two points
(f(x) and f(x+h)) that are close together to find the rate and direction of the
change (Figure 52), i.e.

raise Ay f(x+h)—f(x)
run  Ax h

slope =

As two points get closer (i.e. h —0), the limit is the derivative at point x, which
represents the exact slope of the curve at the point.

asrel

run

() (b)
Figure 52 Run-over-rise (a) constant slope (b) slope constantly changes (non-linear function)

Let us consider the terrain slope (orange curve in Figure 52) represented by
the function f(x) = x?> and suppose we want to determine the slope at the
point x=1. The first derivative is equal to f (x) = 2x which represents the
equation of the tangent and the slope at the point x is equal to 2. Meaning that

149



Introduction to Geospatial Artificial Intelligence

the function increases at a rate of 2 units (rise) for every 1 unit increase in x
(run).

Let fbe a predictor that maps an input x to an output y. Most machine learning
algorithms involve optimization by minimizing or maximizing a function of
f(x). The f(x) is referred to as the objective function or criterion. The objective
function is minimised through the loss function, also known as the cost
function. The loss function L(f (x,w), y) measures the difference between the
prediction (obtained by applying the model with parameters w to make a
prediction on x) and the true value y. It measures the model's performance by
calculating the training error and reflects how far the prediction is from the
actual outcome y. The ultimate goal is to minimize the loss function during
the training phase to optimize the model parameters, i.e.

n
min > Li(f (i, ) y1)
i=1

where x; are the input data, y; are the output data, and w; are the model
parameters that need to be optimized. The optimizer determines how the
network updates its parameters based on the loss function. To solve the
min,, L(f (x,w),y) , a gradient descent algorithm is frequently used.

9.1 Gradient

Let f:2 € R" - R™ be a function that maps n dimensional vectors to m
dimensional space, where 2 is a subset of an Euclidean space. Formally, if
there exists a unique linear map Df (xy): R™ — R™ such that

lim |If (xo+h)—f (x0)=Df (x0)[h]l] _

0
|In][-0 IR ’

the function f is differentiable at x, and Df (x,) is called the derivative of f at
x,. In the case of a univariate function (m=n=1), the derivative Df (xy) = f (x,)
corresponds to the slope of the tangent line at the point x,. Moreover, the best
linear approximation of f around x is defined as:

g(x) = f(xp) + f (x0) - (x — xp)

and it geometrically corresponds to the tangent line at the graph of f at the
point (xo, f(xo)). Similarly, in the case of a multivariate function (for any
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m,n > 1), the derivative Df (xy) defines the tangent plane of fat (xg, f(xy)) €
R™*™ which is defined by the equation

g(x) = f(xp) + Df (xp) - (x — x0).

This represents the best linear approximation of f around the point x;, i.e., it
provides the slope of f(x) at that point.

If Df (x) exists for all x € 2, we say that it is differentiable. If addition, if Df(x)
is continuous in x, the fis continuously differentiable.

Since Df (xy) is the best linear map that approximates f, it can be represented

as a matrix multiplication
Df(xp) = ]f(xo) “h
where J¢(x) is known as the Jacobian of f.

Iff(x)=fi(xq,. ., x0), ) fm(x1, ..., %) is the vector-valued function, then its
Jacobian is

[Df (xp)];; = % (xp) i.e., following mxn matrix
J

0f1 0f1

a_xl (x0) .. E (%0)
Df(xo) = of : o :
a_xrf (x0) . ﬁ (%0)

If fis real-valued, the Jacobian Df (x,) reduces to a row vector:
0 0
Df (xo) = [6_;1 (xp) - é(xo)] :

The transpose vector consisting of partial deviation with respect of each input
is called the gradient of f at xpand it is often denoted asVf(x,) i.e.

Df (xp)(h) = Vf(x) - h
The gradient has several important properties that are relevant to
optimization:

e The direction of the gradient Vf(x,) at a particular point x, indicates
the direction in which f increases the most locally around x, (steepest

ascent direction). Consequently, the opposite direction, —Vf(xy),
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points toward the direction in which f decreases the most (steepest
descending direction),

e The magnitude of the gradient vector represents the rate of the fastest
change (i.e. how steep the slope is). If the slope is negative, it means
that a small change in x results in a decrease in f(x). Similarly, if the
magnitude is positive, a small change in x results in an increase of f(x),
and

e At any point, the gradient vector Vf (x) is orthogonal to the level set
of f at x. In 2D, these level sets correspond to contour lines.
Consequently, moving along the contour line does not change f,
whereas moving perpendicular to it results in a maximum or

minimum change in f.

9.1.1 Basic geometrical properties of functions

Convexity: The zero-order definition states that a function f is convex if its
domain 2 is a convex set, ie. if for every x,xg €ER and 0 <A <1 the
inequation

fQx + (1= Dxp) < Af (x) + (1 = Df (xp).

Let consider f(x) = x* and pick two points x = 1, xo = 3, and 1 = 0.5.
£(05-1+0.5-3)<0.5-f£(1)+ 05 f(3)

f(2) £05-14+0.5-9 ie. since 4<5, the zero-order condition convexity

holds.

Zero-order convexity illustration for f(x) = x?

16 4+ — f(x) =x2
=== Line segment connecting f(x) and f(y)
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Geometrically this mean that for each pair of points (x,f(x)) and
(x0, f(x0)) that lying of the graph of f, the connecting line segment remains
above the graph.

In addition, it is possible to define convexity in terms of first and second-order
conditions. Let function f: R™ — R be differentiable. The fis convex if and only
if for every x,xy € R"the inequality  f(xp) = f(x) + Vf(x)T(xg — x) is
satisfied.

A twice differentiable function f: R™ — R is convex if the second derivative is
always greater than 0. Let f be a function and x is a point in the domain of f.

1t L > 0 the fis convex at x, , if &S < 0 then fis concave T x, if &F — 0, then
dx} 07" ax? 07 ax? !

x is a candidate for a local maximum, a local minimum of an infection point
(a point in which f changes from being convex to concave, also known as a
saddle point).

For example, the function f(x)=x? is convex since f ‘=2xis a
monotonically increasing function and f~ =2 > 0.

There are two important properties of the convex function:

e Any local minimum is also a global minimum. Due to that, the local
search algorithms are effective for optimization, and
e For each pair of points (x, f(x)) and (xy, f(xy)) lying on the f, the
connecting line segment must be above f everywhere. If a function is
differentiable, this tangent is the linear function, i.e.
L(x) = f(x0) +{Vf(x0), x — xp)-
Convex functions are desirable because they are easier to optimize, as any
local minimum of a convex function is also a global minimum. For example,
the squared error is a convex loss function. Many loss functions that are used
in ML involve norms, and all norms are convex.

Strong convexity: A function fis a-strongly convex for a > 0 if for all x,x, €
0

o) 2 £ + V@ (o — ) + 2 |lxg — xI|-
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A strong convex function always lies above a quadratic approximation
(parabola) that passes through the point (x, f(x)). If a function is strongly
convex, then it has one global minimum.

Lipschitzness: A differentiable function f is L-Lipschitz if the norm of the
gradient is bounded by L, i.e.

[IV£1] < L, implying 1£ o) = [f () + VF () Gg = ]| < 5| 1o = 1| for all
x,xp € .

The function that satisfies a Lipschitz condition on {2 is uniformly continuous
on . Geometrically, the graph of L-Lipschitz stays within a cone with slope
+L, i.e., if for all x the function never rises above or falls below the boundaries
defined by this slope. This limits how quickly the function output can change:
a smaller L means a slower change.

Smoothness: A differentiable function f:2 — R is f-smooth if its gradient is
p-Lipschitz continuous, i.e.

IVf ) —ViWI, < Bllx-yl[, vxy e

The f-smoothes ensures that the gradient cannot change too quickly and must
be bounded by f value. The smoothness implies a quadratic upper bound on
the function, i.e., in a fixed point x, the convex function lies above its tangent
line, and the smooth convex function always lies below the parabola which
passes through the point (x,f(x)) (Figure 53).

The function f(x) = x? is L=2 smooth since f' = 2x. For the point x, = 1 the
tangent part (lower bound) is
f)+f'(x—1) =1+ 2(x — 1) = 2x — 1, while the upper band is

f(1)+Vf(1)(x—1)+%(x— D2=1+2(x—-1)+(x—1)% =x?
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Convexity and Smoothness of f(x) = x?

— fix)=he?
8 Tangentat xp=1
= Quadratic upper bound (L=1)
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Figure 53 Convexity and smoothness of f(x)=x2.
For a twice differentiable function, an equivalent condition for f-smoothness
is
0L V3f(x) 2 Bl
where I; is the identity matrix, the lower bound comes from convexity, and

the upper bound comes from f-smoothness of function. Moreover if x* is the
minimum point of a f-smooth function f, then for all xo € 2 ||Vf(x))|| , <

ﬂ||xo—x|

be small. This means that any algorithm following the gradient of the function

Yy i.e,, if point x; is close to the x* then the gradient of x, must also

should slow down as it approaches the minimum. Due to that, the smoothness
of the function determines the simplicity and efficiency of minimization by
using gradient descent.

9.1.2 Chain rule

The chain rule is essential in optimization, especially when working with deep
. . . . . . d
learning and composite functions. The chain rule is often written as % =
0

%;Tg where fis a function of g, which is itself a function of x,. It enables the
0
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correct calculation of the gradient when a function is made up of layers of
other functions.

For example, suppose you want to monitor changes in the water level
during the day. The water level W; depends on the amount of rainfall r,

and they are related through a function W, = f (). The first derivative %

can be used to determine the rate of change of water level with respect to
the rainfall. However, the rainfall changes over time t, and it can be

modeled as a function of time, i.e., r = g(t). The derivative % represents

the amount of rainfall accumulated over time. The change of the water

level during the day is represented as a composite function W, = f(g(t)).

To determine the derivation of the function, it is necessary to determine the
derivation of the composite f o g. If f and g are functions such that g is
differentiable at x;, and fis differentiable at g(x,), then the composite f o g is
differentiable at x, and

D(f ° g)(x9) = D(f)(g(x0)) ° Dg(xp).

If D(f)(g(xo)) and Dg(x,) are linear, their composition is also linear. The
chain rule for invariant functions has a direct analogue in multivariate
functions, and it can be written in the form of Jacobians as

D(f » g)(x9) = (Df)(g(x0))Dg(xp).

The chain rule can also be directly applied to the inverse of a function f. Let f
and f ! be differentiable. Then for any x € range(f)

DF 1) = A (f 7 (x0))

9.1.3 Extreme points

Finding the extreme points of a function is of exceptional importance. The
minimum of the function f can be found between points that satisfy f ‘®) =0
(also known as stationary points). Assume that the function f: 2 € R"™ - R, is
convex and differentiable and defined on a subset 2 of R™. The xy € 2 is a
local minimum of fif f(x;) < f(x) for all x within a small neighborhood of x,.
The x* is a global minimum of fif f(x*) < f(x) forallx € .
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In optimization problems, the aim is to reach the global minima. However, in
many cases, the problem can be so challenging that finding a local minimum
is considered a successful outcome.

If xp € int(2) is a local minimum, then Vf(x,) = 0; therefore local/global
minimum belong to the set of stationary points defined as {x € 2 |Vf(x) =

0}.

As already mentioned, the derivative is the best linear approximation of a
function. The first-order Taylor expansion can be used to formulate this
concept rigorously as

f(x) = f(xp) + (Vf(x),x —x0) + 0||x — xpl
satisfies lim Ifl(;_;oli = 0. The little-o notion o||x — x|| is used to express that
X=X —A0

one function grows much more slowly than another. The first-order Taylor

, ie., the approximation error

expansion is a linear function that approximates the function around a certain
point. In 1D space, this is tangent to the curve, while in multidimensional
space, it is a hyperplane that is tangent to the hypersurface at that point.
However, to find local minima in multidimensional space, simply finding a
point where the gradient is zero is not enough, and the Hessian matrix is
needed.

The Hessian matrix encodes how the gradient changes with respect to each
input variable, i.e., it describes the curvature of the loss landscape function in
every direction. It is used to build the quadratic approximation of the
function, enabling methods to find critical points efficiently, such as saddle
points or flat regions.

In order for a critical point x;, to be a local minima in multiple dimensions, the
matrix of second derivatives D?f(x,) = V2f(x,) (i.e., Hessian matrix) of the
objective function f at the point x, must be positive definite, that is all its
eigenvalues are positive (Figure 54 (a)). A local maxima has the largest value
in the neighborhood and a negative definite Hessian (Figure 54 (b)), If the
Hessian is indefinite (eigenvalues of mixed sign) x, is a saddle point (Figure
54(c)), while the singular Hessian (zero determinant) indicates that the test is
inconclusive.

One of the most important features of convex function is that any local
minima guarantees a global minimum. Although some convex functions have
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flat regions rather than a single point, any point within that region is a suitable
solution. On the other hand, nonconvex functions (which are very often in
neural networks) have many local minima. The local minima that have a
similar value of the cost function are not problematic for optimization.
However, if local minima with a high cost in comparison with global minima
are common, that can represent a challenge for gradient-based methods.
Moreover, in high-dimensional space, saddle points are more common and
more likely to have a higher cost than local minima. The large flat regions
(plateau) in the loss landscape represent a major challenge for optimization
since the gradient and the Hessian are all zero and this slows or stalls the
optimization.

Contour plot with critical point

@ Critical Point (0,0) ~~._

fix, y)
p

-2.0 -15 -1.0 -0.5 0.0 05 10 15 2.0

(©) (d)

Figure 54 (a) Hessian is positive defined, (b) negative defined, and (c) Hessian is indefinite.
(d) The critical point is (0, 0) since V{(x)=0. Since the Hessian is indefinite, the critical point
represents the saddle point
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9.2 Gradient Descent

In Machine Learning, we aim to find the analytically set of parameters that
minimize the loss function. In general, function minimization is performed

under the structural assumptions that the function is convex and smooth.

The gradient descent algorithm iteratively approaches the point at which the
function f achieves its minimum by taking the steps in the direction of steepest
descent. The gradient at the current position is scaled by a learning rate and
subtracted from the value of the current position (makes a step). The gradient
is subtracted because we want to minimize a function. This process can be
written as:

Wni1 = Wy — NV (wy)

where 7 is the learning rate that scales the gradient and thus controls the step

size.
The main steps of the gradient descent method are:

1. Initialize weights randomly wy,

2. Determine a descent direction by computing the gradient at this point,

3. Along that direction, make a scaled step in the opposite direction of
the gradient and update the weights with the objective to minimize
the losses (Figure 55),

4. Repeat steps 2 and 3 until either the maximum number of iterations is
reached or the algorithm converges to a local minimum within a
specified tolerance (threshold).

For most functions, the gradient will not reach exactly 0 in a reasonable
amount of time. Therefore, stopping criteria need to be defined. Ideally, the
algorithm stops once the gradient is sufficiently close to 0 i.e. if the norm of
the gradient is below some predefined threshold ||VL(W)|| < threshold.
Gradient descent involves 5 parameters: the starting point (is often an initial
guess or randomly initialised), the gradient function (computes the gradient
of the specified original loss function), the learning rate (which scales the step
size), the maximum number of iterations and the tolerance (which
conditionally stops the algorithm when convergence is achieved).
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Gradient Descent Step on f(x) = x?

10 A

x<0 x>0
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Figure 55 Gradient decent for function f(x)=x? with learning rate n=0.4. The global minimum
is at x=0. Since f'(x) = 0 the gradient stops here. For x<0 the f'(x) < 0 so we can decrease f by
moving to the right. For x>0 the f'(x) > 0 so we can decrease f by moving to the left. The
starting point is set to x, = 2, the slope of the tangent line at that point is 4. The new point
will have coordinates x; =2 —0.4-2-2=2—1.6 = 0.4 and y; = 0.4%2 = 0.16.

9.2.1 Choosing the step size

The learning rate determines the step size taken in the direction of the
gradient. There are several approaches that can be used to determine the step
size (learning rate) based on characteristics of the loss function: fixed step size,
exact line search, and backtracking line search. In the first, the fixed learning
rate is selected. However, the learning rate has a strong influence on the
algorithm performance since:

e the smaller the learning rate, the slower the gradient descent
converges. If the step size is small compared to the local curvature, the
gradient direction w,,; is very similar to or the same as w,,. As a result,
the algorithm takes more steps or may reach the maximum number of
iterations before arriving at the optimal point (Figure 56 (a)). In

addition, it could get stuck in the local minimum.
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e If the learning rate is too big, the algorithm may not converge to the
optimal point (jumping around) or even diverge completely to

random locations on the curve.

Gradient Descent on flx) = x? (Learing rate = 0.1) Gradient Descent on f{x) = x* (Leaming rate = 0.3)

16 7 181y
\ fl
14 \ 1 14
2 Itera\tions‘ 70, 12 It\era‘tions 18

fix)
fix)
-

01— fix)=»

Gradient Descent on f{x) = x* (Learning rate = 0.7) Gradient Descent on f{x) = x* (Learning rate = 0.9
1 16 /
/
1 14
12 Iterations: 18 12 Iterations: 70

fix)
fix)

0] — fix)=»*

Figure 56 the gradient descent steps for minimizing the function f(x)=x2 with different
learning rates.

The best step size depends on the local curvature of the function. In gradient
descent, the ideal learning rate is inversely proportional to the curvature. If
curvature is high, the small step size should be used, while for wide curvature,
the larger learning rate is preferable. Consequently, the optimal learning rate
to ensure convergence is defined as

1
s

where L = maxf"(x) is the Lipschitz constant.
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For example, if the function is quadratic f(x) = x?, the second derivative
is constant across all x ( f" = 2) so the curvature is also constant. The safe
learning rate in that case would be n < 0.5. Figure 5 shows the trajectories
and number of interactions for different learning rates and a given

threshold (||Vf(w)|| < 10~°).

In higher dimensions, things are more complicated since curvature is given
by the Hessian matrix. The optimal learning rate is inversely proportional to
the largest eigenvalue of the Hessian:

1

‘rl:

Amax

where 4,4, corresponds to the steepest curvature direction. Any smaller or
slightly larger value will yield slower convergence (Figure), while the
learning rate two times larger than optimal will cause divergence. However,
computing and storing Hessian matrices in large learning models come with
extreme computational costs. Fortunately, the Hessian-vector product can be
approximated without computing the full matrix by using finite differences.
The fixed-size method is commonly used for low-dimensional problems.

In exact line-search, the best learning rate is resolved as a 1D optimization
problem. Given a starting point and the direction of the gradient, the learning
rate is chosen to minimize the function in that direction, i.e.

r]k = argminnzof (xk - UVf(xk))-

Solving this equation exactly is very time-consuming since minimization
problems need to be solved in each step. The main advantage of this method
is that information about the function's smoothness is not needed in advance.
On the other hand, an exact line search is not used very often since it is more
computationally demanding and not much more efficient compared with
backtracking.

Backtracking line search is based on the idea of starting with a large step size
and reducing it approximately. It starts by choosing two parameters 0 < <
1 and a < 1. Atiteration k, starting from n = 1, while

f (xk -1 Vf(xk)) > f(x*) —an ||f(xk)||z
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i.e., the Armijo condition is not satisfied, shrink the step size by setting n = fn
and repeat the step. Otherwise, perform the Gradient Descent update. This
method is simple and is frequently used in practice.

9.2.2 Convergence of gradient descent

As already mentioned, gradient descent begins with a random initialization
of parameters, followed by an an iterative optimization process aimed to
trying to find the stationary point of the objective function. The convergence
depends on the selected learning rate and the structural properties of function
itself. While establishing convergence is fundamental, the convergence rate
is equally critical. Convergence rate quantifies how fast the algorithm reach a
specific error tolerance and it is usually measured by the number of iterations
needed to converge. In practice, guaranteeing efficient function minimization
is only possible by making certain assumptions about convexity and
smoothness.

Let f: R™ — R be differentiable, convex, and -smooth function with >0, i.e.,
[IVF(x) = VFI| < Bllx = .
Then, Gradient descent with fixed step size n = 1/f satisfies

0

||x —x*|

2

f(xk) —fx") < 277—k

where f(x*) is the optimal value. The gradient descent is guaranteed to
converge and it has a convergence rate of 0(1/k), where k is the number of

iterations.

Reaching the global minimum may require too many iterations, so in practice
we commonly aim to reach e-suboptimal point f(x*) — f(x*) < €. The value
of € represent the tolerance (how close we want to be to global minimum
f(x™)), and it depends on the specific application. To reach e-suboptimal point
we need 0(1/e€) iterations. The very small e will lead to a large number of

iterations. For example, if € = 107° the 10° iteration is needed.

If function f is differentiable, possibly non-convex and f-smooth, finding the
global minimum under this assumption is not guaranteed. Under this
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assumption, the aim is to reach e-stationary point x i.e. we want to find x* € R
such that

[IVF(x)I|, <€ wheree >0

Gradient descent with fixed step size n = 1/f satisfies

mineo, &|lF GO, < 2 (FG) - F).

The gradient descent rate for the optimization of a nonconvex function is
0(1/Vk) or 0(1/€?). For example, if € = 107°, then the number of iterations is
10". This is the worst-case scenario, and convergence in practice is faster.
However, there is no deterministic algorithm that can guarantee better
performance.

Additionally, if function f is differentiable, f-smooth and a-strong convex,
then the gradient descent with fixed step size n =2/(a +p) or with
backtracking line search satisfies

a\k B
1—5) Lo<y<t.

2
k _
therey —(

F() = ) < ¥ ] =27

The ratio k = g represents the condition number of f. The condition number
can be more precisely interpreted by using the Hessian matrix, i.e., x = 'Z’ﬁ
where 4,44 is the largest and A,,;, is the smallest eigenvalue of the Hessian.
The smaller the condition number is, the faster the convergence.
Consequently, the larger f8 the slower the convergence. Geometrically, a high
condition number produces elongated contour lines, a situation known as ill-
conditioning. As the contours become more elongated, gradient descent
deviates more from the optimal direction toward the minimum. (Figure 57).
As a result, gradient descent tends to bounce back and forth along directions
of high curvature, producing a zig-zag pattern and slower convergence. For
small condition numbers, the contours are well-rounded, and gradient
descent moves more directly toward the minimum. The convergence rate
under strong convexity assumption is exponentially fast O(y*). Therefore,
the e-suboptimal point is reached in O(log(1/€)) iterations. For example, if

€=10"° the 0(log(106)) ~ 14 iteration is needed. So, the assumption of
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strong convexity leads to much faster convergence and guarantees the

D

(a) (b) (c)

reaching global optima.

Figure 57 Diversion of gradient (orange) from optimal direction (dashed grey line) to the
minima (blue dot) as countries get more elongated.

9.3 Subgradient method

A vector g, € R™issubgradientof f:R™ > Ratx € Qifforallx, € 2

fxo) = f(x) +gx (xg—x)

Any vector that satisfies the above condition is called a subgradient of f at x.
If function f is differentiable at x, then its gradient is the only subgradient at
that point. On another hand, if fis a non-differentiable function, there exists
a set of subgradients at point x. The set of all subgradients is known as the
subdifferential of f at x. A point x* is a minimum of a nondifferentiable
function fif one of subgradients of f at x* is equal to 0 i.e. if the subdifferential
contains zero.

For example, the function f(x)=|x| at the point x =2:f(x) =x is
differentiable and gradient Vf = 1. However, at the point x = 0 the function
is non-differentiable (it is not possible to find a parabola that always lies above
the function). Nevertheless, any g, € [—1,1] satisfies inequation |xy| = g, - xy
for all x) € R. Therefore, the subdifferential of fat x=0 are all values between
-land 1, i.e,, itis possible to draw many lines with slope in this range that will
stay below the function.

From an optimization point of view, a non-smooth function is one that is non-
differentiable everywhere. Consequently, if the function is not-smooth, i.e.,
non-differentiable, we cannot rely on gradients. Instead, we replace the
gradient with a subgradient to perform iterative optimization:
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Wnt1 = Wnp — NGn-

The subgradient is not a descent method in general since the update is not
necessarily performed in the descent direction, i.e.,, in contrast to GD, it
doesn’t guarantee that the objective function decreases at every iteration.
Instead, the subgradient uses different directions and it ensures convergence
by tracking the best iteration found, i.e.,

Whest = argminne{o,...,k}f(wn)

9.4 Stochastic gradient descent

Gradient descent is computationally expensive and demands a lot of effort
(especially since only small steps are made in that direction). The stochastic
gradient descent (SGD) can address those limitations by sampling the
gradient. Rather than computing all gradients at each interaction, the SGD
randomly pick a single instance (or a small batch of instances) and update the
weights based on the gradient of the loss for that instance only

Wni1 = Wy — NV f(Wy; x;).

The instance is chosen uniformly at random, allowing SGD to provide an
unbiased estimation of the gradient. Although the computation is much
faster, it can introduce noise in the estimation of gradients and make a step in
the wrong direction. However, if the learning rate is sufficiently small the
errors tend to average out. Consequently, the gradient computed from one
instance’s loss can be seen as an approximation of the true gradient.

The SGD is not limited to a single instance. Instead, a a small subset of training
data can be sampled randomly I, c {1,...,n}. The parameter update then
becomes:

Wni1 = Wn — 77%2 Vf(wn)
(€]},
approach known as mini-batch SGD. After processing one mini-batch, another
randomly chosen subset of samples is used for the next update. This process
continues until all training samples have been used once, completing one
epoch of training. The procedure is then repeated for multiple epochs until
convergence.
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For example, suppose that the training dataset contains 16000 data
samples and the mini-batch size is set to 16. Each gradient will use 16 data
points instead of 16000. That speeds up the gradient computation 1000
times. Although the resulting gradient estimate will be noisier, it provides
a direction close enough to the true gradient according to the law of large
numbers.

The mini-batch has two main advantages: it reduces the noise in gradient
estimation (lowers the variance) and enables the advantage of fast matrix
operations and parallelism.

In machine learning, parameters and hyperparameters refer to different types
of model variables. Parameters are learned directly from the training data,
and used to define the model's internal, adaptable state. They are not
predefined but rather iteratively optimized during the training process, since
learning them is the primary goal. For example, weights and biases in neural
networks are parameters that are adjusted during model training: they
encapsulate the model's knowledge and directly determine its prediction on
unseen data.

On the other hand, hyperparameters are manually selected before training
begins and used to control the learning process and the models overall
behavior. They influence crucial aspects such as convergence speed, stability,
and generalization ability. Examples of hyperparameters include the
regularization strength in a regression model, the learning rate, the number
of layers in a neural network, the number of trees in Random Forest. Selecting
appropriate hyperparameters often involves systematic search strategies such
as grid search.

The mini-batch size is one of the most important hyperparameters and it
varies for different applications, architectures and available computing
power. Large batches will result in less noisy estimation of gradient ensuring
convergence in fewer epochs but it can lead to lower generalization and a
higher risk of overfitting. On the contrary, small batches require less
computation and perform more frequent weight updates. The batch size
should be a power of 2 to fully exploit the potential of the GPU.
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The SGD convergence behavior typically exhibits three stages. At higher
levels, the SGD generally points in the same direction resulting in a positive
gradient. In the stationary phase gradients are smaller but the noise level
remains almost the same, causing updates to point in varying directions and
sometimes yielding a negative inner product. gradients from different
samples point in almost random directions, causing the parameters to bounce
back and forth around the minima. As a result, convergence with a fixed
learning rate is not guaranteed. To address it, a large learning rate is used
early in the training to get close to the optimum, followed by a gradual decay
in the learning rate to reduce the fluctuations (reducing the noise by reducing
the step size). When SGD gets close to the optimum the learning rate needs to
be small enough to average out noise and allows SGD to settle into a stable
state. Batch size and learning rate are highly correlated: increasing the batch
size reduces gradient variance, enabling the use of a larger learning rate. On
the contrary, small batch size leads to noisy gradient estimation and a smaller
learning rate needs to be used to prevent unstable updates. The small batches
require less computation (since fewer samples are used), converse to flat
minimum, and perform more weight update than large batches but
parallelizing small-batch SGD is highly limited. The large batch enhances the
computation parallelism and can speed up convergence. However, it typically
leads optimizers to converge toward sharp minima, which can reduce
generalization ability. Imagine a loss landscape as a 1D curve, a minimum is
flat if the loss changes slowly in the wide region around the optimum
(indicated by small eigenvalues of Hessian) (Figure 58). In contrast, a sharp
minimum occurs where the loss increases rapidly around optimum (high
eigenvalues of Hessian matrix). Models that converge to sharp minimum are
more sensitive to small changes in the input data or model leading to the
lower generalization ability.

Let f be a f-smooth convex function. For SGD with fixed step size n = 1/8,

Blxo—x"I” | o?

we have E[f (x*)] - f* < = 26

*llz 2

[I2xo—x c . 4 .
where ————- represents optimization term, and Y represents a variance

floor that is constant and cannot be reduced by continuing iterations with the
same fixed step.
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Figure 58 Visualization of flat and sharp minimum

The optimization term converges as 0(1/k). Using the diminishing rate n =

1/BVk removes variance floor and lead to convergence rate of 0(1/ Vk).

When f is a-strong convex and f-smooth, using the fixed step size n <1/
we obtain E [f (xk)] —fr< O(e_“k) + 0(7702) where o2 is gradient variance.
The first term indicates that SGD converges rapidly to a neighborhood of the
optimum but then it oscillates around it due to variance in the gradient. The
common practice is to use a fixed learning rate until progress stalls and then
reduce it by some factor. If the diminishing learning rate n = 1/ak is used than
E[f(xk)] —f*<0(1/k), ie, to get e-suboptimal solution the 0(1/e) is
needed.

The SGD reduces computational cost per iterations which is important
especially for large training sets, but also it will make much slower
convergence per iteration (increases the number of iterations) compared with
the GD. The comparison of computational cost between GD and SGD for a
strong convex function is given in Table 9.

Table 9 Comparison of complexity of GD and SGD for strong convex function. The d
represents the number of feature per sample

Number of Cost per iteration Total cost
iterations
GD O(log(1/€)) on-d) O(n-d-log(1/e))
SGD 0(1/e) 0(d)or0(b-d)for |0(d/e*)or0(b-d/e?)
mini batch
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The SGD is more sensitive to the e-accuracy, while the GD is more sensitive
to dataset size. For large 1, the SGD results in lower computational cost.

9.5 Accelerated SGD

The accelerated versions of SGD can significantly improve the convergence
speed and the quality of the obtained local minimum. One prominent
example is the SDG with momentum. Momentum addresses two issues with
the SGD: convergence speed and local minima. On a loss surface with narrow
ravines, the gradient can oscillate across the steep directions, slowing progress
towards the minimum. So, if the learning rate is too large relative to the
curvature in one direction, updates may oscillate, effectively reducing the
progress. However, in directions with shallow curvature, the gradients are
more consistent in sign, leading to smoother and faster convergence.

In the momentum method, the gradient oscillations are addressed by
introducing the velocity vector that averages the past gradient updates. So
instead of looking just at the current value of the gradient, the velocity vector
memorizes the direction where the gradient has been consistent (low

curvature direction) over interactions, i.e.
Wer1 = Wi + Vg
V1 = Hvp — VW f

where t is the number of interactions and u is the momentum coefficient that
controls how much of the velocity (previous gradient) is carried into the
current update. In this way, the momentum tries to guide the gradient path
toward the flat direction. The u can have values between 0 and 1, the larger
the coefficient, the greater the influence of the previous update, which means
the “ball” keeps moving in the same direction longer. If u = 0 that the plain
SGD is recovered.

The analogy of a rolling ball can be used to visualize how SGD with
momentum behaves during optimization. Imagine a ball rolling down the
hilly surface that represents the loose function. This surface has both local and
global minima (Figure 59). Therefore, moving to the left or right around local
minimum results in an increase in the loss. The SGD optimization can be
visualized as if we release the ball at a certain point and let it roll on the loss
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curve. In that case, the ball velocity is based only on the current acceleration
during that step (i.e., current slope value). When the ball reaches a local
minimum, the slope becomes flatter, the ball loses its velocity, and can be
trapped in the local minimum, unable to escape the dip. If momentum is
implemented, then the ball is not completely stopped at each point. Instead,
it continues to roll along the loss curve, building some speed. In that case, the
momentum of the ball will be equal to the current acceleration plus the current
velocity resulting from past acceleration. Thus, even when the slope becomes
flatter (like in local minima), the ball reduces velocity, but momentum enables
escape from local minima and continues to move toward the global minimum.

Loss Loss

., global

- maximum
local / 4

al
maximum . -

!
local ’ global
maximum. maximum

A

paramgters [ parameters

¥
Local
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' \
global global ¥
minimus minimum

(a) (b)
Figure 59 (a) SDG, (b) SGD with momentum

So, the intuition behind momentum is that if we repeatedly move in the same
direction, then we will become more confident and start to take bigger steps
in that direction. However, on ill-conditioned surfaces (Figure 60 (a), (b)),
momentum can build too much velocity, leading to overshooting and
oscillating around minima.

Nesterov’s momentum, also known as Nesterov Accelerated Gradient
Descent (Figure 60 (c)), is an improved version of the traditional momentum
introduced to reduce those oscillations by including a look-ahead feature into
the update rule. The core intuition is to first anticipate where the accumulated
momentum is leading—by taking a “peek ahead” —then compute the
gradient at that estimated future position and adjust the update accordingly.

Neserov momentum calculates the gradient at a position slightly ahead in the
direction of the accumulated moment. This enables the optimizer to correct its
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direction quicker than momentum-based methods and reduce the oscillations,

i.e.,

Wer1 = We — Ny

where v, ; = uv; — nV(w; + puv,), pis momentum coefficient that controls the
decay of the velocity vector v, and has value 0 < u < 1 (typically 0.9).

Let f be convex and B-smooth function in such a way that f(x*¥) — f(x*) <
26"
k2

L
Ve
The 0 («/LE) represents a significant improvement compared with GD. For an

, which means we reach e-suboptimal point after O ( ) iterations.

a-strong convex and f-smooth function, the Nesterov momentum needs
O(W -log(1/ 6)) iterations to achieve e-suboptimality. Nesterov is
exponentially fast, reaches the optimal rate among first-order methods and
can be applied to any convex problem. Nesterov momentum provides faster
convergence (Figure 60 (c) and (d)).

Ill-Conditioned Surface (Rosenbrock) Contours of Rosenbrock Function

-2.0 -15 -1.0 -0.5 0.0 05 10 15 2.0

@) o)

Nesterov Momentum Descent on Rosenbrock Function Vanilla Momentum Descent on Rosenbrock Function

-~ Nesterov Momentum Path *- vanilla Momentum Path |

/ ; 4

Figure 60 (a) Rosenbrock function - nonconvex function with global minima located in the
narrow, curved valley (b) contour lines of Rosenbrock function (c) performance of Nesterov
momentum and (d) performance of momentum (vanilla) on Rosenbrock curve
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9.6 Newton’s method

The Newton method is a second-order method used for smooth convex
optimization. It minimizes a convex, twice differentiable function by
iteratively minimizing its quadratic approximation since it uses more
information about the function via the Hessian. Therefore, Newton's methods
move in the direction of the negative Hessian inverse to the gradient. By
multiplying with the inverse Hessian, the optimizer takes larger steps along
directions of low curvature and smaller steps along directions of high
curvature. This means the Newton method uses second-order information to
“spherize” the contours in each step and moves in a direction orthogonal to
the transformed contours, resulting in a more direct path: it naturally takes
bigger steps along flat directions and smaller steps along steep ones.
Moreover, the Newton method is independent of linear scaling of the input,
providing automatic adjustments for axis stretching. Set the initial point to an
arbitrary value and update it by

Wep1 = we — V2f(w) 7'V (wy)
until a stopping criterion is met.

The vector —V2f (w;)~1Vf(w,) is called the Newton step. Notice that the above
equation does not contain any learning rate hyperparameter, which
theoretically represents a great advantage compared to first-order methods.
This is the pure Newton method (equivalent to n = I). However, it does not
always guarantee a descent direction. The dumped Newton method is used
to ensure a descent direction by scaling the Newton's step, with learning rate
typically determined through backtracking line search.

Let f be a twice differentiable, a-strong convex and f-smooth function. To
reach an e-suboptimal point we need at most O (lo g log é) iterations. Notice

that the rate of convergence is quadratic, and therefore much faster, compared
with the linear convergence of GD under the same assumptions. A visual
comparison of the Newton and quasi-Newton methods is shown at Figure 8.

However, there are two main challenges with using Newton’s method:

e Itis sensitive to initial conditions, especially if the loss function is non-

convex. Unlike the GD that ensures a descent direction, Newton fits a
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paraboloid (second-order approximation) at the local curvature and
proceeds to move to the stationary point of that paraboloid.
Depending on the local behavior of our initial point, it can end up in a
maximum or a saddle point instead of a minimum. Because of this, the
Newton method has a local convergence guarantee that holds when
the initial point x; is sufficiently close to the optimum. This is because
the accuracy of Newton depends on the accuracy of the second-order
approximation and, since f is twice differentiable, the quadratic model
of f will be accurate if the initial point is close to the optimum. If x; is
far from the optimum, the method may diverge. Achieving a global
convergence guarantee is much harder to obtain but it is possible
when the function is both a-strongly convex and f-smooth (Figure
61).

e Although Newton's method can significantly accelerate the
optimization of moderate size problems where the quadratic
approximation is accurate, often computing and inverting the Hessian
can be computationally expensive. In contrast to computing the
gradient that scales as O(n), computing of the Hessian requires
O(n(n +1))/2) operations, since it is a symmetrical matrix, and

inverting it scales as 0(n?).

For example, in 100 dimensions, we have to calculate the 100 values for the
gradient and 5050 values for the Hessian at each step, and additional 1003
operations for inverting it. It is evident that the higher convergence rate
will quickly be overweighted by large computational costs, especially
when 7 is large.

To keep the efficiency of the second-order optimization and avoid
computational cost, the Quasi-Newton method is used. The main idea is to
avoid a full computation of the Hessian matrix across iterations by just
approximating it with a positively defined matrix B, which is updated in each
step by using information from previous steps. As a result, the computation
costs have been significantly reduced.

Different quasi-Newton methods, such as Symmetric Rank-One (SR1),
Davidon-Fletcher-Powell (DFP), or Broyden-Fletcher-Goldfarb-Shanno
(BFGS), compute By; matrix by imposing additional constraints. However,
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all these methods need to satisfy the quasi-Newton condition (also known as
the secant equation) given as follows:

By+15k = Y or equivalent for inverse form Hyy1y, = Sk
where s, = wy1; — Wy, is the step taken in the parametric space and

Vi = Vf(Wk41) — Vf(wy) represents the change of the gradient after taking the
step sy.

In the Newton method, we use s, = —V2f(w;)~!Vf(w,) to compute the
update. In quasi quasi-Newton method, we just know the approximation of
Newton B;, and it is necessary to ensure that it behaves as Hessian, i.e. y;, =
[-V2f(wy)7!]sk. Therefore, the B, must predict that the moving in s
direction causes the gradient to change by yj.

One of the most popular methods is the BFGS. In addition to ensuring the
symmetry and positive-definiteness of B, the update of By ; is obtained by
minimizing the matrix norm of the difference between By ,; and By, i.e.,

ming, ||Bx+1 — Bk||W

subject to the symmetry condition Bj,; = By;; and the quasi-Newton
condition By 1Sk = Yk

where ||-| |W denotes the weighted Frobenius norm.
The solution for By, ; is given by

YiYk _ BiSkSk Bk

Biyi = By +
ford k YiSk  SkBisk

If f is twice continuously differentiable, the Hessian is positively defined and
f-smooth function around the optimum, then BFGS has a superlinear
convergence rate, which lies between 0(log(1/€)) and O(log log(1/€))
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Gradient Descent vs Newton's Method on f(x, y) = x? + 2y?
3 ——

—8— Gradient Descent
—HB- Newton's Method

Figure 61 Visual comparison of GD and Newton methods

9.7 Adaptive learning rate

In the optimization model, the scale invariance is very important. For
example, consider a problem with two variables: elevation (measured in
meters) and NDVI (a pure number ranging from -1 to 1). If we change the
elevation unit to centimeters, the elevation variable becomes 100 times larger,
making the objective function 100 times more sensitive to changes in
elevation. Moreover, the curvature in that direction is scaled 1002, leading to
poor conditioning (the condition number k becomes too large) and an
elongation of contour lines (Figure 62). Consequently, the cost function
becomes very sensitive to some directions in the parameter space and almost
insensitive to others. So, the gradient updates with respect to NDVI become
inefficiently small, while the gradient update for elevation may explode,
producing a net effect of slowing the convergence (moving very slowly in the
flat direction and oscillating in the steep direction) if the same learning rate is

applied.

It is desirable for models to be invariant to this type of change. Although this
is guaranteed by the Hessian preconditioning (due to the affine invariance
property), it is not for gradient descent. This can be addressed by adjusting
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the learning rate dynamically for each parameter at each iteration based on
observed statistics of the historical gradient.

/ N

Elevation [m]
o
Elevation [cm]

Figure 62 (a) Elevation in meters - couture lines are circle, loss surface is well-conditioned, the
gradient descent progress smoothly, (b) Elevation in centimeters - the contours are highly
elongated, loss surface is ill-conditioned

The Adaptive Gradient Algorithm (AdaGrad) adjusts the learning rate for
each parameter individually by scaling it inversely proportional to the square
root of the cumulative sum of past squared gradients (i.e., the sum of all
previously observed squared values for that component).

Algorithm AdaGrad

Input: learning rate 7, initial parameters w
Initialize r < 0
loop

sample a stochastic gradient g < Vf; (w)

accumulate the second momentum estimate 7; « 7; + gjz.
update model w; » w; — —=g;
p ] ] \/r—]gj

end loop

This means that parameters that are not frequently updated will have a large
learning rate, while parameters that are frequently updated will have a
smaller learning rate.

The AdaGrad has great success when the gradient is sparse in nature (i.e. most
gradient components are equal to 0) because it accumulates squared
gradients. However, it may not work well in the nonconvex setting since the
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learning rate depends on the whole history. As a result, the step size can be
very small in certain directions, slowing down convergence.

Root Mean Square Propagation (RMSProp) represents the modification of
the AdaGrad algorithm for a nonconvex setting. Unlike AdaGrad, which uses
a sum of square gradients, RMSProp uses an exponential moving average of
the squared gradients. This ensures that the effective step size generally does
not go to zero, allowing the optimizer to continue making progress.

Algorithm RMSProp

Input: learning rate 1, decay rate p, initial parameters w
Initialize r < 0
loop

sample a stochastic gradient g < Vf; (w)

accumulate the second momentum estimate 7; « pr; + (1 — p) gJZ-
g,
79

update model w; - w; —

end loop

It has proven to be an effective and widely used optimization algorithm in
DL.

Adaptive momentum (Adam): represents the variation of RMSProp that uses
a moving average of momentum with exponential weighting and correction
for bias to estimate the first-order (the mean) and second-order moments (the
unscented variance) of the gradient. Recommended initial settings for ML are:
n =0.001, p; =09, p, =0999 and € = 107%. Under the assumption that
gradient magnitude is bounded and distance between any parameters
generated by Adam is bounded, Adam achieves a 0(1 JVk) convergence rate.
Adam has several important properties: the updates are invariant to rescaling
of the gradient, it performs well with sparse gradients and non-stationary
objectives, it is straightforward to implement, efficient to compute, and
requires little memory. Compared with SGD with momentum, Adam shows
marginal improvements.
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Algorithm Adam

Input: learning rate 17, exponential decay rate p;, p, € [0,1), initial
parameters w
Initialize s « 0 (first moment vector) r « 0 (second moment vector)
Initialize timestep t < 0
loop
tet+1
sample a stochastic gradient at time t g, < Vf; (w)
accumulate biased first momentum estimation s; < p;s; + (1 — p1)g:

accumulate second momentum estimate 1, « p,1; + (1 — p,) g7
St
1-p}
. o Tt
correct second momentum bias 7 « 7
—F2

correct first momentum bias § «

R
f‘t+€

update parameters wy = wy_; —

end loop

9.8 Nonconvex optimization

If f is nonconvex, it can have many local minima, saddle points, very flat
regions, or widely varying curvature, making optimization hard. Gradient
descent stops naturally when Vf(x) = 0. When f is nonconvex, this happens
not only when x is a minimum but also when it is a maximum or a saddle
point. The saddle points are stationary points (Vf(x) = 0) but Hessian is
undefined. In high dimensional spaces, saddle points are more frequent than
local minima. Additionally, there can be some flat regions, where the gradient
is very small or zero. The choice of the initial point and the step size
determines the point the algorithm converges to. Therefore, to minimize the
loss, the gradient-based methods need to efficiently avoid maxima, flat
regions, and saddle points. Many convex optimization methods can be
applied to nonconvex optimization problems. However, theoretical
guarantees for global convergence are limited or non-existent.

9.9 Loss function - review

The loss function quantifies the prediction error that represents the difference
between the model prediction and the actual ground truth data. The primary
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objective in ML is to optimize the model parameters by minimizing the total
loss. The loss function should enable ML models to effectively learn from
training data, even in challenging situations such as class-imbalanced or noisy
data.

The choice of the loss function depends on the type of algorithm being
optimized, the nature of the task, and the available dataset. Choosing a loss
function that is closely aligned with the task objective is crucial, because the
model will exploit the easiest way within the data and architecture to
minimize the loss. As a result, a model may achieve low loss values yet still
fail to solve the problem effectively in practical terms. For example, suppose
we want an order to be delivered both quickly and accurately. We could train
an Al model to select the best delivery services using a loss function that
minimizes delivery time. However, the model will exploit the easiest way to
reduce this loss, potentially favoring companies that deliver packages quickly
but frequently make mistakes. This behavior would not align with our actual
goal. Therefore, a loss function that fully reflects the objective should account
for both on-time delivery and accuracy.

As already mention, there are several desirable properties of a loss function
that should be taken into consideration during selection process:

e Differentiability - the loss function must have a derivative for each
point within the domain and does not contain any breaks or gaps,
e Convexity - the local minimum is the global minimum,
e Robustness - it should be able to handle outliers and not be affected by
a small number of extreme values,
e Smoothness - the function doesn’t have sharp transitions, ensuring
stable and efficient training, and
e Monotonicity - if loss function values decrease as the predicted output
approaches the true output. It ensures that the optimization process is
moving toward the correct solution.
These properties directly affect the rate of convergence, which measures by
how fast the algorithm reaches a predefined threshold. A lower bound
enables estimation of the best possible upper band for the class of problem
under consideration, while an upper bound on the convergence rate allows
the estimation of the number of steps that are needed to reach a predefined

180



Introduction to Geospatial Artificial Intelligence

threshold. If the loss function is only Lipschitz continuous, gradient descent
takes cautious steps, but if the loss function is also smooth, the gradient will
converge faster compared with only L-Lipschitz. Additionally, the
assumption of strong convexity and smoothness leads to exponential fast
convergence, also known as linear convergence. Influence of loss function
assumptions on convergence rate and optimal step size is shown at Table 10.

Table 10 Influence of loss function assumptions on convergence rate and optimal step size

Function Convergence rate | Optimal step size
assumption
convex + L-Lipschitz 0(1/Vk) ||x0 — x| |2
Lk
convex + B-Smooth 0(1/k) 1/B
a-strong convex + 0(1/k) 2
L-Lipschitz alk+1)
a-strong convex +f- 0(e™*) 2
Smooth a+p

The loss functions are categorized based on the type of the task, such as
regression, classification, or object detection. In addition to that, the
performance metrics are used to evaluate how well the model generalizes to
new data and how accurate the prediction is. The most commonly used loss
function and performance metrics, depending on the task's characteristics, is
presented in the Table 11.

Table 11 Review of the most commonly used loss functions and performance metrics for
different tasks

Task

Loss function

Performance metrics

Regression

Mean Squared Error
(MSE)

Mean Squared Error (MSE)

Mean Absolute Error
(MAE)

Mean Absolute Error (MAE)
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Huber Loss

Root Mean Squared Error

Quantile loss

Mean Absolute Percentage
Error

RZ
Adjusted R?
Binary Binary Cross-Entropy Accuracy
classification
Weighted Cross-Entropy | Precision
Focal Loose Recall
Hinge Loss Fl-score

Kappa coefficient

Multi-class Categorical Cross-Entropy | Accuracy
classification
Weighted Cross-Entropy | Precision
Focal Loss Recall
F1- score
Kappa coefficient
Intersection over Union
(IoU)
Semantic Pixel-wise Cross-Entropy [ IoU
segmentation
Focal Loss F1- score
Dice Loss
Object Focal Loss Average precision
detection
IoU loss Average recall
GlIoU Loss
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9.9.1 Loss function in regression

The regression model aims to predict the continuous variable, so popular loss
functions are error-based, i.e., they measure the residuals to optimize model
parameters.

Mean Absolute Error (MAE, also known as L1 loss) (Figure 63 (a)) measures
the average of the absolute difference between predicted and true value, i.e.

MAE = Izn:| 7|2
_n' 13/1' N
1=

where ¥, = f,,(x;). Since MAE is an absolute value, it is always positive, and
errors follow a linear behavior, so it is less sensitive to outliers. It is not
differentiable at 0 i.e., when y; = 3,. Due to that, the optimization of MAE can
be done by using the subgradient

Mean Squared Error (MSE, also known as L2 loss) (Figure 63 (b)) represents
the average of the squared difference between predicted and true value, i.e.

1 -~
MSE = - Y7o (i — )%

It is derived under the assumption that residuals have a Gaussian
distribution. Due to the squared error, it is always positive, but also sensitive
to outliers. In neural networks, large errors have a larger impact on the
computed gradient, leading to suboptimal weight updates. The MSE is
differentiable for both parameters and prediction, enabling optimization by
using gradient-based methods. However, it is scale-dependent.

Root Mean Squared Error (RMSE) is defined as the square root of MSE. For
a dataset with n samples, predictions ¥, and true values y; , RMSE is given as:

RMSE =

Due to squaring, RMSE is always positive and penalizes large errors heavily.
It is sensitive to outliers, since a few large errors can significantly increase its
values. RMSE has the same unit and scale as the target values, making it easier
to interpret. However, due to scale dependency, comparison between datasets
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with very different scales is difficult. To address this limitation, the
Normalized RMSE can be used (see Section 9.17.1.).

Huber loss (Figure 63 (c)) combines the advantages of MAE and MSE, i.e., it
is less sensitive to outliers than MSE but smoother than MAE. It is defined as

1 . ~

A 50— 7% iflyi— 9l <6
LHuber(Yi; Yi) = 1
) (|Yi - yil = 55), otherwise

where § is a user-defined threshold, which is critical, and it can be adjusted
dynamically during the training process. If § — 0 the function behaves more
like MAE, while for large § it behaves more like MSE. The method is robust
to outliers because it applies a linear penalty for errors larger than the
threshold, while a quadratic one for small errors. The function is differentiable
everywhere except in |y; — ¥,| = § so subgradients can be implemented.

Quantile loss (Figure 10 (d)) is frequently used to estimate the conditional
quantiles in regression. The main idea is that minimization of asymmetrical
weighted absolute residuals (asymmetrical error penalties, i.e. giving
different weights to positive and negative residuals) will lead to quantiles. If
the model underestimates (y > ), the residuals are weighted by 7 while for
the overestimations (y < 9) the residuals are weighted by (1 — 1) i.e.
L Tly= 3l ify=9
non 0 ={o 00" g T L

where 7 is quantile level (0 < 7 < 1). Based on the previous equation, it can be
concluded that for lower quantiles (r = 0.25) the overestimations are
penalised more. Consequently, for higher quintiles, the underestimations are
penalised more. If T = 0.5, the quantile loss reduces to the mean absolute error
(MAE), corresponding to the solution that minimizes the conditional median
of y. The function is not differentiable at residual 0. The overview of the
benefits and limitations of the most frequently used loss function in regression
is presented in Table 12.
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Table 12 The overview of the benefits and limitations of the most frequently used loss
functions in regression

applications

Loss Best use case Strength Limitations
function
MSE No outliers, Efficient, Highly sensitive to
Gaussian noise differentiable outliers, scale-
dependent
RMSE Data with Same unit and Sensitive to outliers,
moderate outliers | scale as the does not distinguish
target, penalizes | error types
large error
MAE Outliers, skewed | Robust, Non-differentiable
distribution interpretable at 0, not scale
invariant
Huber Mixed noise, Convex and Need tuning
gradient descent | differentiable parameter §, not
scale-dependent
Quantile Predicting Handles Need to choose
quantiles, asymmetry, quartile values,
intervals, and robust to Non-differentiable
risk-sensitive outliers at 0, harder for

interpretation
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Figure 63 Illustration of the most commonly used loss functions in regression (a) MAE, (b)
MSE, (c) Huber loss, and (d) Quantile loss

9.9.2 Loss function in classification

In classification tasks, models map input features to the labels that correspond
to dataset classes. Based on the number of classes, the classification task can
be categorized into: binary classification (data classified into two classes) and
multiclass classification (data classified into K classes). For classification
tasks, the probabilistic loss functions are commonly used. Let q be the
probability distribution of the dataset, and p(y/; w) is the distribution of the
model that predicts outputs. Probabilistic loss functions measure how the
prediction probability distribution matches the true distribution. Usually,
models trained with this type of function provide a measure of how likely a
sample is labeled with one class compared to another, providing margin-
based information.
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Most neural networks are trained by using maximum likelihood estimation
(MLE). Formally, given a dataset dataset D, we are maximizing the likelihood
of the observed data:

p 1wy = [ [ (1 - fulx0) ™
i=1

or equivalently, to maximize the log-likelihood:
n
log(® |w)) = )" (yloghu G + (1= ylog(1 - fy ()

i=1

The loss function is obtained then by taking the negative of the log-likelihood

n
L==) (wilogfuG) + (1 - ydlog(1 - fu(xp))
i=1
This is also known as cross-entropy loss. One of the main advantages of using
cross-entropy is that we are training models that best explain the dataset
under a known or assumed probabilistic model. That means that the loss
function does not need to be specifically designed for each model. Rather,
specifying a model p(y|x) automatically a cost function logp(y | x)is
determined.

Binary cross-entropy (BCE also known as Log loss) (Figure 1 (a)) is frequently
used for binary classification. Since binary classification involves two classes
(e.g.: cat vs dog, spam vs not spam), the maximum likelihood approach is
based on the Bernoulli distribution. The Bernoulli distribution is a discrete
distribution with two possible outcomes

P(y=1|x)=pandP(y=0|x)=1-p
If we have a dataset where each label is y; € {0,1}, then the BCE loss for a
single instance is given by
Ly D) = —[yilog(®@) + (1 —y)log(1 —py)]

where p; is the model's predicted probability that y; = 1. The loss value is
inversely proportional to the probability of the sample being correctly
predicted, meaning that the greater the probability, the smaller the loss. The
model prediction p; must belong to the interval [0, 1] to be a valid probability.
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If a simple linear output w'x + b is used, the predicted probability can be
outside [0, 1], and the gradient of the model output would be 0. This is
challenging for optimization because learning algorithms lack guidance on
how to optimize the parameters. In order to ensure that the output is between
0 and 1, a sigmoid activation unit is applied to the linear output. A sigmoid
output unit is given as

9 =o(wTx +b)

1
. Thi
1+e™Y S

function maps any real-valued input to the range [0, 1], making it suitable for

where ¢ is the logistic sigmoid function, defined as o(y) =

modeling probabilities in binary classification.

Hinge loss function (Figure 64 (b)) represents an alternative to binary cross-
entropy, which is frequently used in margin-based classifiers such as Support
Vector Machine (SVM), but it can also be applied effectively to neural
networks. This approach defines a soft-margin m (usually set to 1) around the
decision boundary and enforces that the prediction score for the correct class
is at least m units higher than for incorrect classes. The hinge loss function
penalises both incorrect (y;p; < 0) or not confident enough predictions (where
the resulting argument is lower than the margin y;p; < m). It is defined as

LHinge(Yi'ﬁi) = max(0,m — y;p;)

where y; is the ground truth class label and p; is the predicted output from
the neural network, which is often mapped to a value in the range {—1,1}
using a suitable activation function, such as hyperbolic tangent (tanh). If a
prediction is both correct and confident enough (i.e., outside the margin) the
loss is zero.

Also, it can be used for multi-class classification, by implementing a one-
versus-all or one-versus-one approach. The Hinge loss is convex but non-
differentiable at the hinge point y;p; = 1. To address this limitation, a
frequently used variant is the squared Hinge loss, defined as

LHinge =max(0,1 - yipi)z-

This allows its usage in higher-order optimization algorithms and also
penalizes predictions more strongly as they approach the margin.
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Categorical Cross-Entropy Loss (Figure 64 (c)) is often used for multi-class
classification tasks where we need to classify an instance into one of K classes
y € {1,...,K}. Itis defined as

Yi,jlogpi

K
Ly, p)) = —

j=1

where p; ; = [Pi1,..., Pix| is the predicted probability distribution for sample

1.

A one-hot encoded vector is a way of representing categorical data (like class
labels) as a binary vector, where only one element is 1 (indicating the correct
class) and all other elements are 0. y; ; is a one-hot encoder vector (1xK)
representing the true class label for sample i (for example, if K=3 and the true
class of sample i is class 2, then y; = [0,1,0] ).

In neural networks, to extend the cross-entropy loss to multi-class
classification problems, the softmax activation function must be applied to the
output layer. The softmax function transforms the raw output of a classifier
(logit) into a probability distribution over K classes. Given a vector of logits
z=zq,...,zx] € RX, the softmax activation function computes the
probability that the input belongs to each class:
-~ . eZi
J’i=P(}’=l|Z)=W
This ensures that each output value y; belongs to the interval [0, ..., 1] and that
the vector sum is equal to 1, satisfying the properties of a valid probability
distribution.

To maximize the likelihood, we need to maximize the predicted probability
for the true class, which is equivalent to minimizing the negative log-

probability. Given:
P(y =i|z) =logsoftmax(z);,

the categorical cross-entropy with softmax is defined as

L=-z+ logZezJ.
J
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Applying softmax is essential since the categorical cross-entropy measures the
dissimilarity between the true distribution (typically one-hot encoder) and the
predicted probability distribution ;.

The first term represents the score for the correct class, i.e., it penalizes the
model if it assigns a low logit to the correct class (if —z; is small, the loss will
be low).

The second term penalizes overconfidence in the wrong class, ensuring the
model does not assign high probability to incorrect classes. Therefore, when
the loss is small, the logit corresponding to the correct class z; is high while
the logits for all other classes z; are low. Conversely, the loss becomes large
when the correct class logit z; is low, and one or more of the incorrect class
logits z; are high.

The categorical cross-entropy is continuous, differentiable, and convex with
respect to the model outputs and this makes it suitable for gradient-based
optimization methods.

Weighted cross-entropy (WCE) (Figure 64 (d)) is a modification of the cross-
entropy loss created to address the class imbalance by assigning higher
weights (greater importance) to minor classes. In standard cross-entropy, all
classes are treated equally. However, in tasks where classes are imbalanced
(some classes appear more frequently than others), the gradient of the loss
function will be dominated by the majority class, leading to poor model
performance on minority classes.

For binary classification, the overall WCE loss is given by:

n
1
Lwce == ) wiyilog(p) + wo(1 = y)log(1 = B)
i=1

where w; and w, are weights for the positive and negative classes,
respectively. The following expression can be easily expanded for multi-class
classification, i.e.

] n K
Lwceg = — Ez Z WjYi,Klog(ﬁi)

i=1 j=1
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where w; represents the weight for class j = {1,...,K}, p; = [pi1,..., Dik] is the
predicted probability distribution over classes for sample i, and y; is the one-
hot encoded true label.

The weights can be determined based on the:

e Inverse class frequency, i.e. wg = 1/fy where fi is the relative
frequency of class K. Consequently, less frequent classes will have
higher weights.

e Weight normalization - helps stabilize gradients when some weights
are very large.

Dice loss has been widely used in image segmentation tasks to handle class
imbalance. It is based on the Dice coefficient maximization. The Dice
coefficient measures overlap between the predicted segmentation and ground
truth annotation. It is defined as:

23 Dyt €
Yipit X yiteE

Lpijce =1 — Dice =1—

where p; is the predicted probability for pixel i, and y; is the corresponding
ground truth while € is a small constant added to ensure loss function stability
by preventing division by zero. For multi-class segmentation, Dice loss can be
computed per class and averaged, i.e.

K
Ln: =1_£z 2%i1PiYiy teE
Dice Kj=1 YieiPij+ Ximyij te€

where p; ; and y; ; are the predicted probability and ground truth for class j at
pixel i.

Dice loss is continuous and differentiable but not convex.

Focal loss (Figure 64 (e)) is a variant of the cross-entropy loss designed to
address class imbalance by down-weighting the contribution of easy
examples and focusing more on hard misclassified examples. The focal loss is
defined as

Lfocal =—-1- pi)ylog(pi)

where p; is the predicted probability for the true class, and y > 0 is the
focusing parameter that controls the strength of the modulation. When y = 0,
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the Focal Loss reduces to the standard binary cross-entropy loss. It is Lipschitz
continuous and convex for the predicted probabilities, making it suitable for
gradient-based optimization.

Binary Cross-Entropy Hinge Loss Categorical Cross-Entropy

71 — =1 [ ] 200
e y=0

—— class 0
~— class 1
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Figure 64 Loss function in classification (a) BCE, (b) Hinge, (c) CCE, (d) WCE, (e) Focal and (f)
Smooth L1 loss

Object detection includes both the classification of the object type and the
accurate prediction of the coordinates of a bounding box around the object of
interest. Because of this dual objective, a composite loss function is typically
used, containing both a classification component (measuring classification
errors, such as CE) and a regression component (measuring prediction errors
in the precise location and dimension of the boundary-box, such as Smooth
L1 or IoU loss). Jointly, they analyze the misclassification and boundary-box
inaccuracy, enabling accurate and robust detection across various data
distributions.

Smooth L1 (Huber-like) (Figure 64 (f)) is commonly used in bounding-box
regression, combining the benefits of both L1 (Mean Absolute Error) and L2
(Mean Squared Error) functions.
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For a single coordinate, it is defined as

1 _ R
R SO 9% iflye =9l <B
LLlsmoot (yi’ yl) = 1
lyvi, =9l — Eﬁ' otherwise

where [ controls the transition between LI-like (linear) and L2-like
(quadratic) regions. Typical value of the hyperparameter f is between 0.5 and
1.If = 0 Smooth loss is equivalent to L1 loss. The smooth L1 is equivalent to
Huber loss/f. Due to that, the difference can be defined as:

e for f — 0Smooth L1 converges to L1 loss, while Huber loss converges
to a constant 0,
e for f — o Smooth L1 loss converges to a constant 0 loss, while Huber
loss converges to MSE.
When the absolute error is small, the function behaves like L2 loss to ensure
smooth optimization, while for large errors are penalized like L1 loss. It is
less sensitive to outliers than MSE.

Intersection over Union loss (IoU loss) (Figure 65 (a)) is based on the loU
metric. JoU (also known as Jaccard similarity index) measures the overlap
between the predicted bounding box (B,,) and the ground truth box (B;) i.e.

B Area(Bp N Bt)

IoU =
? Area (Bp U Bt)

where (B, N B) is the intersection area of the predicted and ground-truth

boxes and (B, U B,) is their union.

If IoU =1 the two boxes are perfectly overlapped. Compared with L1/L2
losses, IToU considers all shape properties, including location, size, and
orientation at the same time, encodes relationships between all parameters,
and it is scale invariant. On the other hand, it is non-differentiable if there is
no overlap between the ground-truth and predicted bounding box (i.e. loU =
0). In that case, IoU does not reflect if two boxes are close or far from each
other, i.e., the model doesn’t learn when boxes do not overlap, making
optimization challenging. Additionally, if boxes partially overlap, the IoU
changes slowly.

The IoU loss is given by
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LIOU = 1 - IOU
Since 0 < IoU < 1, then the L;,y is also bounded between 0 and 1.

B, I
T “a— &

Iol = — Glol =———

(a) (b)

IoU = 0.3 ToU = 0.75 loU = 0.9
(©) (d) (e)

Figure 65 (a) IoU, (b) GIoU, (c) example of poor alignment, (d) example of good alignment, (e)
example of excellent alignment

Generalized IoU (GIoU) (Figure 65 (b)) is introduced to address the
limitations of IoU. Let By,,B; S S € R be two arbitrary convex shapes. The
C S5 € R"is the smallest convex shape that encloses both B, and B, and
have the same shape type. The GIoU is calculated as follows:

Area (C/(Bp U Bt))
Area(C)

GloU = IoU —

The GloU loss is defined as:
LGIOU = 1 - GIOU

The Lg;oy penalizes the boxes that do not overlap by emphasizing the empty
area/volume outside the B, and B, but inside the smallest enclosing box. Due
to that, it provides the gradient updates in all stages, improving the
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convergence. It is non-negative, symmetrical, and scale invariant. The GloU

always represents the lower bound for IoU.

The comparison of the advantages and disadvantages of the loss function

commonly used in classification and object detection tasks is presented in

Table 13.

Table 13 The overview of the benefits and limitations of the most frequently used loss
functions in classification and object detection

severe
imbalance

Hard samples in
detection, minor
classes are better
characterized

Loss Usage Advantages Disadvantages
BCE Binary tasks, Probabilistic, Sensitive to imbalance,
logistic strong penalty | overconfident if not
regression for confident regularized
mistraces
Hinge [ Margin-based Zero loss Not probabilistic, non-
classification beyond margins, | differentiable at the
simple margin
CCE Multi-class Differentiable, Sensitive to class
classification strong penalty | imbalance, requires
for more memory (due to
misclassification | one-hot encoder)
WCE Binary/Multi- | Address the Weight tuning can be
class imbalance by challenging. Large
Imbalanced introducing weights destabilise
datasets weights, suitable | training. Fixed weight
for a cost- may not be optimal if
sensitive context | class distribution
changes (new data
source)
Focal Binary/Multi- | Imbalanced Tuning the parameter y
class, Address | data, can be challenging
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Dice Semantic Robust for Overconfident
segmentation, | imbalanced prediction
an imbalanced | datasets
data set
Smooth | Boundary-box | Robust to Requires f tuning
L1 regression outliers, less
sensitive to the
MSE, sensitive
to small errors
IoU Segmentation, [ Scale invariant, | Non-differentiable,
object detection sensitive to partial
overlap, hard to
optimize
GloU Object Scale invariant, | Don't handle centroid
detection when | differentiable, distance or aspect
partial overlap | and more stable | ratios, non-overlap
is frequent, box | gradient, sensitive, more
regression computationally
intensive

9.10 Activation functions

Deep neural networks are often used to approximate complex, non-linear
relationships between input and output. However, the output of neurons is
linear despite having several layers. Due to that, non-linearity needs to be
introduced in the network.

Activation functions are predefined mathematical functions that introduce
non-linearity to the output of individual neurons in each layer of the neural
network before passing it to the next layer. Activation functions should satisfy
several important properties. They must add non-linear curvature into the
loss surface to improve convergence, they must be computationally cheap
since they are calculated millions of times in deep neural networks, and avoid
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saturation. Different types of activation functions, including sigmoid, Tanh,
ReLuy, etc., can be used.

Logistic sigmoid (Figure 66 (a)) function and tanh activation functions have
been widely used for shallow networks. The sigmoid function (defined in
Section 9.10) converts the neuron output into the interval [0, 1]. The main
drawback of the sigmoid function is that it is saturated for both low and high
inputs, which causes the gradient with respect to parameters to approach
zero, a mechanism known as the vanishing gradient. Hence, the update
during training with SGD is very low, leading to slow convergence.
Moreover, the sigmoid function is not zero-centred, and it is a bit
computationally intensive.

The hyperbolical tangent (Tanh) (Figure 66 (b)) activation function is defined
as follows
eX¥ —e~X
Tanh(x) = ———
anh(x) prampe:
It outputs zero-centred values between -1 and 1. It can be regarded as an
extended sigmoid function, and it has the same drawbacks as the sigmoid.

ReLU [34] (Figure 66 (c)), the rectified linear unit has become a state-of-the-
art activation function in DL. It is a piecewise-linear function ReLu(x) =
max(x,0) that outputs 0 for all negative inputs, while for positive inputs, it
returns their value. The derivative in the active region is equal to 1, and
therefore, the gradient is unscaled and consistent. Moreover, the second
derivative is equal to 0 (except for x=0, where it is undefined), making the loss
landscape simpler and easier for optimization. It addresses the limitations of
sigmoid and Tanh functions as it does not saturate for positive values; it is
more computationally effective, and enables faster convergence. However, its
output for all negative values is 0, meaning that there is no gradient flow
through those inactive neurons, leading to the problem of “dead ReLu”. This
problem is addressed by several variants of ReLu.

Leaky ReLu (LReLu) (Figure 66 (d)) adds small fixed positive gradients for
negative inputs to prevent saturation. It is given by LReLu(x) = max(x,0.01 -
x). One of the main drawbacks of LReLu is finding the right slope in a linear
function for negative inputs, since different slopes can be suited for different
problems and networks.
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The parametric ReLU (PReLu) (Figure 66 (e)) represents an extension of
LReLu by making the slope for negative inputs as a learnable parameter, i.e.
PReLu(x) = max(x, a - x) where «a is slope for inputs less than zero; however,
it can quickly overfit.

The Maxout (Figure 66 (f)) [35] can be used to further generalize both ReLu
and LReLu. Instead of applying a fixed nonlinearity (such as ReLu, sigmoid,
tanh), Maxout divide input vector x into k groups and outputs the maximum
value within each group. This allows network to learn piecewise linear
function, partitioning input space into several regions with local linear
behavior. Mathematically it is given by

z; = max (xTwy; + byj)

where k is the number of linear pieces, w;; and b;; are learnable parameters of
the j—th component of the i—th neurone. This allows Maxout to
approximate any approximate. If k = 2 the maxout is defined as Maxout(x) =
max(wlT x + b, wlx + b, ) and both ReLu and LReLu are special case of
Maxout. However, Maxout is parameterized differently, i.e., each maxout unit
is parametrized by a k-weight vector. The intersection point and slopes on
each side are learned rather than fixed, like in ReLu (intersection point in 0,
slope on positive side 1, and slope on negative side 0). The maxout does not
saturate or die, but it doubles the number of parameters and therefor increases
computational and memory cost. Maxout pairs particularly well with dropout
regularization.

Exponential linear units (ELU) (Figure 66 (g)) [36] address the vanishing
gradient effect seen in ReLu and LReLu. It is defined as

X, ifx>0

ELUG) = {a(ex —1), ifx<0

where a is a hyperparameter that controls the saturated values for negative
inputs (i.e. controls the level of nonlinearity for those values). ELU uses an
exponential function to smooth negative values and asymptotically
approaches to —a. When a = 0, the network behaves like ReLu, while higher
values allow more negative activations.
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Figure 66 Activation functions in deep learning (a) sigmoid, (b) Tanh, (c) ReLu, (d) LReLu, (e)
PReLuy, (f) maxout, (g) ELU, (h) SELU, and (i) Swish activation function

The negative values push the mean of the activation function closer to 0,
which helps to reduce bias shift and enables faster convergence during the
training. ELU also becomes saturated for small inputs and decreases the
information passed to the next layer, resulting in a noise-robust and low-
complex representation.

The Scaled Exponential Linear Unit (SELU) (Figure 66 (h)) [37] represents an
improvement of ELU by introducing self-normalization which ensures that
the output remains normalized. It is defined as

X, if x>0

SELU(x) = A{a(ex —-1), ifx<0
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where A > 1 is a scaling constant and « is a hyperparameter. It has an output
range in [—A,e]. The values of A,a can are chosen in such a way that
activations automatically normalize to have zero mean value and unit
variance. This can prevent vanishing gradients or exploding gradients,
stabilizing the learning process and enabling faster convergence. However, it
is sensitive to initialization.

Swish is an adaptive activation function (Figure 66 (i)) introduced by [38]. It
is defined as follows
x
Swish(x) = x-o0(Bx) = T o px

where f is a learnable parameter that controls the amount of non-linearity
based on the dataset and network architecture complexity. If f = 0 Swish
becomes a linear function f(x) = x, while for large values it becomes like
ReLu. Swish is smooth, differentiable, non-monotonic, and one-sidedly
bounded at zero, properties that often lead to superior performance compared
to ReLU and other standard activation functions in deep neural networks.

However, it is more computationally expensive and less interpretable than
ReLU.

9.11 Normalization

In ML, normalization is a crucial preprocessing step, especially when input
features have different scales. For example, one column has values from 0 to
1, and another has values from 1000 to 5000; the learning algorithm may
become biased to the input with higher magnitudes. Normalization
eliminates this issue by rescaling all features to a common scale (for example,
0to 1 or -1 to 1) without losing the discriminative strength while maintaining
the general data distribution. In addition to increasing the model training
speed and generalization ability, it improves overall model stability. It can be
done at the function level or the batch level.

The most widely used normalization method if the input data are normally
distributed, is z-score normalization, given as

X —p
7 =
o
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where 1 is the mean and o represents the standard deviation computed for
each feature. It rescales the data to have zero mean and unit variance. The
method is often used in logistic regression, PCA, and SVM.

The MinMax normalization rescales every feature to the interval [0, 1] using
the following formula

x —min(x)

7z =
max(x) — min(x)
It is sensitive to outliers, which can significantly affect the scaling.

As already mentioned, deep neural networks consist of multiple layers of
neurons that apply piecewise linear/non-linear functions, enabling models to
learn complex non-linear mappings between input and output. However, due
to increased learning capacity, training of DL models is difficult due to the
highly non-convex nature of optimization. In contrast to ML, where the
normalization is a data preprocessing step applied to input features, in DL, it
is mostly performed inside the network itself. Normalization techniques in
DL can be broadly categorized into batch-based, layer-based, instance-based,
group-based, and weight-based normalization. The layer normalizations are
commonly used in language applications, while Batch Normalization (BN)
has been extensively used for computer vision tasks.

When training deep neural networks, the inputs are passed through multiple
layers, and each layer applies transformations. After each transformation, the
activations may vary widely in magnitude. Additionally, the distribution of
inputs to each layer can change during training—a phenomenon known as
covariate shift—which often necessitates a lower learning rate and careful
parameter initialization. When using the stochastic gradient descent SGD,
training proceeds in steps, and each step considers a mini-batch of size m,
allowing better gradient estimation and parallel computation. BN [39] deals
with the reduction of covariate shift by normalizing the internal activations of
the network. It is typically applied per feature dimension before applying the
activation function to the outputs of a layer. The BN transformation applied
over activation is presented in the algorithm.
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Algorithm BN

Input: values of x over a mini-batch B = {x;,..., X,,}
learnable parameters y, 8
Output: y; = BN, p(x;)

. 1
compute mini-batch mean pp < — 3% x;

. . 1
compute mini-batch variance o3 « ;Z%’;l(xi — ug)?
Xi—HB

/2
op+e

scale and shift y; < y%; + B = BN, g (x;)

normalize X; «

The y and f are learnable parameters and € is a constant added for numerical
stability. BN normalizes the inputs so that, within every mini-batch, they

have zero mean and unit variance.

BN improves gradient descent by stabilizing the distribution of layer inputs,
enabling the use of higher learning rates and reducing sensitivity to weight
initialization. It can also act as a form of regularization. Furthermore, it
significantly accelerates training because it allows larger learning rates and,
in some cases, can partially replace dropout without increasing overfitting.
However, BN is sensitive to the mini-batch size. During inference, i.e. the
testing or prediction phase, the mean and standard deviation are not
computed from the batch; instead, fixed empirical values calculated from the
training phase are used to normalize the activations.

9.12 Training, Validation, and Testing dataset

In DL and ML, the most common practice regarding the use of available
datasets is to split each dataset into three datasets:

e training dataset - data used for model fitting with multiple model
parameters. It contains the larger portion of the data with both input
features and output labels. In each interaction, performance measures
are used to assess the errors of the model when applied to the training

dataset (training error). The training error is used to optimize model

202



Introduction to Geospatial Artificial Intelligence

parameters (such as weights in neural networks or coefficients in
linear regression),

e validation dataset - used to rank and select the best-fitted model. It is
usually created by splitting the training set; it contains samples with
known labels, but the label is not exposed to the model; instead, they
are used to evaluate the model's performance. Based on the errors on
the validation set (validation error), the optimal architecture and
model hyperparameter set (the hyperparameters are not learned
during training) are selected as those that achieve the lowest
validation error, and

e test dataset - the unseen data used to assess the generalization ability
of the final trained model. It is not used in any part of the training
process. Notably, the accuracy estimated using this unseen test dataset
provides an unbiased estimate of the model’s performance on any new
samples drawn from the same distribution as the training and test sets.

The split ratio between those sub datasets depends on the size of the available
dataset and the complexity of the model. Typically, 70% of available data is
used for training, 15% for validation, and 15% for testing, but ratios can vary.
As the size of the available dataset increases, the percentage between the
training and validation datasets can be smaller. The created test set cannot be
too small since a small test dataset may not provide a reliable estimation of
generalization abilities. However, a larger test set means a smaller training
dataset, which can have a negative impact on model performances, especially
for small datasets.

9.13 Capacity, overfitting, and underfitting

ML models must not only achieve low training error, but they also need to
perform well on new, unseen data. The ability of algorithms to perform well
on data that are not used during the training process is called generalization.
The generalization ability reflects models' predictive capacity on unseen data.
It is typically assessed using the test dataset (also known as test error).

Take linear regression as an example: the model is trained by minimizing the
training loss
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However, the test error is more important for evaluating the model’s
generalization:

Lllxtestw - ytestllz .
Mtest 2

The low training error does not guarantee good performance on unseen data,
which is why the test error is the key measure of a model’s predictive
capability.

To relate training error to performance on a test dataset, we assume that the
training and test data are independent and drawn from the same underlying
probability distribution, often called the data-generating distribution D.
Importantly, we do not assume any specific form for this distribution; we only
require that the datasets are identically distributed. Let's say that we have a
probability distribution D and every data point (x,y) in the dataset is
independently drawn from the distribution, i.e. (x;,y;) ~ D. By repeatedly
sampling from D, we can generate both a training set and a test set. Because
both sets come from the same distribution, the patterns learned from the
training data are expected to generalize to the test data. Typically, the training
error—computed on the dataset used to optimize the model parameters —will
be equal to or slightly lower than the test error. Therefore, a machine learning
algorithm should aim to achieve both low training error and low test error to
ensure good generalization. These two properties of the ML algorithm
represent the two central challenges: underfitting and overfitting (Figure 14).
Underfitting occurs when the model cannot achieve a low error rate even on
the training set. Overfitting occurs when the model achieves very low training
error but much higher test error (i.e., the gap between the training error and
test error is large).

Underfitting and overfitting can be controlled by adjusting a model’s
capacity, which roughly corresponds to the number of trainable parameters.
Capacity reflects the model’s ability to capture complex relationships between
input and output data. A model with low capacity may struggle to fit the
training data, leading to underfitting. Conversely, a model with high capacity
can overfit, memorizing details of the training set that do not generalize to the
test set. Essentially, more trainable parameters allow the model to store more
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information, which can include noise or patterns irrelevant for unseen data.
In machine learning, capacity can be controlled by selecting the hypothesis
space—the set of functions the model is allowed to use.

Consider the problem of predicting y from x. In a linear regression problem,
we want to decide whether to fit the simple model, such as the linear
regression model, i.e. = b + wx or a mode complex model such as the 5-
degree polynomial § =w;x + wyx’+...+ws;x° (Figure 67). ML models
perform best when their capacity is well-matched with the true complexity of
the task and the size of the available dataset.

The figure compares three types of models: linear, quadratic, and 5-degree
polynomial estimators. The linear model, having very low capacity, is unable
to capture the curvature inherent in the true relationship between x and y. As
a result, it underfits, producing predictions that are systematically off across
the dataset.

On the other end of the spectrum, the 5-degree polynomial model has high
capacity and is capable of perfectly predicting y for all examples in the
training dataset. While this may seem ideal at first glance, it comes at a cost:
the model essentially memorizes the training data, including any noise or
idiosyncrasies present. Consequently, it fails to generalize to unseen data
points, producing poor predictions on the test set. This phenomenon is known
as overfitting. The difficulty arises because when a model has such high
flexibility, there exist many wildly different functions that can fit the training
data exactly, making it hard to select one that performs well on new data.

In contrast, the quadratic model strikes the right balance. Its capacity matches
the true underlying structure of the task, allowing it to capture the essential
curvature without memorizing irrelevant details. This enables the quadratic
model to generalize well, producing accurate predictions not only on the
training set but also on unseen data. In other words, the quadratic function
exemplifies a model that avoids both underfitting and overfitting, achieving
strong generalization.

Although simpler models are generally more likely to generalize well, a
model must also have sufficient complexity to achieve a low training error.
As model complexity increases, the training error typically decreases,
eventually approaching the minimum possible error.
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Figure 67 The fitted models to the training set

However, the effect of model capacity on test error is non-monotonic: initially,
increasing complexity improves generalization and reduces test error, but
beyond a certain point, further increases in capacity lead to overfitting,
causing test error to rise. This phenomenon results in the familiar U-shaped
curve of generalization error as a function of model capacity, where the
optimal model lies somewhere in the middle —complex enough to capture the

underlying patterns but not so complex that it memorizes the training data.

Error

— = == Training error

Generalization error

Generalization gap

Optimal|capacity Model capacity

Underfitting Overfitting

Figure 68 The relationship between model capacity and error

As model capacity increases, the training error decreases; however the gap
between training and generalization error also increases (Figure 68). When

this gap becomes larger than the gains from reduced training error, the model
begins to overfit.
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Moreover, the model trained on a larger dataset tends to generalize better.
This is due to the fact that it is easier for a model to memorize a small dataset,
including noise and sample quirks. Larger datasets contain fewer accidental
patterns relative to their size, allowing the model to focus on learning the true
underlying patterns in the data.

The high-performing ML algorithm should have sufficient capacity to learn
true data patterns, but not too much to memorize the training dataset and
accidental patterns.

Because the relationship between model capacity and test error is non-
monotonic, one strategy to control model capacity is to tune hyperparameters
using a validation dataset. Grid search and manual search are the most widely
used strategies for hyperparameter optimization. In manual search, the users
use hand-tuned hyperparameters based on intuition or experience and a trial-
and-error approach to determine appropriate hyperparameter values. The
trial and error approach refers to training multiple models by using a random
model configuration and choosing one with the lowest validation error. In
grid search, the search space is a regular grid created by defining the set of
possible candidate values for each hyperparameter. The model is trained by
using all possible combinations, and the one with the lowest validation error
is selected. The grid search is easy to understand and implement; it enables
repetition of experiments with the same settings, but it is computationally
intensive when the number of parameters is high.

9.14 Regularization

Regularization is a key technique in machine learning and deep learning, as it
helps reduce a model’s generalization error without increasing the training
error. Regularization encompasses techniques designed to reduce a model’s
tendency to overfit the training data, thereby improving its accuracy on
unseen data.

In traditional ML, the regularization refers to constraining the loss function of
the training model. In DL, regularization includes several techniques that can
be divided into: loss-based regularization, data-based regularization, and
architecture-based regularization. For example, let x be an independent
variable and y be a dependent variable. The linear regression will provide
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high accuracy if the relationship between variables is linear. The linear
regression has a hyperspace that contains a set of functions that can be used
for this problem. Regularization is used to introduce desirable preferences
into training, i.e., it constrains the type of function that can be used for the
solution.

9.14.1Loss-based methods

Loss-based methods work by modifying the loss function to include an
additional term that penalizes excessive model complexity.

Lreg(W) = L(w) + AR(w)

where L(w) is a loss function designed for a specific objective, R(w) is a
regularization term that is independent of the target and 4 > 0 is a scalar that
represents the importance of the regularization term that penalizes the
model's trainable parameters. If 1 = 0 the regularization term is removed and
weights are close to their initial solution, while for large A the regularization
strongly penalizes the large weights, i.e., the loss term is insignificant, and the
regularization term forces weights to be close to 0.

Minimization of the L,.4(w), leads to the choice of weights that balance
between model underfitting and overfitting and therefore improve the
generalization ability of algorithms. Training the model using a modified loss
function will result in model parameters with desirable properties that are
defined by the regularization term. The two most commonly used types of
regularization are L1 norm (also called Lasso - Least Absolute Shrinkage and
Selection Operator) and L2 norm (also called ridge) regularization.

The L1 norm regularization encourages sparse solutions by setting the
network weights to zero, effectively reducing overall network complexity. (
let us remind that a sparse solution is one where most of the parameters -
weights - are zero, and only a small number of them remain nonzero) .It is
defined as

Ligsso(w) = L(w) + l“Wll]

where ||w| | ;= Yilw;| is the L1 norm of the weight vector w. The higher the

value of 1 is, the more likely L1 regularization will drive additional weights
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to zero. Lasso is often used for feature selection, because it tends to assign zero
weights to irrelevant features, effectively removing them from the model.

L2 norm, also known as weight decay, encourages large weights to shrink
toward zero and can be interpreted as performing maximum a posteriori
(MAP) estimation with a Gaussian prior on the weights. In linear regression,
using MSE as a loss function, we often wish to reduce extreme values of model
parameters. This can be achieved by modifying the loss function to include
the weight decay. The regularized loss function becomes

n d
1
Lridge(W) = EZ(}G - WTXL-)2 + AZ sz
i=1 j=1

where the Z?zl wj2 = ||W||§ is the L2 norm of the weight vector. Finding the
model weights that minimize the L2 regularized loss is also known as ridge
regression. Ridge regression is solved in three steps: select 4, minimize the
ridge cost function w = (XTX + Al )~1XTY and record R’ on the test set, and
find the 2 that gives the largest R”. Selecting optimal 1 is hard, and usually
cross-validation is used.

From the Bayesian perspective, we start with a prior distribution over the
model parameters (or hypotheses). As data are incorporated into the model,
this prior is updated to form a posterior distribution. Specifically, L1 norm
regularization corresponds to assuming a Laplace (double exponential) prior
on the weights, which encourages sparsity, while L2 norm regularization
corresponds to a Gaussian (normal) prior, which encourages smaller but
nonzero weights.

9.14.2Data-based regulation

The success of ML and DL models depends on the training data. The easiest
way to increase the generalization ability of the modes is to train them on a
large dataset. However, the creation of a training dataset is time-consuming
and financially demanding, and the available trained data are always limited.
This challenge, especially in computer vision and medical image analysis
domains, can be addressed by augmenting the available datasets.

In classification, the model maps a high-dimensional input x into a single
output y. To provide high generalization, the trained model needs to be
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invariant to a wide variety of transformations. The easiest way to enlarge the
dataset is to generate the new (X, y) pairs by transforming the existing input
data. This approach is known as data augmentation.

Let us consider a simple example: we want to perform a satellite image
classification task where the goal is to classify land cover types (e.g., forest,
water, urban) from high-resolution images. Each image patch is an input x,
and the corresponding land cover label is the output y.
To help the model generalize well, we want it to be invariant to
transformations such as rotation, translation, or changes in lighting — for
example, a forest looks like a forest whether the image is slightly rotated or
shifted.
Data augmentation can help by generating new training samples from the
existing images. For example:

» Rotate an image of a forest by 90 degrees corresponds still to a forest;

o Flip a river image horizontally corresponds still to a river;

e Slightly adjusting the brightness of an urban area image
corresponds still to an urban.

These transformations create new (x, y) pairs without manually collecting
more data. The augmented dataset is larger and more varied, which helps
the model learn robust features and generalize better to unseen satellite
images.
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Data augmentation applies stochastic transformations to modify original
training samples, creating new ones that enlarge and introduce variability
into the dataset. So, the main aim is for a given dataset D consisting of x;
training samples with corresponding labels y; apply the transformation T to
create new training data x’; without altering the corresponding label i.e.
T(x;,y;) = (x';,y;). Different transformation operations, such as geometric or
radiometric transformation, can be used.

Geometrical transformations change the geometrical structure of an image by
mapping pixels to new positions without altering the pixel value. The most
commonly used geometrical methods are affine transformation, including
rotation, translation, scaling (zooming and cropping), horizontal or vertical
flipping, and mirroring. The same geometric transformations can be applied
to entire point clouds or specific instances (such as vehicles). Moreover, non-
affine transformations, like projective or perspective ones can be used. The
geometrical transformations are simple, computationally effective, and
usually used as primary data augmentation models in computer vision.

Returning to the previous example, the geometric transformations work well
for creating more training data only if the new, transformed images still look
realistic and represent the kinds of data the model will see in the real world.
Moreover, translation or rotation suffers from a padding effect, i.e., new pixels
need to be added to fill in the empty areas created by the transformation,
which can lead to the omission of the target objects and loss of information.

Another type of data augmentation is introducing random noise into inputs
to increase the robustness of the models. In the case of images, new data can
be for instance generated by randomly perturbing the RGB information of the
pixels. Commonly used noise types in remote sensing include Gaussian noise,
salt and pepper noise, Jittering (for instance adding small spatial variation in
point cloud data), and speckle noise. New training data can be generated by
modifying the image sharpness. In remote sensing, this can involve:
sharpening, which reduces blur by enhancing high-frequency components
and making edges more distinct; blurring, which smooths the image by
averaging the values of surrounding pixels, reducing noise and fine details.

Sometimes parts of objects in images are hidden (occluded), which makes it
harder for models to learn. This challenge can be addressed by using the
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cutout that removes contiguous sections of input images. This forces the
model to rely on the surrounding context and learn to recognize objects even
when parts are missing. Introducing these modified images into the training
dataset helps the model become better at handling occlusions and encourages
it to use more image context during decision-making. Also, Mixup [40], which
randomly selects two images and mixes them in a certain ratio to form a new
image, is used. This encourages the model to generalize better because it
learns from blended examples instead of just single images. The same idea is
applied for point clouds on the instance level (individual objects or samples
in the dataset) by randomly selecting two samples and mixing them to create

a new training sample.

The point cloud augmentation often includes randomly dropping out some
data points, enabling the model to become more robust to missing or
incomplete representations.

In recent years, the Generative Adversarial Network (GAN) [16] has become
the most popular model for artificially generated image data. It consists of a
generator that tries to create realistic data so that the discriminator that
distinguishes between real and generated data cannot tell the difference.
Competition between these two sub-models (the generator and the
discriminator) continuously optimizes and enables the generation of high-
quality data. For example, GAN can be used to transform the visual
appearance of an image taken under one set of conditions (sunny) to a
different set of conditions (haze). The conditional GAN (CGAN) is an
extension of GAN where both generator and discriminator are conditioned on
additional information, such as reference images or labels. This guidance
encourages the model to generate data with specific desired features rather
than purely random samples.

However, generative models are difficult to train on a limited dataset and they
often require data augmentation to perform effectively. Additionally, they can
suffer from mode collapse, a phenomenon in which the generator fails to
produce diverse outputs and instead generates limited or repetitive samples.
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9.14.3Network-based regularization

Early stopping is one of the most used regularization methods in deep
learning. It is considered a training strategy since it does not require changes
of loss function or training procedures. During network training, the training
error and validation error are interactively reduced. If a model has sufficient
capacity to overfit, the validation error starts to increase once the network
begins to memorize the training data. The main idea behind early stopping is
to halt training when the validation error reaches its minimum, thereby
improving the network’s generalization ability. To implement this, early
stopping stores the model parameters each time the validation loss decreases.
Once training is complete, the parameters corresponding to the lowest
validation error are restored and used, rather than the parameters from the
final training iteration.

Early stopping controls model capacity by limiting the number of iterations
used to fit training data. The number of iterations is determined based on
monitoring the validation error, i.e., the algorithm is terminated when there
are no at least minimal improvements in the validation error over a
predefined number of iterations. Therefore, the two hyperparameters must be
specified empirically: the delta hyperparameter, which represents the
minimal change in validation loss to be considered as an improvement, and
the patience hyperparameter, which defines the number of iterations with no
improvements after which the training will be stopped.

Early stopping is a simple and effective regularization method that reduces
training time by limiting the number of iterations. It can be used alone or in
combination with other regularization techniques. However, early stopping
has some limitations. It requires a validation set, which can be challenging
when the available dataset is small. The size of the validation set also
introduces a bias—variance trade-off: a small validation set may lead to
unreliable stopping decisions, while a larger validation set reduces the data
available for training. Additionally, running periodic evaluations on the
validation set increases computational cost. Early stopping also requires
storing a copy of the model parameters corresponding to the lowest validation
error, although this storage cost is typically negligible.

213



Introduction to Geospatial Artificial Intelligence

Generally, the use of deeper neural networks, with a high number of units,
enables models to learn very complicated patterns in input data. However,
large and more complex architectures are prone to overfitting. One of the most
frequently used regularization methods to prevent network overfitting is
Dropout.

Dropout [41] randomly drops units from the network during each forward
pass. Dropout can be observed as a way of reducing the model complexity by
randomly setting individual neurons’ output to 0. The probability of dropping
each unit in a network is estimated using the fixed Bernoulli probability p. In
that way, the unit and all its connections are temporarily removed from the
network, and a new “thinned” architecture is sampled and trained (Figure
69).
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Figure 69 (a) Standard neural network architecture, (b) “thinned” network architecture by
dropping orange neurons and all their connections.

Dropout can be interpreted as training 2" “thinned” networks, each with a
distinct, randomly selected subset of neurons, while sharing weights
extensively. It leverages the well-established strategy of reducing model
variance and overfitting by effectively averaging the predictions of multiple
models. Consider a neural network with [ = [1,..., L] hidden layers, where the
input of each [th layer is denoted by x; while y, represents the vector of
outputs from the layer . The feedforward operation is given by

yi = wix, + b
xli+1 = f(y;)

where f is the activation function;
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y} represents the linear transformation of the input x; based on the trainable
weights wf and bias b} associated with hidden unit i in the layer /;

xi,1 is the output of the hidden unit which forms a part of the input to the
subsequent (I+1)-th layer in the network and which is given by the application
of the activation function to the pre-activation output y;.

With Dropout, the same feedforward operation may be expressed as follows:

1; ~ Bernoulli(p)

55\1 = Tl O xl
9i = wiz, + b}
si (i
Xi+1 = f()’l)

where 17 is a vector of independent Bernoulli random variables, each having
a probability p of being 1 and 1-p of being 0. This vector is sampled and
multiplied elementwise (the operation is denoted with ©) with the outputs x;
of that layer to create the thinned inputs £;. The thinned outputs £}, ; are then
used as inputs to the next ([+1)th layer. This process is repeated for each layer,
creating sub-networks. For learning, the weights are backpropagated through
the sub-network. For testing, the full neural network is used without dropout.
To account for the neurons that were dropped during training, the outgoing
weights of each unit are scaled by the dropout probability p, i.e., wf®" = pw;.
The probability p is a user-specified hyperparameter that needs to be tuned.
The p =1 means no dropout, and a small p leads to more dropout. It is
typically set between 0.5 and 0.8. Dropout is relatively easy to implement, it
provides a trade-off between overfitting and training time, and improves the
performance of the neural networks in different domains. However, it also
increases the training time and needs careful tuning of p.

9.15 Cross-validation

When the available dataset is too small to create a representative
training/validation dataset for accurate estimation of generalization error, an
alternative approach can be used. This approach is based on repeating the
training and testing computation on different randomly chosen subsets of the
original datasets.
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The k-fold cross-validation is most commonly used. In k-fold cross validation,
the original dataset is randomly splitter in k disjoint subsets. For each
iteration, one subset is used as a validation set, and the rest k-1 subsets are
combined and used as training sets. This process is repeated k times, so each
subset is used as a validation set. The approximation of validation error is
estimated as the average validation error across k iterations. The algorithm is
shown below.

Algorithm k-fold

Input: dataset D with z; = (x;, y;) elements, A learning algorithm, L loss
function, k - number of subsets, learning algorithm and

Split D into k disjoint subsets D; whose union is D
Return: vector of errors e
for i from 1 to k:

fi = A(D/Dy)

for z; in D;:

¢ = L(fu7))

end

end

returne

The parameter k is chosen in such a way that the resulting subgroup is a
representative sample of the data set, and based on the available computation
resources. Usually, 10-fold or 5-fold is used. Once the k-fold cross-validation
is done, the best model or hyperparameters are selected as the one that had
the lowest averaged validation error. Then the final model is trained on the
full training data and then evaluated once on the test set.

Although the k-fold provides a more reliable estimation of validation
performance, in the case of imbalance, it can lead to unstable performance.
The stratified k-fold is used to address that limitation by ensuring that each
of the k subgroups has the same class distribution as the full dataset. The
process can be parallelized to speed up the model evaluation.
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9.16 Bias-variance trade-off

Let 8,,, be an estimator where m is the size of the dataset. For example, in the
case of the linear regression, 8,, = (XTX)~1XTy. The distribution of the 8, is
called the sampling distribution. The bias and variance of the estimator 8,
correspond to the first and second moments of this sampling distribution.
They quantified two different sources of error in the estimator.

The bias measures how the average model prediction over the entire dataset
differs from the true value of the function or parameter. The bias of an
estimator is defined as

bias(By) = E(6y) - 0

where E(8,,) is the expected value (mean) of the model and 6 is the true
underlying value of 6 used to define the data-generating distribution. An
estimator 8,,, is unbiased if the bias is equalto 0 (i.e. E (ém) = 0). An estimator
0,, is asymptotically unbiased if lim bias(6,,) = 0.

m-ooo

The variance (Var(6,,)) reflects the extent to which estimators for individual
data sets vary around their expected value. Therefore, it measures the extent
to which the estimator is sensitive to the particular sampling of the data.

Alternatively, the standard error (SE (ém)) that represents the square root of
the variance can be used. When we estimate statistics using a finite number of
samples, our estimation of the true underlying population parameter (such as
the mean) is uncertain. This is due to the fact that we may obtain different
results if different samples have been used. The expected degree of variation
in any estimator is a source of error that needs to be quantified. Under MSE,
the bias and variance are related as

MSE(8,,) = E [||§m - 9||2] = Bias(6,,)’ + Var(f,,) + o2

where ¢? is an irreducible error caused by inherent noise in the dataset, which
cannot be eliminated. The aim is to minimize the expected loss, so it is
preferable that estimators exhibit low bias and have relatively low variance.
The bias and variance of an estimator are not necessarily directly related. In
practice, many techniques used to reduce variance tend to increase bias, and
techniques that reduce bias can increase variance. This phenomenon is called
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the bias-variance trade-off. In Figure 70 this concept is represented with four
target diagrams that resemble shooting at a bullseye, where each shot
represents a model’s prediction and the center of the target represents the true
value. The balance between bias and variance is essential for building a well-
generalized estimator.

Low Variance High Variance

Low Bias

High Bias

Figure 70 Graphical representation of Bias and Variance

In the case of two estimators, one may have low bias but high variance, and
the other may have low variance but high bias. Which one should be selected?
The most common approach to balancing between bias and variance is to use
cross-validation. Alternatively, it is possible to compare the MSE of the
estimators since it captures the overall expected prediction error,
incorporating both the bias and variance. Desirable estimators have the lowest
MSE, i.e., they manage to keep both bias and variance low.

The relationship between bias and variance in ML is tightly related to
underfitting and overfitting. This is due to the fact that increased model
capacity tends to increase variance and decrease bias, i.e.:
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e Overfitting - the model or estimator has a high variance, i.e., the model
is too complex (it memorizes training data but fails to generalize). To
reduce overfitting, it is necessary to reduce the variance of the
estimator by regularization, using more training data, reducing the
number of features, or simplifying the model, etc.

e Underfitting - models/estimators have a high bias, i.e., the model is too
simple to capture complex patterns in the data. So, reduction of
underfitting is based on reducing bias by: reducing regularization,
adding more relevant features, and increasing model complexity.

When evaluating a model, it is essential to take into account the training error
and the cross-validation error simultaneously. The training error can be
viewed as the measure of the bias in the model. If the model is unable to fit
the training data accurately, then it is likely that the model has high bias
(underfitting) (Figure 71). The gap between validation and training error
provides an indicator of the model variance. The low training error and higher
validation error indicate high variance (the model is overfitting the training
data)(Figure 71).

§ Underfitting Overfitting
= Validation
/ ~ error
ce
~ -~ -
1 —~ b S — - s = —
I'/ Model complexity \i
Simple model Complex model
High bias and low variance High variance and low bias

Figure 71 Validation error as a function of model complexity
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9.17 Performance metrics

Performance metrics are used to assess the predictive power of the developed
models. In ML, the selection of appropriate metrics is an important step.
Various metrics can be used but they need to be chosen carefully depending
on the type of application. The list of performance metrics used in different
tasks is presented in Figure 71.

9.17.1Performance metrics in regression

Selecting appropriate metrics is crucial for the accurate evaluation of
regression models. Most commonly used metrics in regression are: RMSE,
MSE, MAE, MAPA, R?, and Adjusted R.

RMSE is defined as the square root of the MSE. For n data points, the RMSE
is given by

n
1
RMSE = |- (v~ 9)?
i=1

where y; is the true value and J; is the predicted value. In general, the smaller

the value, the better the model's performance. RMSE is easy to interpret; it has
the same unit as the target y. As already mentioned, the main drawback of
this metric is sensitivity to outliers (a few outliers can produce a significant
increase in RMSE), and it does not differentiate between error types
(underestimation or overestimation).

The normalized RMSE (NRMSE) represents the non-dimensional form of the
RMSE that has been widely used for comparison of the regression models and
algorithms of different scales. It is defined as follows

RMSE
NRMSE =

Ymax — Ymin
where Y4y is the maximum of the target true values and y,,,;;, is the minimum

of true target values.

Mean Absolute Percentage Error (MAPE) represents the average relative
error of prediction, expressed in percentages. It is given by
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n
1 5.
MMW=—§XBLJHJW>
n Vi

i=1

MAPE is scale invariant, enabling the comparison between different tasks or
datasets. Moreover, the percentages are a very intuitive interpretation of
relative error. On the other hand, it is sensitive to zero and near-zero values
(if y; is 0 or close to zero the MAPE is undefined), and the presence of outliers.
Additionally, over- and under-prediction of the same magnitude do not have
the symmetrical impact on MAPA; for instance, +50% and -50% are both
treated as 50% by MAPA, but their absolute effect is not the same.

For example, if NDVI goes from 100% to 150% it is a 50% increase in value,
but if it reduces from 150% to 100% it is a decrease of -33.3% not -50%. This
asymmetry occurs because relative change is calculated with respect to the
original value, so increases and decreases of the same magnitude do not
produce equal percentage changes. Consequently, metrics like MAPE,
which rely on absolute percentage differences, can misrepresent the
impact of over- versus under-prediction, potentially leading to misleading
interpretations in remote sensing analyses.

The R? (coefficient of determination), It is the statistical measure of the
goodness of fit of the regression line to the actual data, i.e., the portion of total
variance in the dependent variable that is caused by the variation of the
independent variables.

Y (i — 9)?
Y —w)?

It quantifies the predictive power of a regression model. The values range

R*=1-

between 0 and 1, where 1 represents the perfect fit and 0 indicates that the
model explains no variability of the dependent variable.

For example, the R? = 0.65 for biomass prediction based on NDVI means
that 65 % of the variance is explained by independent variables (i.e.,
NDVI). The remaining 35 % is due to the variance of the dependent
variable (y; has variance 6?), i.e., 35% of the variation is due to the variance
of biomass, which is unexplained and arises from other factors or noise in
the data.
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Adding more variables to the model will always decrease Y. ,(y; — 7,)>and
therefore increase the coefficient of determination. So, trusting blindly to R?
will always lead to the largest model and possible overfitting. Moreover, it
does not detect bias, is sensitive to outliers, and can provide misleading values
for small datasets due to unstable variance estimation.

The adjusted R’ represents the modified version of R? by introducing the
penalty for unnecessary prediction. The adjusted R? will only add new
independent variables to the model if it improves the prediction accuracy. It
is defined by

(1-R)(n—-1)
n—N-1

where 7 is the sample size and N is the number of independent variables in
the model. The values range between -1 and 1. A high value of R, indicates
that the model fits well the data and that the chosen variables contribute to
explaining the dependent variable. The low or negative value suggests that
model performance is not improved by adding more independent variables.
The R3, ; reduces the risk of overfitting and enables fair comparison for the
model trained on the same datasets but using different parameters (nested
models). However, its application in complex and nonlinear models is
limited.

9.17.2Performance metrics in classification

A confusion matrix is a fundamental tool for the assessment of classification
accuracy for both binary and multi-class classification. The confusion matrix
represents counts of each combination of predicted and true values with
respect to test data. There are four possible combinations:

e True Positive (TP) - indicates the number of instances that are
correctly classified,

e True Negative (TN) - indicates the number of instances that are
correctly rejected,

e False Positive (FP) - represents the number of instances that are
incorrectly classified (type I error), and

e False Negative (FN) - number of intances that are incorrectly rejected

(type Il error).
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The diagonal element of the confusion matrix (Table 14) represents the
elements that are correctly classified, while the elements off the diagonal
indicate the misclassification. The elements n;; in the confusion matrix,
indicate the instances belonging to i that had been classified as j. The size of
the confusion matrix is equal to the number of classes, i.e., for a binary
classification, the confusion matrix is 2x2, while for a multi-class classification,
it is kxk, where k represents the number of classes.

Table 14 Confusion matrix

Predicted positive | Predictive negative

Actual positive TP FN

Actual negative FP TN

Once the confusion matrix is created for a trained algorithm, the following
metrics can be calculated: accuracy, recall, precision, fl-score, and kappa-
coefficient.

Overall accuracy (OA) is used to reflect how often the model predicts the
correct output. It is expressed in percentages, and it is given by

TP+TN correctly classified

0A = =
TP+ FP+TN+FN total number of samples

Although OA provides insights into overall model performance, it can be
misleading in the case of data imbalance.

For example, let's say that we want to classify water/non-water and that
water only represents 3% of pixels. If the model completely omits minor
classes, the overall accuracy will be 97%. This high value is misleading,
as the model entirely neglects the minority class.

Precision quantifies the fraction of predicted positives that are actually
correct. It is defined as:

TP,

p .. — Tt
recision TPl n FPl

In multi-class classification with K classes, Macro-Precision is calculated on a
per-class basis and then averaged, i.e.

223



Introduction to Geospatial Artificial Intelligence

y peeision — 15: TP,
acro recision = K : ITPi n FPL
i=

Macro-Precision treats all classes equally, while Micro-Precision weights the
classes by their frequency, and it is given as

Y, TP
YK (TP, + FP)

Micro — Precision =

Precision is also known as User accuracy in classification terms. User’s
Accuracy reflects the viewpoint of the map user, who relies on the classified
map to make decisions. It measures commission error, showing how reliable
a mapped class is.

For example, if a user looks at a pixel labeled as “water,” User’s Accuracy
tells them the probability that this pixel truly corresponds to water on the
ground.

The Precision can have values from 0 to 1. Perfect precision of 1 means that all
objects identified as positive are indeed positive and no false positive exists.

Recall (also known as TP rate) quantifies the portion of actual positives
correctly classified by the model.

TP,

Recall = ———-—
C = TP ¥ FN,

Similarly to precision, Macro-Recall and Micro-Recall are defined as:

K
Yi=1TPi

and Micro — Recall = m

1 TP;
Macro — Recall = =YX, =
K TPi+FN;

Recall is essentially equal to the Producer’s accuracy in classification terms.
Producer's Accuracy represents the perspective of the map producer,
assessing how accurately the classified map reflects the reference (ground
truth) data. It quantifies omission error, indicating the proportion of real-
world instances of a class that were correctly mapped.

For instance, if some actual water areas are omitted and incorrectly
classified as urban, the producer’s accuracy for water decreases.
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Macro-Recall is also known as balanced accuracy. The Recall of 1 means that
the model correctly identifies all positive cases as such, and no positive cases
were ignored. However, both Precision and Recall can be influenced by class
imbalance. The easiest way to maximize only Precision is to be very
conservative in predicting positives, i.e., the model will only label an instance
as positive when it is very confident, resulting in fewer positives and therefore
reducing the Recall. On the other hand, maximization of recall can only be
done by overpredicting a positive class, increasing the number of FP, and
reducing Precision. Due to that, the Precision and Recall are analyzed together.

True Negative Rate (TNR) measures the proportion of actual negatives
correctly classified as negative. It is given by the following

TNR = ——
TN + FP

It ranges between 0 and 1, the higher values are preferred. TNR is often used
when the cost of FP is high, and in combination with Recall, provides a
complete picture of model performance.

False Positive Rate (FPR) represents the proportion of actual negatives that
are incorrectly predicted as positive, i.e.

FP

FPR = rNTFpP

It ranges between 0 and 1, and lower values indicate fewer false alarms. The
relationship between FPR and TNR is given by FPR = 1 — TNR. FPR has been
extensively used when the cost of FP can be high, and also as the x-axis of a
ROC curve.

Fl1-score balances Precision and Recall by taking their harmonic mean, given
as

Precision - Recall
F1=2

. Precision + Recall

A higher value of Fl-score indicates a more balanced classification, i.e., in
order for an F1-score to be high, both Precision and Recall need to be high. It is
very insightful for imbalanced datasets when the positive class is rare;
however, it completely ignores how models classify the negative class (TN).
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Cohen’s Kappa Coefficient [42] is used in multi-class classification. It
evaluates how well the model performs compared to just randomly assigned
values, i.e., it measures agreement between prediction and ground truth,
correcting for the agreement that could occur purely by chance. It is given by

Po — Pe

K=—

l_pe

K
_ Zi=1Dii
n

where p, represent the observed agreement, and it is given as p, and

De represents expected agreement p, = f{=1R’”Ci where K is the number of

n2

classes, n is the total number of samples, Z{‘;l D;; sum of diagonal elements of
the confusion matrix, R; - row total for class i and C; is the column total for
class i.

The Kappa Coefficient ranges from -1 to 1. The negative value indicates that
trained models perform worse than random classification. The interpretation
of positive Kappa coefficients is shown in Table 15.

Table 15 Interpretation of Kappa statistics

Kappa Interpretation

0.00-0.20 Poor agreement

0.21 -0.40 Fair agreement

0.41-0.60 Moderate agreement

0.61-0.80 Substantial agreement

0.81-1.00 Almost perfect agreement

Although Kappa coefficients have been frequently used, they only measure
the exact agreement and treat approximate agreements as disagreement. This
limitation can underestimate the performance of models when small spatial
or semantic deviations occur, which is common in geospatial and remote
sensing applications where class boundaries are often uncertain or mixed.

The receiver operating characteristic curve (ROC) is a graph of the tradeoff
between the TPR (on the y-axis) and FPR (on the x-axis) using different
probability thresholds. The ROC curve provides a single measure of the
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overall performance of the model across a full range of possible thresholds,
allowing averaging their effect on accuracy. Due to that, it is a threshold-
independent measure.

The area under the ROC curve (AUROC) (Figure 72Figure 1 (a)) is used to
determine scores, enabling the comparison of different ML algorithms. The
score ranges between 0 and 1, with 1 being the perfect classifier. The 0.5 score
indicates random guessing. So the classifiers with a curve close to the upper
left corner are desirable, while classifiers with curves below the diagonal line
perform worse than random. An AUROC of 0.935 means that the model has
excellent discriminatory abilities, i.e., if we randomly choose one positive and
one negative example, the model will score the positive one higher about
93.5% of the time. ROC curves can be misleading in the case of highly
imbalanced datasets. That limitation can be addressed by using the Precision-
Recall curve.

Precision-Recall Curves (PRC) (Figure 72 (b)) visualize the tradeoff between
Recall (x-axis) and Precision (y-axis). It is created by plotting the Precision-
Recall pairs that are obtained using different thresholds on a continuous or
probabilistic classifier. It is most often used for binary classifications,
especially in imbalanced datasets.

Area under Precision-Recall Curve (AUPRC) has been used as a summary
statistic when comparing the performance of different algorithms. The perfect
model will have a PRC that passes through the upper right corner that
corresponds to both Recall and Precision equal to 1. The closer the classifier is
to this corner, the higher the Precision and Recall are. AUPRC score ranges
from 0 to 1, a higher value indicates better overall performance on a positive
class. In contrast to the ROC curve, where the baseline is fixed to 0.5, the
baseline value for AUPRC is defined as

positive cases

Baseline = — ,
positive cases + negative cases

If AUPRC is lower than baseline, the model is doing worse than random
guessing for positive classes. Since AUPRC does not use TN, it will not be
affected by the large proportion of TN in the data.
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Although it is primarily used for binary classification, it can be extended to
multi-class problems by using a One-vs-All approach for each class (Class 1
vs Not Class 1, Class 2 vs Not Class 2, etc.).
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Figure 72 (a) ROC curve for two models on the same dataset. The dashed red line indicates the
random performance. (b) PRC curve for two models on the same dataset. The AUPRC is

indicated in the legend.
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Consider the semantic segmentation of a satellite image into three classes:
water, forest, and urban, and we want to evaluate the model performance.
The table shows a confusion matrix created based on the test set.

Water Urban | Forest Total Producer’s
accuracy

Water 21 6 1 28 0.75
Urban 8 51 3 62 0.82
Forest 2 7 44 53 0.83
Total 31 64 48 143
Users 0.68 0.79 0.92
Accuracy

On Table 8, the rows of the matrix indicate the ground truth while the
columns represent the classification results. Diagonal matrix elements
represent the number of pixels that are correctly classified. In the above
example, the 21 pixels of water in the test set are correctly classified. Off-
diagonal elements represent the misclassified pixels, i.e., the classification
errors. Off-diagonal row elements represent the ground truth pixels of a
certain class that are excluded from that class during classification (FN).
On the other hand, the off-diagonal column represents the true pixels of
the other class that are included in a certain class (FP). For example, 6
ground truth pixels of water were excluded from the water class in the
classification and ended up in the urban class, while 8 ground truth pixels
of the urban class were included in the water class.

Recall (Producer’s accuracy) represents the probability that any pixel in
that class has been correctly classified. It is calculated for the water class
as

21 41
Recallwater = m = E = 0.75
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0.75+082+ 083

Macro — Recall = 3 0.80
v 7 ll_21+51+44_087
o e = e T 62+ 53

Therefore, the water class has a producer accuracy of 0.75, meaning that
75% of the water ground truth pixels also appear as water pixels in
classified images.

Precision (User’s accuracy) is defined as the portion of correctly classified
positive pixels among all positive predictions made by the model, i.e., the
reliability of classes in the classified image. For the water class, it is

calculated as

21 21
— = 0.68

PT'GCiSiOnWater = m = 31

Meaning that approximately 68% of the water pixels in the classified
image actually represent the water on the ground.

The overall accuracy of the classified image is calculated as

A_21+51+44_081
B 143 -

meaning that 81% of samples were correctly classified.

2%0.75%0.68 _

0.75+0.68 0.71.

The F1-score for the water class is F1 — score =

Taking into account the metrics for water class, it can be concluded that
the model effectively detects water class while maintaining a moderate
rate of FP. Since the precision is less than the recall, the model tends to
overestimate the water class.

9.17.3Performance metrics in object detection

As already mentioned, object detection algorithms need to exactly localize an
object and assign it to the correct class. To evaluate the object classification the
TP, FP and FN are used. However, they are defined based on the IoU.

TP represents instances that are correctly identified and localized by the
model, and the IoU score between the predicted boundary box and ground
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truth box is higher than or equal to the predefined threshold. The threshold
depends on specific applications. A low threshold is more flexible, while
values close to 1 are more restrictive, demanding almost perfect overlap
between predicted and true boundary box. Commonly used thresholds are:

e 0.25-when a task is recall sensitive, such as medical images. Although
due to a lower threshold value, even a small overlap between the
predicted and ground truth boundary box will be considered as a
correct prediction. This can lead to more FP and lower precision.
However, in a medical context, this is desirable since FN is much
riskier,

e 0.50 - when moderate localization precision is required, and

e (.75 - when precise localization is crucial, such as in autonomous
driving.

FP are instances that the model incorrectly identifies as an object that does not
exist in the ground truth, or the IoU score is below the threshold.

FN represents instances where the model fails to detect an object that is
presented in the ground truth.

Average Precision (AP) measures per-class performance and then averages
over all classes (also known as mean Average Precision (mAP)). mAP
measures the accuracy of object identification and classification. It can be used
to compare different models or the different setups of the same model. For a
dataset that contains the K classes, the mAP at an IoU threshold ¢ is defined as

1
mAP = — 3, AP;.

The AP for a specific class i represents the area under the precision-recall
curve. To create the precision-recall curve General steps to calculate the AP
includes: for each detected object calculate IoU with ground-truth objects,
match objects if JoU >t for each class, sort predictions by confidence score
from highest to the lowest, forming the precision-recall pairs as threshold
changes, employ interpolation methods to gain more detailed analysis of
precision-recall behavior and calculate the area under the interpolated curve.
Most often, 11-point interpolation, which uses 11 equally spaced recall levels
(r) between0and 1[0.1,0.2, ..., 0.9, 1] and calculates interpolated precision as
the maximum precision for any Recall>r, or all point interpolation is used.
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mAP uses both precision and recall, providing a balanced measure of the
model's performance. Moreover, it is non-threshold dependent, providing a
more comprehensive assessment. It ranges from 0 to 1. The values close to 1
indicate a reliable model that has a low number of FN and FP.

Average Recall represents the model's ability to successfully detect all
ground-truth objects across different thresholds. General steps include:
computation of IoU for each detected box, matching detection with ground
truth if IoU is higher than a threshold, computing the recall, averaging the
recall over various IoU thresholds, averaging over different maximum
numbers of detected objects per image, and aggregating across all images in
the dataset.
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T10REGRESSION

In the following, we will introduce standard linear regression, in which we
assume that the stochastic component of the model—the errors—is
independent and identically distributed with constant variance
(homoscedasticity). This implies that each observation is independent and
equally precise, with no correlation between errors and the same level of
uncertainty across all data points. The theory and properties described here
hold under these assumptions.

The regression is a statistical technique used to assess the relationship
between two or more variables. In the machine learning context, regression
attempts to model the relationship between input variables (the independent)
and labels (the target variable). Regression can be used for prediction,
estimation, hypothesis testing, and modeling relationships.

Let y denote the output variable, which depends on several independent
variables denoted by x. In the regression, it is assumed that the model (i.e.,
mathematical function) maps the input features (x) to the output (y), by using
some parameters f in the following form

y=fxp)

The function y is called the regression function. The machine learning
algorithm optimizes the set of unknown parameters such that the
approximation error is minimized, i.e., the difference between predicted and
true values given in the training set is minimal. In regression, the output
variable is written as a function of independent variables, i.e., y represents the
sum of a function of the input variable f(x) and random errors ¢ i.e.

y=f@+e

The function f(x) is unknown and it is approximated by an estimator g(x, 6)
containing a set of parameters f5. It is assumed that errors are random and
follow a normal distribution with a mean of 0. The model can be expressed in
a formula

yl’ = ﬁlxi1+. .. +ﬁpxip + &
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where §;; j = 1,...,p is a vector of unknown parameters (also called weights)
which characterize the role and contribution of independent variables
(xij; i =1,...,n). The g is the error vector, n is the number of observations,
and p is the number of independent variables. The value of the desired 6
minimize the following expression

E©) =) (- 9G )’
i=1

where f is a vector of p parameters f,...,Bp. There are various types of
models that can be used for regression. Those models are mostly categorized
by using the following aspects:

e Number and types of independent variables - when there is only one
independent variable, the model is known as a simple regression
model, while multiple regression models involve more independent
variables, and

e The shape of the regression line - linear regression fits a straight line
while polynomial regression fits a polynomial equation to represent a

non-linear relationship between input and output.

10.1 Linear regression

Simple linear regression contains only one independent variable. It defines
the relationship between input and output by using the straight line (Figure
73) defined by

y=PBp+Bix+e

where S represents an intercept term and f; represent the slope of the fitted
line (i.e. p = 2).
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Figure 73 Linear regression model

10.2 Simple Linear Regression

To determine the optimal regression coefficients, the Ordinary Least Squares
(OLS) method is used. In OLS, the intercept and slope are optimized to
minimize the sum of the squares of the vertical distances between predicted

and actual values, i.e.

E= ;(yi —5)? = ;m — (Bo + Prx)?

The values can be determined by differentiating the loss with respect to each

parameter and setting it equal to zero

(;3_50 = =21 1Vi — Bo — f1x;) = 0 and
0E
6‘31 szl(yl Bo — B1x;) =0

Thus fy and f; are the solution of the system of two equations

Yiz1Yi —nfy— P 2= x; = 0and

235



Introduction to Geospatial Artificial Intelligence

n n n

in}’i—ﬁozxi—ﬁ1zxi2 =0

i=1 i=1 i=1

the means of x and y are given by
X = %Z x; and y = %2 y; and variance of x is given by

Var(x) = ﬁZ(xi — %)% while the covariance of x and y is defined as

1
Cov(x,y) = ——= > (i = D0~ 7)
Then the values of f; and f; can be calculated using the following equations

_ Cov(x,y)
= Var(x)

Bo=y—PBix

Example: The values of the crop coefficient (K,) and corresponding NDVI
values are provided in Table. Estimate the K, in the plot if the NDVI value
is equal to 0.82.

Plot 1 2 3 4 5 6 7

K, 0479 10552 0540 [0.643 [0.745 |0.830 [ 1.027

NDVI 10.730 ]0.739 |0.760 |0.767 |[0.786 [0.798 | 0.845

The first step is to examine whether a linear relationship exists between
independent and dependent variables either through visual inspection of
scatter plots or by applying statistical tests. As figures show, they lie
approximately along a straight line, indicating that the crop coefficient
tends to increase as NDVI increases. This suggests a clear linear
relationship between variables. The next step is to fit the regression model.

n=7

% =0.775, 7 = 0.688, Var(x) = 0.001, Cov(x,y) = 0.006
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p1 = ;8125 = 4.86, f, = 0.688 — 4.86 - 0.775 = —3.08

Biomass = 4.86- NDVI —3.08 = 4.86-0.82 — 3.08 = 0.91

Simple linear regression: crop coefficient

80 A

Crop coefficient

® Field data L
—— Regression line
Prediction

Intercept =-3.08
Slope = 4.86
Crop coeff=0.91

0.4 0.5 0.6 0.7 0.8 0.9
NDVI

The Simple Linear regression model is based on a few assumptions that need

to be fulfilled in order model to provide valuable results:

1.

Linearity - the relationship between the independent and target value
needs to be linear. If the relationship is non-linear, the model will show
a poor performance.,

The errors are uncorrelated - there should not be correlation or
patterns between errors.,

The independent variables x; are exactly known - if x;values contain
measurement errors, the estimated regression coefficient § will be
biased,

Errors should follow a normal distribution, and

Errors should have constant variances (homoscedasticity) across all
values of the independent variable. If homoscedasticity is not met, the
method of least squares becomes imprecise.

Assumptions 2, 3, 4, and 5 can be checked by using statistical tests. To test

whether a linear relationship exists between independent and dependent
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variables, the t-test or F-test can be used. The t-test examines an individual
coefficient, i.e.

Hy: B; = 0 versus
HI:.BI #*0

So, the t-test checks whether the slope is significantly different from zero. If
the p-value is below the chosen significance level (usually 0.05), the H) is
rejected, the is rejected and the relationship is linear. In contrast to the t-test,
which is limited to two variables, the ANOVA test can handle multiple
variables. It tests the whole model, i.e., it checks whether all slopes together
in multiple regression are zero:

Hy:py=pr=...=pp=0vs
Hi: At least one B; # 0

The H, states that all regression coefficients are 0, meaning that there is no
predictive relationship between the x and y variables. On the other hand, the
H; claims that at least one of the regression coefficients is not 0, i.e., there is at
least one independent variable that affects y. The ANOVA uses the F-test that
is define:

2
S (fi-y) n-N-1 SSR n—N-1
Yiz i = 9 N SSE. N

where the SSR is the regression sum of squares, SSE is the sum of square
errors, 1 is the total number of measurements, N is the number of independent
variables, 3, is the predicted value for observation i, y is the mean of the

observed dependent variable. If the computed F value is larger than the F-
statistic for the desired level of significance, the null hypothesis is rejected,
meaning that the variables (all together) have a significant linear relationship
with the dependent variables.

10.3 Multiple linear regression

A multiple linear regression is an extension of simple linear regression. The
model defines the relation between N independent variables and the target
variable by using the following equation:
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y = Bo+ Bixs+... +Bnxy

The optimal values of the parameters 3y, f;,..., By is estimated by using the
ordinary least squares method. The matrix notation of the above model is

Yo 1 X11 - XN1

X X

Y = 31:1 X = 1 12 e 2
Yi 1 xll

The simple least squares estimation of regression coefficients can be defined
as

B=X"X)"1XTy

Example: Estimate the soil moisture based on multiple spectral bands.
The results of field measurement of soil moisture and spectral reflectance
for corresponding bands are available in Table

Sample 1 2 3 4 5
NIR 0.30 0.40 0.35 0.25 0.33
SWIR 0.25 0.22 0.20 0.28 0.26
Soil moisture | 12 15 14 10 13
[%e]

Using the samples, fit the multiple linear regression model to estimate
fore regression coefficients.

ﬂo = 565, ENIR = 2944, BSWIR =—-10.13

The final mode is y = ﬁo + .BNIRxNIR + ﬁSWIRxSWIR = 5.65+ 29.44 - XNIR —
1013 * xSWIR

In multiple linear regression, the regression model is a hyperplane in a
space with dimension N+1. In this case, the regression model is a plane in
3D space.
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Soil moisture [%] prediction:
Regression plane NIR and SWIR

Soil moisture [%]

10.4 Polynomial regression

Polynomial regression is used for modeling non-linear relationships between
independent and target variables by using the N*-degree polynomial (the
highest exponent in the polynomial). The polynomial regression model can

be represented as follows

y= B() + ﬂ]X + B2x2+. s +BNXN

Although the highest order of polynomials that can be fit with n data points
is n-1. However, the polynomial curve will pass through all data points,
providing a perfect fit with the training data and low generalization ability.
This is interpolation not regression. Moreover, each new term (x2, x3, x*) adds
a coefficient, and more data is needed. Additionally, from a mathematical
perspective, the hierarchy principle needs to be followed since only
hierarchical models are invariant under the linear transformations. The model
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is hierarchical if it contains all lower-order terms (i.e., if the highest order of

2,3

the polynomial function is x* the model should include the x,x% x% in a

hierarchy). In practice, the degree of the polynomial model is kept as low as
possible. The degree higher than 4 is rarely used.

The optimal value of regression parameters is determined by applying
ordinary least squares by minimizing the sum of squared errors

E = Z[yl - (ﬁo + le + ﬁzx2+... +ﬁNXN)]2
i=1

By differentiating the loss with respect to each parameter and setting it equal

to zero

0F 0,vi=0,1 N
=, —uvi=0U1,...,
ap;

the system of N+1 linear equations is created

Zyl- = Bon + By (in) +...+BN(leN)
Z yix; = By (Z x?) + B (Z X)) +... 4By (Z X+

Syt = Bo(Ext) + Bu(E )+ +Bu(Tx2)...

> vt = (O x) 46 (Y ) o (1Y)

The matrix representation of a linear system y = X B, where
Yo 1 x; x . xy Bo
y=|x=|t 2 E oy xﬂ,ﬁ - lﬂ than
i T ] R
p=&"X)""X"y
where £ is an unbiased estimation of . The assumptions of the multiple
regression model are similar to the simple linear regression, i.e.:

o The errors follow the normal distribution with a mean of zero and a
standard deviation o. The errors are uncorrelated with each other

and independent of the errors associated with all other observations.
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e The independent variables x are assumed to be measured correctly.

There are several strategies that can be used to build a polynomial regression

model. The forward selection procedure successively fits the model with

increasing order to test the significance of the regression coefficient at each

step of model fitting. The order increases until the t-test for the highest order

term is nonsignificant. On the other hand, the backward elimination starts

with the highest order model and then deletes the highest terms one at a time.

Example. The values of the field measurement of biomass and NDVI are
presented in Table. Build the biomass estimation model.

NDVI Biomass NDVI | Biomass NDVI Biomass
0.15 12.0 0.38 80.0 0.58 195.0
0.16 12.5 0.37 95.0 0.48 197.0
0.18 25.0 0.40 110.0 0.48 212.0
0.20 40.0 0.45 115.0 0.52 212.0
0.22 48.0 0.45 130.0 0.58 250.0
0.22 50.0 0.42 142.0 0.59 300.0
0.30 62.5 0.50 148.0

0.31 65.0 0.49 160.0

0.33 70.0 0.45 175.0

0.34 75.0 0.43 175.0

three regression coefficients.

Using the measurements, fit the polynomial regression model to estimate
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Bo = 8.13, B; = —48.78, B3 = 801.90
The final mode is y = 801.90 - x*> — 48.78 - x + 8.13

The model is shown in the figure below.

Biomass estimation based on NDVI
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10.5 Polynomial piecewise

In some situations, low-order polynomials don't provide a good fit. One
possible solution is to use the higher-order polynomial. However, the use of
a single high-degree polynomial may produce large errors if the function has
different behavior in different regions of the independent variables. This type
of problem can be solved by piecewise polynomials, where instead of using
one global polynomial function that fits the entire data range, the range is split
into sections and separate polynomials are fitted to each section. So, piecewise
regression includes the two phases: divide the domain of independent
variables into pieces and fit a polynomial function separately for each region.
The join points of sections are called knots. However, fitted functions are not
continuous. To force the continuity, the restriction on the parameter
estimation is introduced, i.e., for the polynomial of order k, the function
values and derivatives up to k —1 are equal at each knot. The piecewise
polynomials with continuity constraints are called splines. To create a spline,
it is necessary to determine the knots and to select the order of the polynomial.
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The cubic spline, which uses the cubic function within each region, is often
used. The cubic spline with K knots (t; < t, <...< t) is defined by

1 K
EG) = ) fopc + ) filx =t}
j=0 i=1
where
(x—t)3 ={(x—t)3 x>t;0, x <t

The four parameters are needed to describe each region, leading to a total 4 -
K degrees of freedom. It assumes that the position of knots is known.

The number and position of the knots have a significant influence on the fit.
If a small number of knots are used, the regression is underfitted, and with
too many knots, the regression is overfitted. Similarly, knot position is also
important since uniformly distributed knots can lead to overfitting in regions
with a low number of points or underfitting in regions with a high number of
points. The position of knots can be determined by using equidistant knots,
quantile-based knots, domain knowledge, and visual inspection of plots. On
the other hand, the number of knots is determined by using a penalty
approach such as the B-spline, smoothing spline, P-spline, or regularized
spline.

The smoothing spline presents the solution of the minimization problem

n 1
arg minZ(yl- — f(xl-))2 + /1_[0 f”(x)zdx
i=1

the first part represents the goodness of fit of f while the second term
represents a penalty for the roughness of the function. The smoothing spline
starts by putting the knot at each data point, and the overfitting is controlled
by the penalty on the integral of the squared second-order derivative (second
term).
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10.6 Model building

A simple strategy for building of regression model consists of five basic

steps:
1. Data collection and preparation,
2. Preliminary model investigation,
3. Reduction of independent variables,
4. Model refinement and selection, and
5. Model validation.

The data collection includes the field measurement of variables (forest
biomass, water quality parameters, air quality measurements, information
about classes, etc.) and integrating them with corresponding remote sensing
data. It usually includes steps to verify that the assumptions of regression
analysis are met, such as creating scatter plots, checking data distribution,
identifying of outliers, encoding of categorical variables, normalizing data,
etc. Preliminary model investigation includes identification of functional form
for predictor variables based on statistics” prior knowledge or state-of-the-art
studies to perform data transformation (such as logs).

The regression analysis depends on the independent variables that are present
in the model.

Usually, a large set of potentially explanatory independent variables is
available. However, some variables may not be fundamental for the problem,
some may contain errors, or represent the duplication of another variable.
Therefore, it is crucial to detect and use the variables that play a consistent
role.

The aim of reduction is to select a subset of variables that are significant for
the outcome to improve model accuracy and interpretability. The variable
selection is performed assuming that the functional form of the independent

variable (xz,i,log(x)) is known, and that data contains no outliers or

influential observations. Many methods have been proposed for the selection
of suitable variables in regression, such as forward test-based, criterion-based,
or screening-based procedures. Test-based methods, such as stepwise or
autometrics, rely on statistical tests to select informative variables.
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The stepwise procedure is the simplest and most straightforward approach to
variable selection, in which forward selection or backward elimination is
performed using the F-value as a criterion.

The F-value (or F-statistic) is a number to test whether a group of variables (or
a single variable in the partial case) significantly improves the model. It
compares two sources of variation: the variation explained by the model and
the unexplained variation, contained into the residuals. A high F-value
indicates that the variable(s) being tested contribute significantly to
explaining the outcome, while a low F-value suggests they do not.

In forward selection, variables are added one by one to the model. At each
step, the partial F-value is calculated to assess if that variable significantly
improves the model. The process is repeated until the F-statistics are
significant for a given significance level (i.e. the remaining variable does not
improve the model significantly). The backward elimination starts with all
variables (full model). At each step, the variable with the lowest F-value in the
comparative test is removed. The process continues until all variables are
significant. In practice, the stepwise selection combines both the forward
(adding the best variable) and the backward (checking if any variable should
be removed) selection procedures. It is intuitive and easy to understand but,
it is poorly data-driven and can be unstable if variables are highly correlated.

Autometric represents a robust automated general-to-specific model selection
procedure that starts with a general model and systematically eliminates
insignificant variables using backward elimination and diagnostic tests.

If there are N independent variables, then it is possible to create 2" models. In
a criteria-based procedure, the best model is selected according to certain
criteria. The the Mallows’ CP, the Adjusted R?Akaike Information Criterion
(AIC) and the Bayesian Information Criterion (BIC) are most commonly used.

The Mallows” C, statistics is an estimation of the total mean squared
prediction error (bias+variance) of fitted models, which is averaged over the
independent variables. It is used to compare models with different numbers
of parameters. In addition to measuring goodness of fit, it explicitly considers
bias (since leaving out important variables can lead to a biased model), which
helps to detect the underfitting and introduces a penalty for adding
unnecessary variables, discouraging overfitting. C, is given by
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n . 5)2
Cp=21=1(y12 3/1) —n+2N
g

2 is external estimation of the variance calculated for the full model

where o
(using all variables) or from prior knowledge of the measurement errors. For
the full model C, is exactly equal to N. The models with low bias and
appropriate complexity have small C, value or value close to N. If the C,, value
is much greater than the number of independent variables; the bias is

substantial.

The AIC the model that balances the goodness of fit with model size, i.e., it
penalizes a model for adding variables that do not significantly improve the
model performance. The primary aim is to find a model that best explains the
dependent variable with a minimum number of independent variables. The
suitability of the model is measured by maximizing the log likelihood of the
predictor coefficient and error variance, i.e.

AlIC(a) = —2logL + a-N

where L is the likelihood, and «a is constant in the penalty term, typically set
to 2. AIC decreases with an increase in model performance, i.e., the model that
minimizes AIC should be chosen. AIC is efficient when the sample size n is
large relative to the number of variables N; in contrast, it can lead to
overfitting, favoring the complex models. [9] suggested the bias-corrected
version AIC; by calculating the Kullback-Leibler information for normal
distributions, assuming the true model is among the candidate models. It is
defined as

2N(N + 1)

AIC. = AIC + ———=
¢ n—N-—1

it is clear that for a large sample size (1) the AIC; will converge to AIC.

Similar to AIC, BIC is a criterion used for model selection from a finite set of
models. It combines the goodness of fit with a penalty for model complexity.
The BIC is defined as

BIC = —2logL + nlogN

In contrast to AIC, which has a fixed penalty, in BIC, the penalty grows with
the number of variables. Due to that, for a large sample size, the BIC favors
the simpler model, while for a small , it will pick the model with a similar

247



Introduction to Geospatial Artificial Intelligence

level of complexity as AIC. The model with the lowest BIC is considered to
have the best balance from a Bayesian perspective.

10.7 Linear classifier

As already mentioned, the goal of classification is to assign the input vector x
to one of the discrete classes y. Consider independent and identically
distributed data (x7,y7),..., (Xn, Yn) ~ P where x; € R are features and y; €
{0,1,...,K — 1}. The discriminant is a function h: y —» {0,1, ..., K — 1} that takes
the feature vector and assigns it to the one class. Since x can belong to one and
only one class, the input space y is disjointed into K class labelled decision
regions. The border of each region is a decision boundary that represents the
surface that separates different classes in classification models.

The Linear Discriminant Analysis (LDA) is a supervised algorithm used for
both dimensionality reduction and classification. Let's consider the binary
classification problem. In LDA, we assume that: discriminant functions are
linear, features of each class follow a Gaussian distribution, and all classes

have equal covariance matrices.

The simplest linear discriminant function is obtained by taking the linear
function of the input vector as follows

yi=wix;+b

where w is the weight vector and b is the bias. The negative of the bias is also
known as the threshold. A feature vector x belongs to a positive class if its
discriminant function is w'x > —b. Otherwise, it belongs to the negative class.
Geometrically, the weight vector determines the orientation of the decision
boundary, while the threshold b determines where along the decision
boundary the split between classes occurs. The weight vector can be adjusted
using least square methods, Fisher criterion, or perceptron.

The least squares classifier fits a linear model by minimizing the squared
errors between the true class y and the predicted class § ie. W=
argming (y — wTx)?. The squared error is a convex function and has a unique
and simple closed-form solution. It guarantees to achieve a global minimum;
however, this is not necessarily the best solution. For example, in the presence
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of outliers, the least squares method tends to shift the decision boundary
toward the outliers.

The Fisher linear discriminant represents the simplest linear discriminant
function that projects the D-dimensional feature vector x down to one
dimension (for binary classification) using y(x) = w”x (Figure 74).

The corresponding decision boundary is defined by the relation y(x) ==
which corresponds to a D-1 dimensional hyperplane (in 2D it is a line, in 3D
it is a plane ...) and each subspace represents a class (+1 or —1). So, an input
vector x is assigned to the class +1 if y(x) > 0, and to -1 otherwise.

2%
\;\{\e C@Q‘O

/Q\:o'\e

Figure 74 FLD finds a linear projection of data and classifies the projected values by checking
against the threshold

The projection onto one dimension can lead to sustainable data loss, so classes
that are well separated in the original D dimension can significantly overlap
in one dimension. Therefore, we should select the weight vector that
maximizes the class separation. Geometrically, the separation between classes
is maximized if the distance between their centroids is larger and the scatter
within classes is smaller. So, a hyperplane is created based on simultaneously
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maximizing the between-class variance and minimizing the within-class
scatter, i.e., by maximizing the Fisher criterion. The Fisher criterion is defined
as

(-1 — up)?
s2 +s?

Jw) =

where y; = wT %Z?zl x,, are the mean values of two classes after the projection
along wi.e.

y; =w'x; and sz = ¥ ,(y; — u;)? is the kth within-class variance.

So Fisher's criteria try to find the linear combination of parameters w that
maximizes the between-class variance (Sp) relative to the within-class
variance (S,,). The w is determined by setting the derivative of ] to 0, i.e.

p (WTSBW>
aJ WTSWW T T -1
= 0= - w'S,w)Sgw — (W'Sgw)S,w =0 = S,,"Sgw = J(w)

Therefore, the projection vector w is the eigenvector of S,,'Sg so we need to
choose the eigenvector that corresponds to the maximum eigenvalue to
maximize class separability. Geometrically, in order to divide the feature
space into k different classes, at most k-1 equations are needed. Due to that,
the number of created components is equal to the number of classes - 1.

Similar to PCA, the Fisher Linear Discriminant can be used for dimensionality
reduction. As already mentioned, the PCA finds the most accurate data
representation in a lower-dimensional space (it projects the data in the
direction of maximum variance). The direction of maximum variance may be
useless for classification features. On the other hand, in LDA, features are
reduced by projecting data onto directions that maximize class separability.

The linear classification can be used for multi-class classification problems.
LDA is simple to implement, especially for binary classification, easy to
interpret, and provides good accuracy in the classification of linearly
separable data.

In contrast, there are a few drawbacks, such as: insufficient robustness against
outliers and small sample size (high number of features and low number of
samples), inapplicable for multi-model (more than one mode, i.e., more than
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one distinct peak suggesting different subgroups within class) datasets, and
the singularity of the within-class scatter matrix.

Algorithm Fisher Linear Discriminant

Input: dataset D with (x;,y;) elements i = 1,...,n and y; € {1,2}
Return: weight vector w, threshold b, prediction ¥
1. Compute the class mean as y; = mean(x;,y; = 1) and

p-1 = mean(x;,y; = —1)
2. Compute within-class variance
Sw=0
for i in range(0, len(D) — 1):
ify, =1
Swt= (x; — pp) (x; — )"
else:

Swt= (x; — 1) (x; — )"
3. Compute projection vector w = Sy, - (1 — )

4. Normalize projection vector w = “‘t—”
T T
5. Compute threshold b = W

6. Make a prediction

if wix > b:
y=1
else:
y=-1

10.8 Logistic regression

Logistic regression represents the baseline supervised ML tool for
classification and the foundation of neural networks. The classification
problem is similar to the regression model but the output is a discrete value.
The linear regression can be generalized to the classification problem by
defining a different family of probability distributions. Let's consider a binary
classification. The goal of binary classification is to train a classifier that can
make a binary decision on new input data.

Consider a single input observation x represented by N independent variables
x = {xy,...,xy} and a predicting outcome is categorical variable y that can be
1 (positive class) or 0 (negative class). We want to know the probability
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p(y = 1]x) that x is a member of the class. In the case of binary classification,
the probability of one class defines the probability of the second class since
their sum must be equal to 1. Therefore, if p is the probability of the positive
class, then 1-p is the probability of the negative class, i.e.

p(ylx;ﬁ)={ pt) iy =1

1 —p(x) otherwise

The ration p/(1 — p) is known as odds, and logit is the logarithm of odds, i.e.

y = logitp = lnl —

We assume that the relationship between input and output is linear, i.e.

N
y =5 +Zﬁixi =By+ B x
i=1

where f ={Bj,...,By} represents regression coefficients that reflect the
strength of the relationship between independent variables and outcome.
However, in contrast to normal distribution in linear regression, which is
parameterised by mean, the distribution of binary variables is binomial (the
output must be between 0 and 1). The linear function is unbounded, and
nothing forces y to be between 0 and 1. This is solved by passing y through a
logistic sigmoid function that squashes the output of the linear function into
the interval 0 to 1 and interprets these values as a probability p(y = 1|x; ) =
o(y)ie.

1
r(y=1D=0@)= 1 + e~ (Bo+Bix1+ .+Bnxn)

The sigmoid function is also called the logistic function, and therefore, this
regression is also known as logistic regression. This creates the logit

N
Bo + Z Bixi
=1

1

p(x)

g e i

The regression coefficients are estimated by maximum likelihood. For one
instance (x;, ¥;) the probability can be written as

plx; B) = p(x)Y (1 —p(x)' 7.
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For n training data points {(x;, y;)}i-; that were generated independently, the
likelihood is defined as

1) = | [poilxsm = | [per(i-pa) ™
i=1 i=1

The aim is to select a coefficient that will predict a high probability of positive
class samples and a low probability for negative class samples. We can define
the loss function by taking the negative logarithm of the likelihood, which
gives the cross-entropy loss function given as

1) = ~logL(B) = = ) [yilogn(x) + (1 = ylog(1 = p(xp)]
i=1

The gradient of the loss function with respect to f; is given by

i~
Vel(B) = P Z(}’i — p(x;))xi;
T i=

The updates will be given by B41: = B — nVsl(B:)

Another way to solve the maximum likelihood equation is by using the
Newton-Raphson approach. So we want to maximize the log-likelihood I(f3).
The maximum occurs when the gradient is zero Vgl(f) = 0. The Newton-
Raphson approaches solve this equation by iteratively updating § using both
the gradient and the Hessian, i.e.

Be+1 = Be — H(Bt)_lvﬁl(.gt)

where H is Hessian. The Newton-Raphson approach automatically rescales
the gradient by the curvature, so it does not require manual tuning of the
learning rate, enabling faster convergence. It is a standard procedure used in
logistic regression.

So the outcome of the logistic regression model is a probability, and we want
to classify new points as 1 or 0 by checking which of those classes has a higher
probability. If p(y = 1|x) = p(y = 0|x) then the new sample is classified as 1,
otherwise it is classified as 0. This is the same as using the prediction threshold
t>05i.e.hg >05. Mathematically, the probability threshold 0.5

corresponds to 1+i—z = 0.5 = z = 0 i.e., input to sigmoid is 0.
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Therefore, if the input to the sigmoid function is negative, logistic regression
predicts a negative class; otherwise, it predicts a positive class. However, the
classification thresholds should be adjusted in case of imbalanced data sets or
cost-sensitive classification. If the positive class is rare, the lower threshold
may increase sensitivity. Consequently, if the cost of predicting a false
positive class is much higher than predicting a false negative class, a threshold
greater than 0.5 should be used to reduce the number of false positives.

Logistic regression can be seen as the simplest form of a feedforward neural
network that consists of one neuron and a sigmoid activation function. More
complex neural networks extend this concept by stacking multiple layers of
neurons to model nonlinear relationships.

Despite the name, logistic regression is a simple and effective classification
method. It achieves high accuracy if the classes are linearly separable. Logistic
regression is useful for identifying the most discriminative variables in a
dataset where there are many variables to consider. It is less robust than more
sophisticated models such as ANN, but it is easier to interpret the outputs and
understand how decisions are made.

10.8.1Multi-class logistic regression

Multi-class logistic regression, also known as multinomial logistic, is a
generalization of standard logistic regression for classification that involves
more than two classes. So the output variable y is still discrete, but now it can
take the K different values (classes), so y € {1,...,K}. The classes are
represented as a one-hot encoder vector. The multinomial problem is
parameterized by the K-1 parameter by fixing one class to the referent, and
the model estimates the logits of each other class relative to the referent. So
for each observation x we will output a K-dimensional vector representing the
estimated probabilities for each class, ie. p(x) = (p;(x),...,px(x)) with

pr(x) = p(y = k|x) and Xg_; py(x) = 1

In multinomial regression, the sigmoid logistic function is replaced by the
softmax function, which is defined as

Zik

pr(x;)) = softmax(zy,) = K—ezij
j=1
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where z;, = Bfx; + by is a linear score for sample i and class k, x; is the feature
vector for data point i, and by, is the offset for class a. The softmax regression
algorithm (Figure 75) applies binary logistic regression to multiple classes at
once. It uses a score to compute the probability that the training sample x;
belongs to class k.

To determine the regression parameter vector f;, we use the maximum
likelihood. The likelihood function is given by

We define the cost function by taking the negative logarithm, which gives

L(B,b) = - zn: i YVirlogpr (x;)

i=1k=1

which is known as the cross-entropy error function for the multi-class
classification problem (also known as categorical cross-entropy). In order to
determine the model parameters, the gradient of the cost function with
respect to all of the parameter vector . The derivative of the softmax function
for class k is given by

-
VLB, b) = B, = Z(Yik — P (x))x;
=1

where f, is the vector of regression coefficients of x for the kth class of y. The
gradient descent is used to update the weight with a learning rate 7 i.e.

wi:=wy —nV,,L(B,b) foreach classj =1,...,K.

The softmax function will output the estimated probability for each class per
sample (p;) and the class with the highest probability is assigned to the
sample, i.e.

Yi = argmaxy Pik

Multinomial logistic regression is harder to interpret because there are several
regression coefficients associated with each independent variable. It does not
consider statistical independence between features, and it is not suitable for a
very large number of classes for learning.
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=2

Figure 75 Softmax regression for K classes
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11PROBABILITY BASICS FOR MACHINE
LEARNING

Probability theory is one of the central foundations in ML, since the

algorithms often rely on probabilistic assumptions of the data. The probability

theory represents the mathematical study of uncertainty. The uncertainties

rise from both the noise of measurement and the finite size of the dataset.

The probability space is defined by the triple ({2, F, P) where:

{1 is a sample space of all possible outcomes. Those possible outcomes
need to be distinguishable from each other. They are mutually
exclusive, i.e., either one happens or other happens, but not both, and
they are collectively exhaustive (no matter what happens, the result
will be an element of the sample space). Consider rolling a six-sided
die. The sample space represents 2 = {1,2,3,4,5,6}.
Event space F € 27 is the subset of a sample space that represents the
collection of all allowed events. For example, we want to get a number
greater than 3 in our rolling die experiment. There are 3 numbers
greater than 3, so the event space is F = {4,5,6}. And,
p is the probability assigned to a subset of the sample space (what we
believe is likely to happen or not likely to happen). The probability
that the event E € F to a real value between 0 and 1, i.e. p: F — [0, 1].
The probability characteristics are:
o Itis not negative p(X) = 0,
o The probability of the overall sample space is equal to 1 p(2) =
1, and
o If we have two events (two subsets) X and Y that are disjoint,
the probability that one or another happens is equal to the sum
of their individual probabilities p(X UY) = p(X) + p(Y)

Random variables are actually functions that map the outcomes in outcome

space to real values. The random variables allow us to provide more uniform

treatment of probability theory. The probability of a random variable X taking

on the value of x; is donated by p(X = x;) or more compact p(X). If the sample
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space consists of n possible outcomes, which are equally likely, then the
probability of any event X is given by

number of elements of X

p(X) = -

. s . .3
Then, in the above example, the probability of rolling greater than 3 is = = 0.5.

Consider two random variables X that can take any of the values x; where i =
1,...,M and Y can take the values y; wherej = 1,..., L.

Let N be the total number of trials in which we sample both variables X and
Y, and let the number of trials in which X = x; and Y = y; is n;;. Moreover, let
the number of trials in which X = x; irrespective of the value of Y is donated
by ¢; and Y = y; is 7j. The information of multiple discrete random variables

is summarised in the contingency table.

The contingency table (Table 16) where n;; represents the number of points
in the corresponding cell of the array, and the sum of column i corresponds to
X = x; regardless of X, and the sum of row j represents Y = y; regardless of
X.

Table 16 Contingency table

X/Y Vi v, Row sum 7;
L
X1 nqg nip
j=1
x n n L
M M1 ML
j=1
Col sum ¢; M M M
i=1 i=1 i=1 j=1
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The joint probability that X = x; and Y = y; happen at the same time is given
n;j
byp(X =x,Y =y;) = p(X,Y) = -

.. .1s . _ G
Similarly, the probability that X takes the value x; is given by p(X) = —.

The p(X) can be obtained by marginalizing the p(X,Y) over all possible Y i.e.

L

P = ) pY)

j=1
which is the sum rule of probability.

Conditional distributions are the crucial tools in probability theory for
reasoning about uncertainty since they allow us to update the probability in
the face of new events. The conditional probability of Y = y; given X = x; is
the probability that Y occurs given that X has already occurred. This means
that X becomes a new sample space, so the probability that the event Y, X
occurs is equal to the probability of p(Y, X) relative to the p(X). The condition
distribution is written as p(Y =yi|lX = xi) or shorter p(Y|X) and it is given by

_ p(nx) _ p(rx) _my
pIX) == =50 ~ o

Condition distribution is defined when p(X) > 0.

Let X be the event that a traveler visited Milano (M), let Y be a traveler that
visited Paris (P). We want to determine the probability that users will visit
Paris, given that they visited Milano. Let's say we observe the 40 travelers
(N = 40). The total number of travelers who visited Milano is 6, and the

total number of travelers who visited Paris is 9, while 3 travelers visited
both cities. So the marginal distribution is p(M) = 4% = 0.15 and p(P) =
% =
probability that he will visit Paris is a subset of the visitors who visited
both Paris and Milan; therefore p(P|M) = % = z;% = 0.5. On the other
hand, the probability that a visitor will go to Milan, given that they visited

Paris, is p(M|P) = g = 0.3333

0.225. Given that the visitor already visited Milan, the conditional
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Figure 26 Geometrical representation of conditional probability. Each hexagon represents

a visitor.

The definition of conditional probability can be rewritten as

pX,Y) ==L =p(Y]X) - p(X)

which is known as the chain rule of probability. More generally, for events
X1, X5,..., X, the chain rule can be written

p(X1, X5,..., Xn) = p(XDp X2 | X)p(X531X7, X5) ... 0K | X1, X5 ... Xpp_1)

The chain rule is used to evaluate the joint probability of some random
variables, especially when there is (conditional) independence across
variables

From the chain rule (also known as the product rule) of probability and the
symmetry property of the joint probability p(X,Y) = p(Y,X) the following
relationship can be obtained

pX|Y)p(Y)

p(Y|X) = )

260



Introduction to Geospatial Artificial Intelligence

where p(Y|X) is the posterior probability, p(X|Y) is likelihood, p(Y) is the
prior probability and p(X) is the marginal probability of X. This relationship
is also known as Bayes' theorem, which plays a crucial role in ML. Intuitively,
we can observe Bayes' theorem as updating our prior belief given evidence.

Let's consider a classification of satellite images into water (W) and forest
(F) areas, based on the NDWI index. Based on available maps, we know that
20 % of the study area is covered by water, i.e.

p(W) = 0.2 and p(F) = 0.8

This is our prior knowledge about land cover, independent of the observed
pixel. Next, we consider the NDWI value for each class. Water areas
typically have a high value of NDWI, while the forest typically has a low
NDWI value. So if pixel has NDWI=0.7, we can calculate probability based
on the training data

p(NDWI = 0.7|F) = 0.15

p(NDWI = 0.7|W) = 0.75
This is the likelihood that measures how probable the observed NDWI data
is, given that the pixel belongs to the forest class.

Based on Bayes' theorem, we can update our village about pixel class

_ p(NDWI|W)-p(W) . Lo _
pWINDWI) = =0 T2 e, p(W[0.7) = 0.2 0.75 = 0.15

p(F|0.7) = 0.8 - 0.15 = 0.12

After normalization, we will have

0.15
0.15+0.12

0.12
= 0.45
0.15+0.12

p(W|0.7) =

= 0.55 and p(F|0.7) =

So, even though the prior probability that the pixel represents the water
class was 20%, after observing that the NDWI=0.7, the posterior probability
of the pixel bearing water is increased to 55%.

The two events X and Y are independent if

p(X,Y) =pX) - p(Y)

If two events are independent, then
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pX|Y) = p(X)

meaning that X and Y are independent if knowledge that Y occur does not
affect the probability that X occurs. Therefore, the occurrence of X is
independent whether or not Y occurs.

11.1 Probability density

The probability for discrete sets of events can be extended to the probabilities
with respect to continuous variables. By a continuous variable, we consider a
random variable whose sample space is infinite. This is tricky since if each
variable has a non-zero probability, the total sum will add up to infinity,
which violates the requirement that the total probability must sum up to 1.
The X is a continuous random variable if there exists a nonnegative function
p(x)defined for all real x € (—c, %) having the property that for any set B of

real numbers
px € 8) = [ pe)dx
B

The function p(x) is called the probability density function of the random
variable X. This means that the probability that X will be in B can be calculated
by integrating the probability density function over the set I.

Therefore, the probability that X will lie in an interval [a, b] is given by

b
p(a<X<bh)= f p(X)dX

11.2 Probability distributions

The most common continuous distributions (probability density) are
Bernoulli, Poisson, Normal distribution, etc.

The Bernoulli distribution is a simple discrete distribution in which the
random variable can take exactly two possible values x € {0,1}. One example
of a Bernoulli random variable is the outcome of a coin toss, where possible
outcomes are heads or tails. It is specified by a single parameter p, i.e.,, p(X =
1) =p and p(X =0) =1 —p where 0 < p < 1. Bernoulli distribution can be
written as
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p(X) =p*(1—-p)'™*

The Binomial distribution models the outcome of performing multiple
independent Bernoulli trials, each with the same probability p. Instead of just
success and failure, it gives the probability of observing exactly k successes
out of n trials. It is defined as follows

p(X = k) = () p*(1 = p)"*

Let X be the number of successes (value 1) that occur in the 7 trials, then X is
said to have a binomial distribution with parameters (n,p) denoted as X ~
Bin(n,p). However, for large n and small p values, the binomial is hard to
compute (such as X ~ Bin(10*,107°)) and it can be approximated using the
Poisson distribution.

The Poisson distribution is, in fact, a limiting case of the binomial
distribution. It gives the probability when the chance of an event p is small,
but the total number of trials n is large. It is often used if an event occurs
independently and randomly over a fixed interval of time, and the mean rate
of occurrence is constant over time, then the number of occurrences in a fixed
time period follows the Poisson distribution. It is a discrete distribution with
a probability mass function of a random variable X is defined as follows
Me=?

p(X =k 1) ="

where k = 0,1,... is the number of events observed and A = n - p is called the
average arrival rate. The mean value of a Poisson random variable is 4, and
its variance is also A.

Gaussian distribution, also known as normal distribution, is one of the most
used probability distributions for continuous variables. It appears in different
contexts. According to the Central Limit Theorem, when the number of trials
n becomes larger, the distribution of the Binomial variable can be
approximated by the Gaussian (especially if p is close to 0 or 1). Moreover, the
Poisson distribution begins to resemble a Normal distribution when 1 is large
(Figure 76).
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(a)

(b) (c)

Figure 76 Plots of the Poisson probability function for various values of A (a) A=1, (b) A=5, (c)
A=20

The Gaussian distribution is defined by two parameters: the mean u and
variance o (Figure 77). This means that we can compute any probability of
interest given only the mean and standard deviation. For a single real-value
variable x, it is given by

() =L
x) = e 2o
10 ==

where x can take any value —e < x < . The argument of the exponential
function is the quadratic function of the variable x. Since the coefficient is

: . . 1.
negative, the parabola points downwards. The coefficient T5o, 18 a constant

since it does not depend on x. The random variable X that follows a normal
distribution is denoted as X ~ N (u, 02).

— U=0,02=0.2
—— U=0,02=5.0
0.8 4
— u=2,0'=05
0.6 4
z
wn
c
& 04
0.2
0.0
-10 -5 0 5 10 15

Figure 77 Gaussian distribution for different parameters. u controls the location of the center
of density, 0? controls how spread out the density is.
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It is a bell-shaped curve (Figure 77) and it is assumed that during any
measurement, values will follow a normal distribution with an equal number
of measurements above and below the mean values. If the distribution of
measurement is normal, then their mean (average of all values), median (mid-
point of distribution), and mode (the most frequent value observed during the
experiment) are the same. Moreover, the level of confidence can be expressed
based on the mean and standard deviation, i.e. i + ¢ contains 68.2% of all
values, u + 2 - o contains 95.5% of all values and u + 3 - 0 contains 99.7% of all

values.

The standard Normal distribution is a Normal distribution with amean u = 0
and ¢ = 1. The random variable that follows a standard normal distribution
is often denoted by Z ~ N (0, 1).

For a multivariate Gaussian distribution (Figure 78), the probability density
is defined over a vector of inputs as follows

1 —(%(x—u)Tz—l(x—u)>
r———
V2T X

where 7 is the number of variables, u is an nx1 vector of means, X is the

fl) =

covariance matrix nxn. The covariance matrix needs to be symmetric, positive
semidefinite, and it can be factored as X = AAT. The argument of the
exponential function is a quadratic form in the vector variable x. Since X is
positively defined (and therefor it inverse is also positively defined) than for

any x # [ —%(x — )T 2 I(x —u) <0 and therefore a quadratic bowl is

downward open.

The computing multivariate Gaussian for large n (number of parameters
grows quadratically with #n) can be computationally demanding. It can be
reduced by assuming that the covariances are zero; therefore, the determinant
|2| will be a product of the variance, and the inverse can be computed as the
inverse of the diagonal elements.

The n-dimensional multivariate Gaussian with a diagonal covariance matrix

¥ =diag(a},...,02), can be viewed as a collection of d independent Gaussian-

distributed random variables with mean y; and variance o7 .
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Figure 78 Multi-variate Gaussian

Moreover, if Z ~ N(0,1), Z can be defined as a collection of d independent
standard normal variables. Feature more, if Z = A~! (X — p) then from algebra
X = AZ + p. Therefore, any random variable X with a multivariate Gaussian
distribution can be interpreted as the result of applying a linear
transformation to some collection of n independent standard normal
variables.

The analysis of contour lines provides a better understanding of the
multivariate Gaussian. The contour lines represent the region of equal
probability density. Due to the quadratic form in the Gaussian equation, these
contour lines are ellipses (Figure 79 (a)). The orientation and shape of the
ellipse are determined by the covariation matrix. If X is diagonal, the ellipses
are axis aligned (since variables have different variance, the ellipses will be
stretched horizontally or vertically), if ¥ has off-diagonal elements, the
ellipses are rotated (if two variables are positively correlated, the major axis is
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along a line with positive slope) (Figure 79 (c) and (d)). Moreover, the
independent variables have the same variance and therefore circular contours
(Figure 79 (b)).

-4 -4

-4 -2 0 2 4 -4 =2 0 2 4

-4 -4

X1 X1

(0) (d)
Figure 79 Contour lines of multi-variate Gaussian (a) diagonal covariance matrix, (b)

independent variables, (c) positively correlated variables and (d) negatively correlated
variables

11.3 Expectations and Variance

The expectation of a random variable, also known as the mean, first moment,
or expected value, is denoted by E (X) for the discrete distribution is given by

ECO = ) xip(X = x)

Xi€EX
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Therefore, the expected value of X is the weighted average of the possible
values that X can take on weighted by the probability that X assumes that
value.

Let's find the E(X) where X is the outcome of rolling the dice. Since p(1) =
p(2) =p(3) = p(4) = p(5) = p(6) the expected value is
1 7

EX)=1 1+2 1+3 1+4 1+5 1+6 =
= 6 6 6 6 6 6 2

Calculate the E(X) where X is a Bernoulli random variable with parameter
p.Sincep(0) =1—pandp(l) =pthan EX)=0-(1—-p)+1-p=p

In the case of continuous variables, expectations are expressed in terms of an
integration with respect to the corresponding probability density, i.e.

EX) = .[_wxp(x)dx

Calculate the E(X) of a random variable uniformly distributed over an
interval (a, b)

b x bz—az_a+b

E(X)zfa b—a® 200 2

Therefore, if random variables are uniformly distributed over an interval
(a, b) then the expected value is the middle point of the interval.

Calculate the E(X) when X is normally distributed with parameters u and

0.2

E(X) f e
= xe 20 X
V2mo J-w
If we express x = (x — ) + p transform
1 o _x=w? 1 o _=w?
E(X)_%f—ooe 202 dx+,u\/ﬁf_me 202 dx

letting y = x — p leads to
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[o'e) 2

B0 =—— yeTictdy+p | O:of(x)dx

1
V2ro
where f(x) is the normal density. By symmetry, the first integral must be 0.
Due to that,

EQ) =p [, f(dx=p

Therefore, the expected value of a random variable that follows a normal
distribution is the mean value.

The variance of the distribution, also known as the second moment, is defined
as follows

Var(X) = E((X — E(X))?)

It measures the expected square of the deviation of X from its expected values.
It is often denoted by o?. The variance of a random variable X is not a linear
function of a random variable. The standard deviation, denoted as o, is given

by o = \/Var(X).

If random variables X and Y are independent than
Var(X +Y) =Var(X)Var(Y)

The covariance of two random variables measures how closely related the two
random variables are. It is given by

Cov(X,Y) = E((X — ECX))(Y — E(Y))
Let X be normally distributed with parameter y and o. Find Var(X)

1 Ge-w?

fjooo(x —w?e 207 dx

Var(X)=E((X — w?) =

21mo

by introducing the substitution y = (x — u)/o we have

0.2 [e9) " _ﬁ
Var(X)=\/T_nf yee 2dy

2

Integrating by parts u = y and dv = ye _dey gives
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y2

Var(X) = “Z2dy =o?

e
11.4 Bayesian classification

Generally, there are two approaches used in classification: generative and
discriminative. In a discriminative approach (such as logistic regression),
classifiers learn what features from the input dataset are most useful to
discriminate between different classes. On another hand, generative
approaches, such as Bayesian classifiers, are based on obtaining a distribution
over some input data. A Bayesian classifier is a probabilistic approach based
on the Bayesian theorem that addresses classification problems by modeling
the distribution of the input class. Therefore, it returns the class most likely to
generate the observation.

Let us consider the binary classification where samples belong to y; or y,. We
assume the prior probabilities P(y;) and P(y,) are known or it can be
assumed that the classes are equally liked or calculated from training samples.
If n is the total number of available training samples and n;, n, of them belong
to y; and y,, respectively, then the prior probability is given by

P(y;) = % and P(y,) = %
Once we observe a feature vector x, we estimate the conditional probability
density distribution p(x|y;), where i = 1,2, describing the distribution of
feature vectors x = (x,..., x;) in each class. If the feature vector can only take
discrete values density function p(x|y;) becomes a probability denoted by
P(x]y;). Applying the Bayes’ theorem will lead to the posterior probability

given by:

p(x|y)P(y;)
p(x)

where p(x) is the input data probability distribution, and for which we have

P(y;lx) =

2
p@) = ) pEIyIPOD
i=1
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The Bayes classification rule is based on minimization of probability errori.e.,
maximization of a posterior probability (MAP), i.e. ¥ = arg max,eqnP(y|x).
Since p(x) is the constant across all classes, it does not affect the argmax, so

¥ = argmaxyeqnp(xly)P ().

Therefore, we can determine the class of a sample by considering the
inequality between p(x|y;)P(y;) and p(x|y;)P(y,).

The classification can be given as:

if p(x|y1)P(y1) < p(x|y,)P(y,), x belongs to the class y,,

if p(x|y1)P(y1) > p(x|y,)P(y;), x belongs to the class y;, and

if p(x|y1)P(y1) = p(x|y,)P(y,), x can be assigned to any of the classes.

Therefore, the decision boundary is the set of all x where posterior

probabilities are equal.
So, the classifier balances the likelihood (i.e., how well x fits each class) with
prior knowledge. Since the prior is a single fixed number, the likelihood
grows exponentially with the number of samples, and the influence of the
prior on the posterior fades away (Figure 80).

If P(y;) = P(y;) = 1/2 than priors cancel out and classification depends only
on the likelihood i.e. the decision boundary is determined by considering the
inequality between p(x|y;) and p(x|y;).

In multi-class classification Bayes classifier generalizes directly y =
arg max,, P(ym|x) where m represents the number of classes. The MLE or
MAP can be used to estimate the distribution parameters and then calculate
an argmax decision rule over m classes for classification. However, if the
number of features is large, estimating the probability of every possible
combination would require a huge number of parameters and a large training
dataset.

This can be addressed by introducing Naive Bayes. The Naive Bayes assumes
that each feature of X is conditionally independent of the others, given Y, i.e.

k
p(xy,..., xely) = np(ley)
j=1

where k is the number of features.
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Figure 80 Steps in Bayes classification (a) compute the class conditional probability, (b)
multiply by the class prior probability, (c) obtain the posterior probability, and find the decision
boundary

This assumption is often wrong in the real world, but it significantly reduces
the computational complexity, allowing us to make predictions using space
and data, which is linear with respect to the size of the features. Therefore, it
enables training and making predictions for a huge feature space. The
prediction algorithm can be presented as

m
y =arg max p(x|y)P(y) = arg max P(y) 1_1[ pCxily)
1=

k
= arg max logP(y) + z p(xily)

i=1
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11.5 Bayesian error

In Bayesian classification, the feature space is partitioned into two decision
regions R; and R, associated with y; and y, respectively. The boundary
between regions is the decision boundary. Therefore, for all values of x in R;
the classifier decides y; and for all samples in R, the classifier decides y,.
However, the errors are unavoidable if class distributions overlap (Figure 81).
Due to that, there is a finite probability that observation x is located in the R,
region, in fact, belongs to the class y;. Then our decision is in error. The total
probability, P,, of committing a decision error for the case of two classes is
given by

X0 o
Po= [ pGlPODdx + | pGlyPodx
—oo X
As already mentioned, the P, is minimized if each x is assigned to the class
having the largest posterior probability. The P, is equal to the total shaded
area under the curves.

I
0.35 I — pixly1)Ply1)
[ plx|y2)Ply2)
Bayes error region
0.301 ./—\\\l y g
Decision I
boundary |
0.25 1 ‘ 1
I
0.20 A !
I
I
0.15 I
I
0.10 I
: I
I
0.05 -
0.00 A
-6 -4 -2 0 2 4 6
X0
R, R,

Figure 81 Bayes' error corresponds to the overlap between the class distributions. The optimal
decision boundary is where the curves cross (x0 ).
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Bayesian error is a very important concept in ML. It is the minimum error you
could obtain using any kind of classifier. The classifier that achieves this error
is an optimal classifier. It is a theoretical value that is hard to obtain in real-
world problems, since it is hard to estimate the exact data distribution of
various classes from a finite dataset. Moreover, the loss function is
discontinuous and not convex, and therefore hard to optimize.
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12SUPPORT VECTOR MACHINE

Support Vector Machine (SVM) was proposed by [10], is a supervised ML
algorithm used for both classification and regression. It is one of the best off-
the-shelf ML algorithms that have been extensively used in various tasks.
SVM is a discriminative approach, so it does not provide posterior probability.

As we already mentioned, in binary logistic regression, the decision boundary
is linear. The SVM also uses the linear separator by employing the optimal
margin principle.

Let us consider a binary classification problem with labels y and a feature
vector x;. Class

y =1 is a positive class and y = —1 is the negative class, respectively. We
assume that positive and negative classes are linearly separable. The goal is to
find a decision boundary given as

gx)=wlx+b=0

that classifies data correctly. The decision boundary separates the feature
space into two subspaces. If wx +b >0 than y =1, otherwise y = —1.
However, such a decision boundary is not unique (Figure 82).

X2 @ vl
93

® y=1

(] \\ X1

Figure 82 Binary classification in a 2D feature space. Multiple decision boundaries can provide
correct classification
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The question is which decision boundary we should select. Let's consider
point A, which is located far away from the decision boundary, meaning that
we are very confident that point A belongs to the positive class. On the other
hand, point B is close to the decision boundary, and small changes to the
decision boundary can result in classifying point B as a negative class.
Although point B is correctly classified, we are not very confident in the
prediction at point B. So we wish to find a decision boundary that will provide
correct and confident classification on training examples. Taking that into
account, we would most likely select a green line because it provides the
largest gap between classes. Due to that, the data points can move more freely
without causing errors. Therefore, the generalization ability of the classifier is
higher. So if there are multiple decision boundaries that provide accurate
classification, we should select one that provides the best generalization (i.e.,
it provides stable performance on the unseen data).

The SVM ensures the generalization of maximizing the margins. Margin is
defined as the smallest perpendicular distance between the decision
boundary and all data samples. To quantify the margin that a decision
boundary leaves from both classes, we start with the assumption that the w
are b are constrained so that the output of the linear model is always larger
than 1 or smaller than -1, i.e.

{wa+b21 ify;=1
wix+b<-1 ify,=-1

Thus, if y; = 1 than our prediction if w'x + b > 0 is correct, while it is correct
and confident if w”x + b is a large positive number.

Consider two points x; and x, that both lie on the hyperplane, i.e. g(x;) =
g(x;) =0 and therefore w” (x; — x,) = 0. So any difference vector that lies
inside the hyperplane is orthogonal to w. Thus w points in the direction
normal to the hyperplane and determine its orientation.

To compute the margin, let's analyses the training set s = {(x;,y;); i =
1,...,n}. For a candidate hyperplane (w,b), the functional margin of the
training point (x;, y;) is given by

7 =yi(w'x; + b)
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This quantity is positive if the point is correctly classified, and its magnitude
reflects how confidently the classifier assigns the labels. The true geometrical
distance from any point to a hyperplane is given by

% yiwTx;+b)

lwl] T wl

therefore geometrical margin is a scaled version of the functional margin (i.e.,
if ||w||=1 than the functional margin is the same as the geometrical margin). It
is invariant to rescaling the parameters, so if we replace w with 2w and b with
2b the geometric margin does not change.

Let's analyse the closest point x; of the positive class to the boundary. The
margin of x3 can be computed by projecting the line segment vector x; — x;
over the orientation vector w i.e.

1 wl(x; —x)  WTaz+b)—(Wwix;+b) 1

27T Wl T lIwl] ~Jiwl]

where | [] | is the norm (magnitude) of a vector. Hence, the point closest to the

decision boundary is at a distance “‘i—” The magnitude of w does not change

orientation, it only scales the margin width. Therefore, to maximize the
margin p = 2/||w|| we need to minimize the norm of the weight vector w.
Taking that into account, we need to find a decision boundary with
parameters w and b so that

; 2
min—_- ||w
min=[Iwl

subject to constraint y;(w'x; + b)) =1 Vi =1,...,ni.e, all training points are
classified correctly and lie outside the margin.

Finally, for a given training set S, the geometrical margin of the classifier is
defined as the smallest geometrical margin among all training examples

Yy = min y;
i=1,..,n

Since the objective function is a quadratic function and all constraints are
linear inequality constraints, this is a convex problem, so any local solution is
also a global optimum. This is an important property of SVM. The SVM
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optimization problem has 1 objective and 7 corresponding constraints, where
n represents the number of training samples.

In order to solve this constrained problem, for each x; we introduced
Lagrange multipliers A; > 0. The overall Lagrangian function is given as

n
1 2
Lwb,2) = 3wl = ) 20uw"x +5) = 1)
i=1

where 1 = (1;,...,4,)7. The first term is our objective, while the second term
penalizes violation of the constraint (loss function). The minus sign in front of
the Lagrange multiplier term is because we are minimizing with respect to w
and b and maximizing with respect to A. From the Karush-Kuhn-Tucker
condition, at the optimum, we require stationarity w.r.t. w and b. By setting
the derivatives of L(w, b, 1) with respect to w and b equal to zero, we obtain
the following two conditions

n
w= Z Aiyix;
i=1

Returning w back into L, the dual optimization problem becomes

n 1 n n
maxy, Z Al’ — E Al/ljylyj(xl . xj)
i=1 i=1 j=1

subjecttod; = 0Vi=1,...,n

If A; = 0 the constraint for point i is not active, i.e., points lie outside the
margin and do not influence the solution. Therefore, Lagrangian multiplier
vector is a sparse vector and only vectors that lie on the margin hyperplanes
w'x; + b = +1 will have positive 4;. Thus, the vector parameter w of optimal
solution is a linear combination of the feature vector n, < n with 4; = 0i.e.

ng
w = Z Aiyix
i=1
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The feature vectors that contribute to w are called support vectors, and the
optimum decision boundary is known as an SVM. Geometrically, the
hyperplane bisects the closest points of opposite classes, and only supported
vectors are used to determine the optimal solution, leading to robustness and

good generalization (Figure 83).

*2 @ v1
wix+b=1 @ 1
Supported vectors
Tx+b=5-1
v Decision boundary
e
° ®
X9 K\ (9]

e Margin
o p=2/lwll
\_/‘
e
xlv
wix+b =0

Figure 83 Support vector optimization

To predict a new point x,,,

w’ “Xpew + b = Aiyi(xi : xnew) +b

n
i=1

If the quantity is bigger than 0, the new point belongs to the positive class.
Thus, the prediction on a new point depends only on the inner product

between x and the supported vectors.

There are several important characteristics of SVM:
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e The optimal decision boundary of SVM is unique. As already
mentioned, the optimization is a strict convex function and thus it
guarantees that any local minima is also a global minimum.

e Uses just a subset of training data (supported vectors) to determine
decision boundaries. It is computationally effective,

e Itisrobust to outliers,

e Itis little affected by data distribution and density, and

e It works well in high-dimensional space, especially where the number
of features is higher than the number of samples.

On the other hand, it is computationally expensive and it performs badly
when classes overlap.

12.1.1Soft margins

So far, we assumed that classes are linearly separable. When classes are
linearly separable, the loss function results in infinite error if a point is
misclassified and zero error if it is correctly classified, and then optimized
model parameters are used to maximize the margin. However, in practice,
data are usually not perfectly separable (class overlap, mislabeling, noise, etc).
Consider the cases presented in the Figure 84.

Although classes' conditional probability slightly overlap, points can still be
linearly separable, but due to the presence of outliers, the decision boundary
makes a swing, resulting in a narrow margin (i.e., low generalization ability).
On the other hand, we can maximize margin, but the constraint is violated
(some points are misclassified). The question is which of those cases is better?
In general, there is a trade-off between the margin maximization and the
number of mistakes on the training data. Therefore, if classes slightly overlap,
we can allow some of the training points to be misclassified in order to
increase the margin.
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Figure 84 Linear non-separable classes (a) point samples are correctly classified but the
classifier has a much smaller margin, (b) the margin is maximized, but there is a misclassified

point

Consider the non-linear separable classes presented in the Figure 85. There
are three possible cases: the vector is located outside the margin and it is
correctly classified, the vector flies inside the margin and it is correctly

classified, or the vector is misclassified.

X2

wlx + b =
A

& 27 |

wll = liwli

o Y1
y=1
Supported vectors
Constraint violation
. Misclassification

i

—_— < —_—
lwil —~ llwll

\ X1

Figure 85 Soft margin SVM
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To make the algorithm work for a non-linearly separable dataset and reduce
the sensitivity to outliers, we can modify the approach so that data points can
be on the wrong side of the boundary, but with a penalty that increases with
distance from the boundary. To do so, we introduced the slack variables ¢;
where i = 1,...,n..The misclassification is penalized as a linear function of the
distance from the point to distance boundary by using a single type of
constraint

yiwTx +b) >1—¢;

where &; > 0. Vectors for which §; = 0 are correctly classified, if 0 < ¢§; <1
vector lies inside the margin and it is correctly classified (this is a margin
violation), and for §; > 1 vector is misclassified. This relaxation that allows
vectors to be misclassified is known as a soft margin.

The goal is to maximize the margin while minimizing the number of vectors
with &;. Therefore, we need to minimize

L o
min Wil +C ) &
i=1
st.ywlx;+b)=>1-§ Vi=1,...,n
5120 Vi=1,...,n

where C > 0 is a constant that controls the trade-off between training error
and margin width. The large C leads to small §; and strong penalization of
margin violations, while small C allows more tolerance for misclassification
but enables better generalization. Misclassified points can be farther away
from the decision boundary, and the model won’t change the boundary to fit
them.

12.1.2Kernel

Soft margin allows the SVM to deal with slight distribution overlapping.
However, if classes are not linearly separable. Consider the following case
(Figure 86) where the positive and negative class is arranged into two
concentric circles. In the original feature space, there is no straight line that
can separate these classes.
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Figure 86 (a) classes in the original feature space, (b) classes embedded in a higher-
dimensional space

In such cases, the SVM relies on the so-called kernel trick. The basic idea is to
map data in a much higher-dimensional space where they can be separated.
If we go back to our example, we can project data into 3D space by adding a
square radius z=x7+x3 as a new feature, i.e. (x1,%x,2). In higher-
dimensional space, the two circles lie on parallel planes, and we can create a
linear hyperplane to separate them.

The kernel function computes an inner product between two data points in
the high-dimensional feature space without performing the explicit mapping.

As already mentioned, the dual optimization problem only depends on the
inner product. Thus, if data are not linearly separable, we can map them into
a higher-dimensional feature space ¢(x) so that

(xi-x) = K(xox) = o) - d(x))

where K is the kernel function. Therefore, the dual problem with the kernel is
given by:

n

n n
1
max, z ﬂ-i - Ez z /Ll]ylyjl((xl, x])
i=1

= i=1 j=1
subjectto Y-, 4;y; =0, 0< 4, <CVi=1,...,n
Now the algorithm learns by using features ¢.

Once the optimization is solved, the classification is given by
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g(x) = sign (z AiyiK (x;, x) + b)

i=1
The SVM dual only needs dot product; by replacing it with a kernel, SVM is
able to perform nonlinear classification without explicitly computing high-
dimensionality (i.e., the kernel function directly gives the inner product). Due
to that, it is computationally efficient and scalable, even when the feature
space is infinite-dimensional. The most commonly used kernels are: the linear
kernel, the polynomial, and the radial basis function (RBF) kernel.

The linear kernel, given as K(x,z) = x - z, is the simplest kernel used in SVM.
It does not perform any explicit mapping, i.e., it operates in the original
feature space. It is used when classes are approximately linearly separable.

The polynomial kernel allows modeling the nonlinear relationship between
features. It is given by K(x,z) = (xT -z + ¢)% where d is the degree of the
polynomial and c is a constant that controls the trade-off between higher-
order versus lower-order terms (usually 0 or 1). Consider n training samples,
each having two m =2 features, and we want to use a degree d =2
polynomial expansion. Degree 2 polynomial expansions include all
monomials up to degree 2, ie. ¢p(x) = [l,xl,xz,x%,xzz,xlxz] so points are
mapped from a 2D original feature space to a 6D feature space.

By combining the dual optimization and kernel trick, we can compute the
value of the kernel without explicitly writing the blown-up representation,
i.e., the K values are computed by performing operations in the original space,
and everything works as if we had mapped to higher higher-dimensional
space, 50 ¢(x)T¢(z) = (xT - z+ 1)%. This allows SVM to fit more complex
classifiers without significantly increasing computational cost. However,
fitting increasingly complex models to the training set of the same size
without regularization can lead to overfitting.

The Radial Basis Function is a function whose values depend on the distance
to a center in the input space (usually Euclidean). The most commonly used
RBF is the Gaussian RBF, and is defined as

ol
(x,z) =exp| ———

202
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where ¢? is known as bendwidth, and it is directly related to the width
parameter y = 1/2¢°. The width parameter controls the influence of each
training point. The RBF Kernel measures the similarity between two vectors.
If it is close to 1, x and z are close, while near 0 values imply that x and z are
far apart. So if y is large, the Gaussian is very narrow and only points close to
each other have a high similarity K (x, z) = 1. The decision boundary fits data
points tightly, leading to complex boundaries and possible overfitting (Figure
87(c)). On another hand, for small y, the Gaussian is wide and the decision
boundary becomes smooth and more general. However, it can lead to
underfitting (Figure 87(a)). Therefore, selecting an appropriate y value is
crucial for SVM performance. RBF Kernel implicitly maps the input data into
an infinite-dimensional feature space, enabling separation of very complex
patterns.
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Figure 87 Decision boundary by using different y values (a) underfitting, (b) just right, and (c)
overfitting
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12.1.3Multi-class SVM

Although SVM is fundamentally designed for binary classification, it can be
adapted to perform multiclass classification. This is accomplished by
applying the same principles after breaking down the multi-class problem
into multiple binary classification problems by using one-vs-one (OvO) or
one-vs-rest (OvR) approaches (Figure 88).

Suppose our data has K different classes y € {1,...,K}. The main idea behind
K(K-1)

the one-vs-one approach is to simply train different binary classifiers

for every possible pair of classes. To make predictions for new data points,
each classifier will result in one possible class label, and the point is assigned
to the label with the higher number of votes.

OvVR approach constructs only K classifiers, and k** mode is trained by using
data from the K class as positive, and all of the remaining data is considered
negative. In an ideal scenario, when a new point is presented to the classifiers,
exactly one of the K classifiers will label the point as positive, and all the
remaining will classify it as negative. In reality, all classifiers can assign data
points to negative classes, or more than one classifier can assign them to
positive classes. A new point is fed into all K classifiers and each outputs a
decision value (distance from its separation hyperplane). In reality, all
classifiers can assign data points to negative classes or more than one classifier
can assign it to positive classes.

There is no definitive rule for choosing between one-vs-one (OvO) and one-

vs-rest (OVR) SVMs. OvO requires more classifiers (@ compared to K in

one-vs-rest), but each is trained just on a subset of data, reducing the
computational cost per model. On the other hand, OVR classifiers are always
trained on an imbalanced dataset. Let's say that we have a perfectly balanced
training dataset classified in five classes, the individual classifiers in the one-
vs-rest approach will be trained on 20% of positive and 80% of negative
samples, and the symmetry of the original problem is lost.
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Figure 88 (a) OvO approach, (b) OvR

12.1.4Supported Vector Regression

Although the SVM has been primarily introduced for binary classification, its
extension to regression is also known as Support Vector Regression (SVR).
The main idea is to find a function

gx)=wlx+b

that approximates all training set (X, y) with a margin of tolerance € and at
the same time as flat as possible (minimizing function complexity). Due to
that, SVR uses the € insensitive loss given by

Le={0, iflyi—(w-x;+b)|<€ly;—(w-x;+b)| —€, otherwise

This defines the tolerance tube with radius €. If the predicted value is within
the tube, the loss is equal to zero. If the prediction lies outside the tube, the
loss grows linearly with the distance from the boundary. As € increases, the
function is allowed to move away from the data points, the number of
supported vectors decreases, and the fit decreases. However, sometimes
functions that approximate all pairs (x;, y;) with € precision does not exist. In
that case, we want to allow some errors by which predictions exceed the
allowed tolerance.

Analogy to soft margins in SVM, we can account for the errors outside the
tolerance tube by introducing two slack variables & and &; . They define a
positive and negative derivation outside the tolerance area. The optimization
problem is given by:
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1 2 S e
min |l +¢ ) @ + &)
i=1

subject to
yi—wlix,—b<e+¢&
wixi+b—y;, <e+§&
& =0

The constant C > 0 determines the trade-off between the complexity of the
function f and the tolerance of derivations outside the € tube.

Just as in SVM, kernels can be applied in SVR to handle non-linear
relationships, allowing the regression function to capture complex patterns in
data.
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13 DECISION TREES

Decision trees have been extensively used for both classification and
regression tasks. It recursively splits the feature space into homogeneous
regions based on the values of different features until a stopping criterion is

met.

Consider dataset D c (X,y) that contains n data samples, each of them being
d-dimensional and classified into K classes (y = {y;,...,Yx}). A decision tree
divides the feature space (xi,...,x4) into K distinct regions Ry,...,Rg to
correspond to K classes. For every data sample that falls into the region Ry
algorithms make the same prediction. The condition is that regions don't
intersect with each other, and the union of all regions covers an entire feature
space.

The root node represents the entire feature space. The algorithm aims to
identify the feature and threshold that lead to the best split based on a specific
criterion 6 € R i.e. [xj > 9] where j € {1,...,d}. To determine “best”, we
measure the impurity of a node. Each split results in two child nodes, and
each split must generate subsets that are more class homogeneous. This
process continues sequentially, with each region being split on a specific
feature. If the node is not feature-splitted, then we assign the prediction y to
the region corresponding to this node. This node, where the tree ends, is also
known as a leaf node, and the number of leaf nodes is equal to the number of
distinct classes within the dataset. The complexity of the tree is measured by
the number of splits in the tree.

This mapping results in a tree-like structure where we follow the right branch
of the node if the condition is met and the left otherwise. The process
continues until the stopping criterion is reached, such as: if the maximum
value of decrease in the node impurity over all possible splits is less than
threshold, the predefined depth of the tree is reached, the number of data
samples in the terminal node is less than the minimum number, nodes are
homogeneous, or there is no further improvement in purity.

Splitting criteria are used to determine where a tree should split. The main
aim is to use a criterion that quantifies node impurity (which quantifies the
homogeneity of the labels at a given node) and splits the node so that the

289



Introduction to Geospatial Artificial Intelligence

overall impurity of the child node decreases compared to the parent node.
Different splitting criteria, such as gain index, information gain, or
information gain ratio, can be used.

The choice of splitting criterion directly influences the tree’s structure and
algorithm performance.

The gain index (Gini) quantifies the purity of a specific class after splitting
using a particular feature. It is given by

K

Gini(D) =1 — Z D’

i=1

where p; is the proportion of the training samples in the set that belongs to
class i. K is the total number of unique classes in the dataset. Gini represents
the probability of incorrectly classifying a sample from the set D if we
randomly label it based on the class distribution in the node. If the dataset is
split on feature F into two subsets D; and D, with size N; and N, respectively,
Gini is given by

. Ny N,
Ginip(D) = WGml(Dﬂ + WGlnl(Dz)

The value of Gini ranges from 0 (perfect purity - node contains only one class)
and 1 (maximum impurity). It is highly efficient for standard classification
tasks, but misclassifying samples always results in the same amount of loss
regardless of the distance in the original scale between the observed and the
predicted class.

Information Gain (IG) is based on the entropy that measures the impurity or
randomness in a data set. The aim is to find a split that decreases uncertainty
before and after the split. It determines the effectiveness of a feature in
splitting the training data into homogenous sets. The entropy (H) of set D is
given as follows

K
H(D) = = ) pilog>(p)
i=1

where negative signs ensure that information is positive or zero, p; is the

proportion of instances in D that belongs to class i, i.e., p; = % For a node

290



Introduction to Geospatial Artificial Intelligence

with one class p; = 1 and therefore entropy is equal to 0. If mixing is higher,
the entropy will also be higher. Consider a feature (F) with possible values
{61,...,6}. Then, splitting D on F will result in Dj,..., D,subsets where each
subset D; contains the instances in D such that F = §;. Then the entropy of D;
is given by

K
H(Dj) = — Z pijlogs(pij)
i=1

The information gain of splitting on F is calculated as the difference between
the entropy of the parent node H(D) and weighted entropy after the split
H(D|F) and it is given by

IG = H(D) — H(D|F) = H(D) Z%H(Dj)
=1

where m are the different values that feature F can take, and D; is the subset
of D for which feature F has the value m. IG measures the reduction in entropy
from the original data set D to the set D; created after the split. Based on that,
it determines the usefulness of a feature f at classification. A high IG indicates
amore effective feature for splitting the data, and therefore, it results in a more
homogeneous subset. Although IG is a popular splitting criterion, it tends to
favor the attributes with many distinct values.

Information gain ratio (IGR) is designed to address the limitations of IG by
considering the number and size of branches when choosing a feature. The
IGR normalizes the IG by considering the intrinsic information (also known
as split information). This normalization reduces bias toward the multi-value
features, resulting in a more balanced and effective decision tree. It is given
by
IG(D,F)
Splitinfo(D, F)

IGR(D,F) =

where the Splitinfo(D,F) = =¥, llell (||D||> is the entropy of the subset

D;.
To fit the model, algorithms minimize the loss (impurity) function in the child
compared to the parent node. Due to the discrete structure of the decision tree,
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the loss function is not smooth, and therefore, a greedy algorithm is used to

fit data to the model.

Algorithm Build tree

Input: dataset D with (x;, y;) elements, k-number classes, f-features
Return: decision tree
function BuildTree(D):
if stopping criterion is met than:
return leaf node with the class label
best_gain=[]
for j=1tod: #loop over all features

for m in possible_values(F;): #loop over possible values (split points) of
feature

Diefts Drigne < split(D,F,0) #temporarily partition the data into left
and right subsets

gain = H(D) — %H(Dwﬂ) + %H(DRMM) # test all possible
combinations
if gain > best_gain:
best_gain = gain
Fpest = F]
Opest = m
DLeftBest = DLeft

DRightBest = DRight

left_child« BuildT ree(DLeftBest)
right_child« BuildTree(DRl-ghtBest)
return Node(Fpeg¢, Opest, left_child, right_child)
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Greedy means that at each step, the algorithm chooses the best split locally
(the largest reduction in the loss right now), without considering the long-
term effect deeper in the tree. Therefore, once a split is made, it is never
revisited. This enables efficient training, but also leads to suboptimal trees.
Due to that, techniques such as pouring or ensembling methods are used to
improve performance.

The performance of decision trees is highly influenced by the quality of
training data, tree depth (tree size), splitting criteria, and tree pruning
methods. Moreover, feature selection and feature engineering can improve
the efficiency and accuracy of models.

The decision tree algorithms are intuitive and easy to interpret, making them
valuable where understanding of the decision-making process is crucial, can
handle both categorical and numerical data, don't demand feature scaling, are
robust to outliers, are not affected by non-linear relationships between
parameters, and are efficient with small to medium-sized datasets. Moreover,
they implicitly perform feature selection and feature importance analysis by
using the feature selection measure. However, without proper pruning
(limiting tree growth), they tend to overfit, leading to poor prediction
accuracy. Also, small changes in the training data result in very different trees
due to the hierarchical nature of tree classifiers.

13.1.1Pruning

Given a greedy strategy for building the tree, the remaining question is when
to stop adding nodes to reduce the possibility of overfitting. There are two
main approaches: pre-pruning (early stopping) and post-pruning. Pre-
pruning reduces the possibility of overfitting by reducing the size of the tree.
To do so, different criteria such as maximum depth, minimum number of
samples in a node, the information gain is below a certain threshold, etc., can
be used. The main advantage is that the tree remains small, and it is
computationally efficient. Pre-pruning relies on the threshold (such as
information gain) to decide whether to continue or stop splitting. Algorithms
evaluate each split locally without looking ahead. Due to that, it is possible
that none of the current splits don't reduce the error significantly, while after
several steps a significant error reduction is obtained. So if the applied
threshold is too aggressive, it can lead to underfitting. Due to that, common
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practice is to grow a large tree, using the number of samples in leaves as a
stopping criterion. and prune back the resulting tree.

Post-pruning is usually done by trimming down decision tree paths that do
not provide significant improvement in predicting accuracy. Therefore, post-
pruning is based on a criterion that balances the trade-off between residual
error and model complexity to improve generalization ability. The pruning
starts from the leaves and for each node analyzes if the increased performance
associated with it is worth the extra model size. If not, the node is removed by
merging it back into a tree. Therefore, the subtrees are removed if they lead to
a small reduction in error relative to their size.

Consider a grown tree T, with leaves indexed as L = 1,..., |t| with leaf node ¢
representing the region R;. The |t| denote the total number of leaf nodes in T.
We want to create a tree T c T to be a subset of a tree T,.

Usually, advanced methods such as cost-complexity are used. The minimal
cost-complexity pruning is given by

Ry(T) = R(T) + alt|

where R(T) is a total misclassification error of the whole tree. « is a tuning
parameter that controls the trade-off between model complexity and
accuracy. If & = 0 than pruning is not performed. Larger @ means a stronger
penalty for model complexity, resulting in a simpler tree. Minimal cost-
complexity pruning finds the subtree of T, that minimizes the R,(T).. The
process is continued until only the root remains. The result is a sequence of
subtrees Ty o T; ©...T,, where T,, is the root-only tree. Each subtree is
evaluated using cross-validation error.

13.1.2Ensemble methods

Using a single tree can be challenging due to its high sensitivity to small
changes in the data. Therefore, another way to deal with overfitting is by
averaging the predictions over multiple samples. Ensemble methods combine
several single trees to produce a one, more robust predictive model. There are
several types of ensemble methods, such as:

e Bagging (also known as bootstrap aggregation) - The basic idea is to
create B bootstrap samples (X7, ..., Xg) by uniformly sampling from the
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original dataset X with replacement (i.e., the same training sample can
be selected multiple times). Usually, %5 of bootstrap samples represent
the original training data, while the remaining %5 is a replacement.
Each bootstrap sample is used to train the model. The final prediction
is made by average (for regression) or majority vote (for classification).
A classic example is Random Forest.

e Dasting - creates a subset of the data without replacement, therefore
each subset contains only unique samples from the dataset.

e Boosting - combines multiple weak learners to reduce bias by
sequentially training base models. Each new model is trained to
correct the errors made by the previous models. The final prediction
is the weighted sum of the base model predictions. Typical
representatives are AdaBoost, Gradient Boosting, and XGBoost.

It is applicable for both regression and classification. In classification,
plurality voting is used to decide the overall ensemble classification.
Ensemble methods provide higher accuracy and better generalization ability
compared to single models.

13.1.3Out-of-Bag error estimation

The out-of-bag error estimation enables the calculation of the generalization
error of bagged models without the need for an external validation set. As
already mentioned in bagging, bootstrap samples are created by randomly
sampling with replacement. Due to that, some data samples are included
multiple times in a bootstrap sample, while some are excluded. The data
points that are excluded are also known as out-of-bag (OOB) samples. These
OOB samples can be used to estimate the performance of the trained model
as follows:

e Generate B bootstrap samples,

e For each sample Xj identify the OOB samples X§ 5,

e Train the B-th base model hy,

e For each data sample (x;,y;) € D, collect the prediction from all base

models for which was (x;,y;) an OOB sample by %8 =

1
W ZBEMi hg(x;), and
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e (Calculate the OOB error by comparing the OOB prediction with the
true values y;.
The OOB approach is a valuable method for evaluating the ensemble
methods. It provides efficient use of training data, internal estimation of
model performance, eliminating the need for a separate validation set, and
unbiased estimation of true error.

13.2 Random forest

Random forest is based on constructing a huge number of decision trees, each
of which is trained using a unique part of the training data. Each tree within
the forest makes a prediction for an output given an input, and the final
prediction is formed by collecting the majority vote of all trees in the forest
(Figure 89). Growing trees on different data subsets prevents decision trees
from being overly specialized to the training data, reducing overfitting.
Random forest also enables feature importance analysis. The random forest
algorithm uses two main techniques to reduce overfitting and improve
accuracy:

e Bagging - create B different bootstrap samples by random sampling

with replacement. By using replacement, we don't split the training
dataset into subsets and train each tree on a different subset. Consider
training set D with n samples; we will still feed each tree a training set
of size n. But instead of the original training data, we randomly sample
a size n with a certain level of data representation. For example, if our
training data were [a, b, ¢, d, e, £, g], then we might give to one of our
trees the following list [a, b, d, d, {, g, g]. This means that the same data
point can be randomly sampled more than once. For each training
dataset X; atree T; (i = 1,..., B) is constructed.
Therefore, by sampling the data with replacement, the algorithm
generates multiple training sets that are slightly different from each
other. This type of sampling ensures reduced variance and prevents
overfitting.

e Random feature selection - consider that dataset D contains one
feature that is highly correlated with the output. In decision trees, most
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of the trees will use this feature in the top split, and all trees will look
similar. Prediction will be highly correlated, and the average variance
will be higher than the average of uncorrelated predictions. Random
forest reduces tree similarity and prediction correlation by choosing
only from a random subset of features. This ensures more variation

among the trees (reduces correlation) and reduces the chance of

selecting the same best feature for every tree.

Each individual tree has high variance, but low bias, and averaging these trees

reduces the variance and breaks the bias-variance trade-off.

Algorithm Random Forest

Input: dataset D with (x;, y;) elements where i = 1,...,n, k - number
classes, d - number of features, T- number of trees

fort=1to T:
Randomly select m instances from D with replacement
Randomly select f features from total d features (where f << d)
Built a decision tree h, based on the sampled instances and features
end
#To make prediction for new instance x
if classification task then:
flx) = argmaxC% T_1I{h:(x) = c} #tmajority vote across trees
else if regression task then:
flx) = % T_1 he(x) #average of tree prediction
end

end
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Figure 89 Random Forest algorithm

13.2.1Decision tree for regression

For regression tasks, a commonly used criterion is the Sum of Squared Errors
(SSE) to select the optimal feature f and optimal threshold t. SSE measures the
variance within a node, and the aim is to detect feature-threshold pairs that
minimize SSE after the split. This algorithm for building the regression tree is
given below.
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Algorithm Build tree regression

Input: dataset D with (x;, y;) elements, k - number classes, f-features
Return: decision tree
function BuildTreeRegression(D):
if stopping criterion is met than
return leaf node with the class label
best_gain=[]
for j=1tod: # loop over all features
for m in possible_values(F;): #loop over possible values (split points) of

feature

2
SSE(D) =Y, (yl- - X) #calculate SSE for the parent node before split

Diefts Drigne < split(D,F,0) #temporarily partition the data into left
and right subsets

2
SSE(Dieft) = Ziepleﬁ (Yi - Xleft) #calculate SSE for each node

2
SSE(Dyignt) = Z (}’i_Xright)

iEDright
gain = 2L SSE(Dyere) + ~"2 SSE(Dyigne) #test all possible

combinations
if gain > best_gain:
best_gain = gain
Fpest = F}
Opest =M
DLeft:Best = DLeft

DRightBest = DRight

left_child« BuildTree(DLe ftBest)
right_child« BuildTree(DRightBest)
return Node(Fpeg¢, Opest, left_child, right_child)

299



Introduction to Geospatial Artificial Intelligence

14 NEURAL NETWORK

A Neural Network (NN) represents a system that utilizes a network of
functions to identify underlying patterns and learn relationships in the data,
and apply acquired knowledge to map input to output. It consists of layers of
interconnected simple computational elements called neurons.

14.1 Perceptron

The perceptron, developed by Rosenblatt, is the simplest model of an artificial
neuron. Itis a building block of NNs. The perceptron (Error! Reference source n
ot found.) takes input values x; i € {1,...,d}, creates a linear combination of
the n input variables and corresponding weights w; , and sums them up, i.e.,

z=f(x) =Zwl-xi +b
i=1

Weights represent the importance of the input to the output; the larger the
weights, the greater the influence of the input feature on the output. After
that, the results are then passed through a differentiable, nonlinear activation
function to produce the output. Therefore, perceptron computes a linear
combination of inputs and then applies the nonlinear function.

As already mentioned in the Section 9.10, the choice of activation function
primarily depends on the assumed data distribution and the type of the
problem. In the original Rosenblatt [4] perceptron, the activation was a step
function, so the binary output is determined by

1 if Z w;jx; > threshold

h(z) = /
0 if z w;x; < threshold
J

Then the output is given by

y =h(f(x))
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Figure 90 Perceptron

For example, you are deciding whether to go hiking. There are three
factors that influence your decision:

e Weather x; were x; = 1 if the weather is good, or x; = 0 if it
rains.
e A company x;, where x, = 1 if your friend wants to go, and x, =
0 if your friend doesn't want to go.
e Shoes x; were x3 = 1 if you have proper shoes, and x; = 0 if you
don't have proper shoes.
You can use perceptron to model this decision. If all three factors are
equally important to you, then the weights are equal w; = w, = ws.

However, let's say that there is no way you would go hiking without
proper shoes. Then you can choose a weight w; = 0.7 for shoes, and w; =
0.4, ws = 0.25 for other factors. Finally, you choose a threshold of 0.5 for
a perceptron. Let's say that x; = 0, x, = 0,and x3 = I then 0- 0.25 + 0 -
0.3 +1-0.7 = 0.7 since 0.7 > 0.5 the decision is to go hiking.

The larger value of w; indicates that having the right shoes matters a lot
to you, much more than weather or company. Therefore, the perceptron
will output 1 if you have proper shoes and 0 otherwise. It makes no
difference whether your friends want to go or not, regardless of the
weather.

The lower the threshold is, the easier it is for the perceptron to output a 1.
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The weights and threshold values are parameters of the neuron, and by
adjusting these values, we can obtain different models. To simplify
perceptron, the sum is changed by the dot product, and the threshold is
moved to the other side of the inequality, also referred to as bias b (b —
threshold). Taking that into account, the perceptron can be rewritten as

_{1 if wix+b>0
Y=l ifwTx+b<0

However, threshold logic is rigorous. For example, let's consider the
classification of satellite images, where we aim to detect forests solely based
on NDVI The input to the model is the pixel value. If the threshold is 0.7 and
the weight is 1, the pixel with an NDVI value of 0.71 would be classified as
forest. However, the pixel with an NDVI value of 0.69 would be classified as
non-forest. This behavior is not the result of the pixel nature or the chosen
perceptron parameters; rather, it is due to the characteristics of the used
activation function. For most real-world applications, small changes in the
input value don't produce sudden changes. Taking that into account, we want
small changes in weights and bias to cause only small changes in the network
result (i.e., we want a smooth decision function that gradually changes from
0 to 1). To overcome this limitation of perceptron, the sigmoid neuron is
introduced (Figure 91).

The output of a sigmoid neuron is given by

1
y= 1+ e_(b+zln=1 W,-xi)

Introducing the sigmoid activation function, there are no sudden changes
around the threshold, and the output is a real value between 0 and 1, which
can be interpreted as a probability. In contrast to the step function, which is
not smooth, not continuous, and not differentiable, the sigmoid function is
smooth, continuous, and differentiable everywhere. This is extremely
important since it enables the use of gradient descent, allowing the network
to learn effectively.

302



Introduction to Geospatial Artificial Intelligence

1 == Stepfunction — = ———————=——
Sigmoid function

Figure 91 Sigmoid vs step activation function

14.2 Network architecture

A layer, created by composing multiple neurons, represents the fundamental
data structure in NNs. Generally, the network contains three types of layers
(Figure 92 (d)):

e Input layer - a set of neurons that directly receives the information
from the training dataset,

e Hidden layer - allows the network to learn non-linear patterns
between input and output data by transforming input data into a high-
dimensional space. neurons that transform training data to extract
patterns captured in weights, and

e Qutput layer - neurons that make predictions based on the input data.
Predicted value can be categorical, binary, or continuous, which is
controlled by the activation function applied on the output layer

The layers are connected as an acyclic graph (i.e., there are no cycles or closed

loops) where the output of one layer represents the input to the next layer.
Such networks are also known as feedforward networks since information in
the network flows in one direction from the input layer, through the hidden
layers used to define f, and finally to the output y. Therefore, there are no
feedback connections in which the model's outputs are fed back into itself.

A feedforward NN can be viewed as a composite of many different nonlinear
functions that takes input variables x; and transforms them to produce the
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output variables y,. Each training data point x contains a label y = f™(x).
During training, the value of parameters will be adjusted to provide the best
approximation of the real function f* that maps input to output. For example,
in classification, we aim to approximate a function that maps a surface
reflectance vector x to a class y.

Training data samples directly specify what output layer should produce (i.e.,
values close to y). Since the behavior of other layers is not directly specified
by the training data, they are referred to as hidden layers. The number of
hidden layers determines the depth of the model. Each layer consists of
neurons that work in parallel, and each neuron receives input from many
other neurons and computes its own activation value.
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Figure 92 (a) single biological neuron, (b) single artificial neuron, (c) human brain, and (d)
feedforward NN (input layer - orange neurons, hidden layer-grey neurons, and output layer -
blue neurons)
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The architecture of NNs is defined by the number of layers, connections
between those layers, and the number and type of neurons per layer. The
design of the input and output layers is straightforward. The number of
neurons in the input layer is defined by the number of explanatory variables
in the training data, while the type of target features specifies the number of
neurons in the output layer. For example, in image classification, the input
layer matches the shape of the image (height, width, and number of bands)
while the output layer matches the number of classes. For regular networks,
the most common layer type is the fully connected layer, where each neuron
is connected to every neuron in the neighborhood. Neurons within the same
layer are not connected. The most challenging task in designing NN is to
determine the number of hidden layers (i.e., depth of network) and the
number of neurons per layer (i.e., width of layer).

The universal approximation theorem [43] states that a NN with at least one
hidden layer and enough neurons can approximate any continuous function
to any desired precision. Taking that into account, the first approach would
be to start with two neurons and continue adding more until a satisfactory
function approximation is reached. The logical question would be, why do we
use more hidden layers?

Although the single-layer network is sufficient to represent any function, the
number of neurons may be infeasibly large (an exponential number of units
in a shallow network). However, in practical application, using a deeper
model can reduce both the number of parameters and the generalization error.

For example, let's consider a rectifier network (using ReLu as the activation
function) that defines a linear boundary, splitting the input space into two
regions. Imagine the input space is a piece of paper, and the linear boundary
is obtained by folding it so that regions coincide and are mapped to the same
output. Each hidden unit adds a new fold of activation space on top of the
previous layer. By reusing and composing these folding operations from layer
to layer, it is possible to obtain an exponentially large number of regions
(Figure 93). Montufar [44] showed that a deep rectifier can divide the input
space into exponentially more regions than a shallow network with the same
number of units. This is a crucial property that enables deep networks to
compute very complex functions with relatively few parameters.
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Linear

/ boundary

Figure 93 Folding input space. Each hidden unit adds a new fold on top of the previous.

The term Deep Neural Networks (DNNs) refers to a network with multiple
layers. Since each layer is a function, a deep network is a composite of many
functions

f6) =, <ﬁ‘1 (- (10 I(x)))»

where L is the number of layers.

The size of an NN is usually expressed by the number of parameters or the
number of neurons. For example, the network presented in Figure 92 (d) has
3+ 3+ 2 =8 neurons (the input neurons are not included). On the other
hand, the same networkhas4-3+3-3+3-2 =12+ 9+ 6 = 27 weights and
3 + 3 + 2 = 8 biases, so a total of 33 learnable parameters. With the increase in
the number of layers and parameters, the network's capacity also increases.
High capacity means that the network can express more complicated patterns
and relationships. However, it is easier to overfit the data.

Designing the hidden layer is challenging since there is no clear guidance on
how to do so. Usually, the architecture is determined via a trial-and-error
approach. Processes typically begin with a relatively small number of layers
and units, after which the network is trained and its performance is evaluated
on a validation set. We increase the model size gradually if the validation loss
is decreasing.

Feedforward NNs represent a vital concept since they form the basis for many
more complex architectures. They represent the basis for Recurrent Neural
Networks (RNN), which have been extensively used in natural language
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applications. Moreover, Convolutional Neural Networks (CNNs), used for
object detection and recognition, are a specialized type of feedforward
network.

14.2.1Unit type

There are three types of units: input, output, and hidden units. They can be
further differentiated based on the activation function that they use. In
addition to structure selection, important aspects in designing NNs represent
the selection of unit type.

14.2.1.1 Input units

Each input neuron corresponds to a feature in the input data. NNs use tensors,
high-dimensional arrays, as a data structure. Tensor is defined by: rank (that
represents the number of axes, for example, a matrix has two axes, a 3D matrix
has three axes), shape (the dimensionality of each axis), and data type (it is
almost always numerical values, for example, float32, uint8, etc.)

For example, the image is a 3D tensor shape (height, width, number of bands).
Pixel values are real numbers, so the data type is float 64. A batch of images
is a 4D tensor (number of samples, height, width, number of channels). For
example, if the batch size is 64 and we have a satellite image with six channels,
with each image consisting of 256 x 256 pixels, then the tensor shape will be
(64, 256, 256, 6). The point cloud is also modeled as an n-dimensional tensor
depending on the number of features.

14.2.1.2 Hidden units

Each hidden unit computes two functions, one that performs a linear
transformation and an activation function that performs the nonlinear
transformation. A crucial aspect of designing the NN is the selection of the
type of hidden unit. Similar to selecting the number of parameters, the process
began by selecting the hidden unit based on intuition, then training the
network with that unit, and evaluating performance on the validation set.

Although various types of hidden units are available, piecewise linear ReLu
units are the most commonly used default choice. ReLus are typically used on
top of a linear transformation. Since the ReLu is inactive for negative values,
it is recommended to set all biases to a small positive value, allowing the
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derivatives to pass through. Additionally, the generalization of ReLu
functions can be utilized, such as LReLu, PReLu, ELu, SELu, or maxout. ReLu
(see Section 9.10) and all its generalizations are easier to optimize if the
behavior is closer to linear.

Prior to ReLu, most units used sigmoid or tanh activation functions. As
already mentioned in 9.10, the tanh is preferable over the sigmoid when the
output can be both positive and negative. As already mentioned, the sigmoid
function is prone to saturation for both large and low values, making gradient
propagation very difficult. Therefore, it is not recommended for hidden units
in feedforward networks.

Additionally, softmax units, RBF, softplus (smooth version of ReLu), or hard
tanh (bounded tanh) units can be used.

14.2.1.3 Output unit

The hidden units provide a set of hidden features. The output unit also
transforms these features to complete tasks for which the networks are
designed. The choice of output unit is tightly related to the choice of loss
function. The probabilistic interpretation of the network output can provide
insight into both selecting the output unit type and the loss function.

For a linear regression model with a Gaussian noise distribution, the error
function corresponds to the negative log likelihood.

Consider the input vector x and the linear predictor given as 9; = w”x;.

2

Gaussian noise distribution with variance o° is given as p(y|x,w) =

N(y|9,0?%). To extend the linear models to represent a nonlinear function,
we transform the input ¢ (x) by a nonlinear transformation 9; = w” ¢(x;).

The log-likelihood for one point # is given by In p(y|w) = — % In(2ma?) —
ﬁ (¥n — $)°. Therefore, the negative log-likelihood represents the error

contribution from point n, and it is given by (constant % In(2ma?) does not

depend on w so it's ignored):

1 1
En(W) = 55 O = 907 = 55 (0 = wT(xn))”
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If we take the derivative with respect to the parameter vector w of the
contribution to the error function from point #:

— 1 T — 1 5
VwEn - P 2 (Yn - w (p(xn))(_xn) = ? (yn - yn)d)(xn)

Therefore, the gradient takes the form of the error multiplied by a feature
vector.

The same form will be obtained for a combination of the logistic sigmoid
activation function and the cross-entropy loss function, as well as for the
softmax activation function with the categorical cross-entropy loss function.

The NN can be viewed as a generalized linear model with a nonlinear
activation function. In NNs, usually cross-entropy is used as a loss function.
The type of cross-entropy used is defined by the representation of the output.
There is a natural link between the type of problem, the error function, and
the output unit activation function.

If the conditional probability of the input is a Bernoulli distribution, a sigmoid
output unit is combined with the cross-entropy error function. On the other
hand, for multiclass classification problems where the output is one of K
mutually exclusive and exhaustive values, the softmax unit and categorical
cross-entropy loss function are used (see Section 9.9.2). Softmax can be
observed as a generalization of the sigmoid for a multinomial output
distribution. Like the sigmoid, softmax can saturate when the difference
between input values becomes extreme. Consequently, many loss functions
based on softmax also saturate, leading to a vanishing gradient, especially
when the input is extremely negative. However, if loss functions use log (such
as cross-entropy), it undoes the exponential of the softmax, preventing
gradient vanishing, making training stable and effective.

14.2.2Chain rule

Let w be the input of the graph, and we use the same function f: R™ — R™ at
every step of the chain x = f(w), y = f(x) and z = f(y). The derivative :—‘i

measure the rate of change between variables w and z. Consequently if w
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change by infestation a smaller value Aw then z will change by approximately

AW —= To Compute — we apply the univariate chain rule expression, i.e.,

dz 0zdyox , ,
5w = 3yaxaw =] CE@MF G W)

where f(w) is computed each time it is needed, leading to exponential
redundancy, making a naive implementation of the chain rule infeasible.

Example: Consider a feed-forward network, each unit computes a
weighted sum of its input,

z =wx + b. The sum is transformed by a nonlinear sigmoid activation
given as

y=o0()= (1 +le‘Z>

Let's use the squared error loss function

In order to perform gradient descent, we want to find the derivative of E
with respect to w, and E with respect to b.

0E, 0E, OE, 0z

Ol O~ 5.0 (l)
ow w;; c’)wjl. 6j 6wji

0En _

ow = aw 30 =] =55 elnx + 1) —y7| =

= 12 (owx +b) ~ ) = (o(ws + b) — Y)o(wx + b)(1 — o(wx + b)x,

where Z—SZ/ =0'(2) = ;—Z (1:7) =0(z)(1 - 0(2)) for sigmoid activation

function.

Similarly,

9E,

W (a(wx +b)—y) =

g [ (o(wx +b) — y)z] 235

=(e(wx + b) —y)a(wx + b)(1 — a(wx + b))
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However, this naive implementation of the chain rule has several
disadvantages. As you can see, the above derivations contain many
repeated terms. For example, there are six copies of sigma (w x + b),
meaning there is a lot of redundant work, even for a simple example.

In deep networks with millions of parameters, there can be an exponentially
large number of these redundant computations. We can apply a multivariate
chain rule that generalizes the univariate chain rule if the function depends
on multiple variables. To enable a computation of derivatives, the value of
f(w) is computed once and stored in the variable x and so on. There is no
redundant computation, and if the memory requirements to store the value
are lower, this approach is preferable. This is the approach that
backpropagation uses.

The derivation can be expressed compactly as a Jacobian-gradient product,
making the training computationally feasible, especially for large models. For
a vector input x = {x4,...,x,}, parameter matrix w, and vector output y =
{y1,..., Y&} Jacobian matrix Jj; organize all partial derivations into an k X n
matrix (see Section 9.1.2)

.=ayk=(% %)
7 ow; — \ow, T dwy,

We want to minimize an error function E with respect to the parameter w. The
derivative of the error function is given by

0E 0E 0y 0z;

dw ~ dyy 0z; Ow

O0E

where
0y

is the gradient of the error with respect to the k-th output, % is the
J

. . . 0z . . .
Jacobian of layer activation, iv: is the Jacobian of z with respect to each

parameter.
In a compact matrix form, it is given as
oE (aE

5 = () 1y @)
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14.3 Backpropagation

As already mentioned, in feedforward networks, each sample in the input
data x propagates through hidden units at each layer and finally produces .
During training, the scalar loss E is produced. This process is called forward
propagation.

A NN can be represented as a directed graph where nodes represent the
variables and edges represent the learnable parameters. The variables in the
node are computed as a function of the variable of the inflowing edge and the
learnable parameters associated with it. The exception is the input layer that
has fixed values.

Let's consider the NN with L hidden layers. Each neuron in the network
computes the weighted sum of its inputs and adds bias, i.e.,
O _ @, 4 O
zj~ = Z w;'a; 7+ b;
i

(G0

i

is the activation of the previous layer or x; for the first layer, Wj(l-l)

is the weight connecting the neuron i in [ — 1 to neuron j in [ layer, bj(l) is the

where a

bias of the neuron j in layer [, and Zj(l) is the pre-activation of a neuron j in

layer.

The pre-activation is passed through a non-linear activation function h(-)
(such as sigmoid, tanh, ReLU, etc.), and post-activation output is given as

a® =n (zj(l))

4

The forward propagation continues from layer to layer until the network
outputs y, = a® .

For a single training point, the loss function is denoted by E;,. If the training
dataset consists of N independent and identically distributed samples, then
the total error (E) represents the sum over each data sample in the training
set, i.e.,

N
Ew) = ) En(w)
n=1
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where w represents model parameters, and E,,(w) is the error from the n-th
training sample.

To optimize an NN, we need to compute the gradient of the loss function with
respect to the parameter wy; . Since the E,, depend on the weight wj; only via
summed input z; the gradient with respect to wj; can be determined by

applying the chain rule (see Section 9.1.2)

E, 0E, 0z

(l) ) (l)
awﬁ 0z z; awj ;

The second term is equal to

O ONCS)
07" a%,w, _ @D
(l) (l) i

ow ow

Taking that into account

oE oE _ _
n n a(l 1) — 5.(l)a§l 1

av%.(i” - az.(l)

50 =

where (z) is called the delta term for a neuron in a layer . Based on the

above expressmn, it is evident that the gradient of the loss function with
respect to the parameters wj; can be determined simply by multiplying the §
(also known as errors) for the unit at the output end of the weight (layer [)
and activation for the unit at the input end of the weight (layer [ — 1).

To determine the delta term, we apply the chain rule of derivatives. Since the
loss function depends on the weighted sum of neuron j only via the weighted
inputs of all the neurons that are connected to the layer [ + 1

5.(l)=z 0E, az(Hl) =Z 0E, azi(lﬂ)(')a](l)
J az(Hl) az.(l) 6Zi(l+1) 6a]§l) azj(l)

i i J i

(1+1)
5

The first derivative is just , while the second derivative

1+1 (1+1) (l)
azi( ) (Zk )_ (1+1)

= = Ww..
Q) (l) ij
aaj aaj
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Therefore, we get

5'(1)22 5(1+1) (l+1)a _
g " D) oz

dO\  94®

(1+1), (1+1)
(8 Pw™)
i
since a]@ =h ( (l)) the partial derivation outside of the sum is just the partial
derivation of the activation function

Sj(l) . (Zj(l)) Z (8(z+1) l(]z+1))

i

The § the term for the output layer needs to be computed first, and it is given
as

5O — OE, _ OEy h,(ZgL))
oz¥  aa N’

For MSE E,, —-2]( (L))

a4 T
j

therefore

o9 = (60 ()

The new weights are then updated via gradient descent

(O (l) O] (l 1)
Wy = -n- 6

where 1 denote the learning rate.
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Algorithm Backpropagation

Input: Training dataset D = {(xl, ¥i )}i=;, a multilayer neural network

with L layers, parameters w);, and activation function h, loss function

E (y], yj). RN > R, learning rlz;te 0 <1 < 1, number of epochs

#initialize parameters

for wj(l)
e

in the network do
<« a small random number

#Forward propagation to compute outputs
for i =1 to epochs do
for each (x,y) € D do
forl=1toL do
ifl=1do
for each neuron j in the input layer do
0

a;

j X

else
for each neuron j in the layer do

D e 3 wPal
go “n(z (o)

#Backward propagation of the delta term from the input to the
output

for each neuron j in the output layer do

@ . 9E(9,%)) 03
8] y; h’ (J )

forl=L—1toldo
6(1) —h’ ( (D)Z ( '('l+1)5'(l+1))
u i

#Update the weights using delta

@

for each wj; in the network do

( ) (l) O] (l 1
Wii 6
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Example: Let's consider the classification of a satellite image, where the
input vector x = [B, G, R, NIR], and we want to classify it into four classes.
We use the ReLU activation function for the hidden layer and the softmax
activation function for the output layer, cross-entropy as the loss function,
and 0.1 as the learning rate. The computational graph is given in the image

/. ReLU /- Soft-max / Crose.

e e entropy
X; >z g +z® a® L p(a®)

Let's consider one pixel with x = [0.12,0.35,0.28, 0.58], that belong to class
2y =1[0,0,1,0] wD = [0.020,-0.010,—0.009,0.016] and b = 0

w® = [0.066, —0.05,—0.075,0.02] and b® = [0,0,0,0]. Due to simplicity,
we will show a network that has one layer and one hidden unit.

zD = yw®Dx=0.0053
a® = ReLU(z™M) = ReLU(0.0053) = 0.0053
z@ = w@a® = [0.0004,—0.0003,0.0004,0.0001]
a® = softmax(z®) = [0.2499,0.2499,0.2500, 0.2499]

k
E= —ZinOQaEZ) = —log(0.2499) ~ 1.386
i=1

Backpropagation
8@ = a@ —y =[0.2501,0.2498, —0.7499, 0.2499]
oE

= 6@ (a®)"
Fi @D g (a )
OF
_ 5
b~ °
Wiew = W® — 1 =—zs = [0.06,~0.050,0.075,0.019]
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p@ - p@ _p L

new D [—0.0249,—0.0249,0.0749, —0.0249]

Backpropagation of error through w®

OE
80 = —=u0g'(z") = (W) 6@ O 1wy = ~0.0042

where © represents the Hadamarov product, i.e. §¥ by each input is

given as,
)5
D = sMxT = [-0.0056,—0.0165,—0.0132, —0.0273]
OE
= s
PO
@ _.m_., 9E _
Wnew = w1 —n =75 = [0.0208, —0.0086, ~0.0076,0.0183]
OE
@D _ _
bpow =b® —17 5@ = 0-0047

14.4 Training of a neural network

Designing and training a NN is similar to training any other machine learning
model with gradient descent. Optimization (training) is a process of finding
weights and biases to get the best approximation of y(x) for all training inputs
x.

The first step represents defining the problem that we want to solve
(classification, regression, etc). This is crucial information, as it is directly
related to the voice of the output layer, the loss function, and performance
metrics. Training of the network requires data preprocessing, network
architecture design, selection of the optimizer, loss function, and type of
output unit.

14.4.1Preprocessing

Training NNs requires preprocessing of the raw data before it is fed to the
model. Preprocessing steps are domain-specific (specific to image or point
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clouds). The most commonly used steps include data normalization, feature
engineering, and handling missing values, among others.

Normalization is a preprocessing step that rescales all input data to a
consistent range. It enables more efficient learning, as large values can
dominate the gradient update, causing very slow convergence (see Section
9.11 for more details).

A commonly used technique is min-max normalization, which scales values
into the interval [0, 1]. It is mathematically defined as

x; — min(x)

n
Xi

max(x) — min(x)
where min(x) and min(x) denotes the maximum and minimum values,
respectively, in each feature vector.

Additionally, z-score normalization, also known as standardization, can be
used. It transforms each feature to have zero mean and a standard deviation
of 1. The z-score is calculated as
Xi— U
o

7Z =

Feature engineering is the process of transforming input data before feeding
it to the model, making the data better suited to the specific task. It includes
methods for feature selection (choosing a set of features that improves model
performance), feature synthesis (creating a new feature set from raw data),
and feature extraction (transforming features to obtain more representative
features for the specific task). For example, we need to train models that
classify point clouds into multiple classes. If we feed X, Y, Z coordinates and
intensity into a NN model can struggle due to high class overlap (power lines
and tree canopies). Adding new features such as surface normal or multi-scale
features can significantly improve classification accuracy.

Before deep learning, feature engineering was a crucial step, as ML algorithms
(such as RF or SVM) are not able to detect useful features on their own. By
introducing DNNs that can automatically transform raw data into useful
features, the influence of feature extraction on model performance is
significantly reduced. However, the ability of deep learning models to learn
features independently relies on having a substantial amount of training data
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available. Due to this, feature engineering can still be used to solve tasks with
fewer resources or with far less data. If only a small training dataset is
available, then feature engineering becomes crucial.

14.4.2Initialization

Training a NN is similar to training any other machine learning model.
However, the nonlinearity of a network function causes the loss function to
become nonconvex. Due to nonconvexity, deep learning models are typically
trained using an iterative, gradient-based optimizer (see Section 9.1) that
requires the initialization of model parameters. In contrast to convex loss
functions that guarantee convergence from any initial point, nonconvex loss
functions are highly sensitive to the initial parameters. The initial point has a
strong influence on how optimizers navigate the loss landscape, determining
whether the algorithm converges at all, the convergence rate, and the quality
of the final solution (whether the algorithm converges to a local or global
minimum). Therefore, parameter initialization plays a significant role in NN
learning, and it can be crucial for maintaining numerical stability and
achieving a high convergence rate. The selection of the initialization scheme
is closely related to the choice of activation function.

In a Fully Connected Network (FCN), all neurons have the same input, and
their response will be identical regardless of their position. Therefore,
permutation of neurons in the hidden layer will not change the network
function but yield a different point in parameter space. This property of the
network is known as the symmetry of the NN.

Consider a FCN with a d — 1 hidden layer, and each layer contains n neurons.
In each layer, we can permit the neurons in n! different ways so the total
number of permutations is (nH?=1. Due to that, the loss landscape will have
(n)?~! identical minima, making it highly redundant. While symmetry is not
necessarily harmful, it creates a challenge for optimisation.

Parameter initialization schemes need to break symmetry. If we initialize
weights to have the same constant value, all neurons in the hidden layer will
have the same response. However, if all neurons compute the same output,
then they will also compute the same gradient during backpropagation,
causing each neuron to have the same update.
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To break a symmetry, hidden units must have different initial parameters,
ensuring that neurons compute diverse functions.

Usually, weights are initialized as small random numbers sampled from a
multi-dimensional Gaussian or uniform distribution. The choice of scale is
crucial, since it directly influences training effectiveness. Although large
initial values will lead to higher redundant units, they will avoid losing signal
during forward or back propagation. However, large weights result in large
outputs of matrix manipulation, causing a vanishing gradient for sigmoid or
tanh region (since they saturate for large values) or an exploding gradient if
the ReLu activation function is used. Therefore, weights should be large
enough to propagate information through the network without vanishing, but
small enough to avoid saturation.

It is common practice to initialize weight to be very close to zero, but not zero
(for example, a Gaussian distribution with zero mean and a small standard
deviation, such as 0.01). In this way, we ensure that all neurons are random
and unique at the beginning, allowing them to compute distinct updates
during training and enabling them to learn diverse features. However, this
initialization is not sensitive to the number of inputs to a specific neuron, i.e.,
the variance of the output of randomly initialized neurons increases linearly
with the number of inputs. Authors [45] and [46]proposed an initialization
scheme that maintains the variance of activation constant across all layers,
thereby preventing vanishing or exploding gradients. This is achieved by
scaling the variance of weights according to the number of inputs. the

2 for tanh/sigmoid [45] and to

weighted variance is set to Var(w) =
NinTNout

Var(w) = ni for the ReLu activation function [46].

However, initial scaling of the weight can lead to very small individual
weights when the layers become large. To address those limitations, Martens
[47] introduced a sparse initialization scheme. This scheme limits the number
of non-zero weights to each neuron, ensuring a high difference between them
and preventing saturation. However, setting most weights to zero can slow
down the learning process, and it slows down gradient descent by initializing
weights that are too large for certain neurons. Bias is always initialized to zero
or small positive values.
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14.4.3Optimization

The loss function evaluates the network's approximation ability by comparing
the predicted and true values during training. Those values are averaged to
provide a single numerical value. An optimization finds a set of parameters
that will minimize a loss. The performance metrics are used to evaluate the
model's performance after training, with the aim of providing deeper insights
into model performance, assessing the model's generalization ability, and
comparing different models. The most commonly used loss functions and
performance metrics are presented in Section 9.9. The last-layer activation
function should be selected based on the type of problem. Most commonly
used combinations are shown in the Table 17.

Table 17 Selection of lost function and last-layer activation based on the problem type

Problem Loss Last-layer activation
function

Binary classification BCE sigmoid

Multi-class CCE softmax

classification

Regression MSE linear

One of the fundamental issues in training machine learning is the trade-off
between optimization and generalization. As already mentioned,
generalization refers to the model's ability to perform well on unseen data.
Therefore, we want our model to have good generalization, but we cannot
directly control generalization; we can only control optimization. Due to that,
deep learning models tend to perform well on training data, but this really
changes when it comes to fitting the test dataset. So correlation between
optimization and generalization is extremely important. At the beginning of
the training process, the loss on training and test data is correlated. The
network does not model all relevant patterns in the training data, and there is
still room to improve, so the model is underfitting (see Section 9.13).
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Figure 94 Training a neural network

However, after a certain number of iterations, models start to overfit (i.e., they
learns irrelevant patterns). The best solution for overfitting is to enlarge the
training dataset. However, often this is not possible and we use regularization
(see Section 9.14) such as L1/L2 regularization, dropout, early stopping, etc.

Once the model design and regularization technique are chosen, we train the
network using backpropagation to calculate the contribution of each
parameter to the error (Figure 94). The optimizer utilizes the gradient updates
from backpropagation to adjust network parameters, thereby minimizing a
loss function. The commonly used optimizers are: SGD, Adam, and RMSProp
(please see Section 9.5-9.7).

Example: Estimate the Water Quality Parameters (WQP) concentration
from satellite images and machine learning algorithms.

Monitoring of WQP in inland water bodies - such as Turbidity, Total
Suspended Solids (TSS), Total Nitrogen (TN), Total Phosphorus (IP)-is
performed by modeling the relationship between satellite-derived surface
reflectance and corresponding in-situ water quality observations
employing deep learning algorithms. This example is published in [48].
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Preprocessing: Field campaigns conducted between 2013-2017 by the
Agency for Environment protection of Serbia were used as in-situ data,
while the time series of Landsat 8 and Sentinel 2 are accessed through
Google Earth Engine.

In-situ data contain the coordinates of monitoring stations along with
corresponding WQP concentrations. The locations of the monitoring
stations were visually inspected using Landsat 8 satellite images. In total,
23 monitoring stations were selected for this study, resulting in 313 and
408 data samples for Landsat 8 and Sentinel 2, respectively.

For both Sentinel 2 and Landsat 8, surface reflectance values were
extracted for the B, G, R, NIR, SWIR1 and SWIR 2 bands, along with the
image acquisition dates for each monitoring station. In addition to
spectral bands, several spectral indices were calculated, including G/R,
NIR/R, NIR/B, R/G, R/B, NDVI, NDWI, and Normalized Difference
Turbidity Index (NDTI) are calculated. The maximum allowed time
difference between water sampling and satellite overpass was set to three
days, and only matching pairs within this interval were retained. The
input data were normalized to a [0,1] range by using min-max
normalization. The data was split into 70 % for training, 10 % for validation
and 20 % for testing.

Training: ANN and SVM algorithms are used to model the relationship
between spectral features and in-situ WQP concentration.

ANN: The number of the input neurons was selected to be equal to the
selected input bands that had a strong correlation with WQPs, and the
number of output neurons was selected to be one. The trial-and-error
approach was used for the selection of a proper number of hidden neurons
i.e. the number of hidden neurons was modified in order to minimize
RMSE at the training phase. In order to reduce overfitting the performance
is monitored on validation dataset and early stopping is used. The hidden
layer used the Tanh activation function to capture the nonlinear
relationship between input and output variables. The learning rate and
decay rate were determined through grid search (Learning rate: [0.0001,
0.001, 0.01, 0.1]; Weight decay: [0.000001, 0.00001, 0.0001]). To avoid
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overfitting, early stopping was used. The weights assigned to each
connection were randomly generated before training and updated using a
backpropagation algorithm. The final model configuration corresponding
to the lowest validation error was selected.

SVM: For comparison, a SVM regression model was developed
using Radial Basis Function (RBF) kernel to handle nonlinear relationship.
The model parameters the kernel width (y) and the regularization
parameter (C)- were optimized throught a grid search combined with
cross-validation on the validation dataset. The optimal configuration (C =
100 and y=0.5) provided a robust model minimizing overfitting.

The algorithm performance was evaluated using NRMSE. The results of
accuracy assessment are presented bellow

Parameter | Landsat 8 Sentinel 2

ANN SVM ANN SVM

NRMSE | NRMSE | NRMSE | NRMSE

Turbidity | 6.85% 5.04% 3.18% 7.28%

TSS 10.81% | 6.65% 3.72% 6.88%
TN 12.56% | 6.88% 12.82% | 7.38%
TP 12.76% | 9.72% 10.27% | 6.33%

The SVM model demonstrate greater robustness to small data samples and
mixed pixels which likely explains its higher accuracy compared to the
ANN. However, the results for Turbidity and TSS indicated that the
ANN more accurately predicted parameters with a wider dynamic range.
Furthermore, the accuracy of the ANN was observed to increase with the
larger training datasets, confirming its sensitivity to data volume.

Due to higher spatial and temporal resolution, Sentinel 2 represents a more
suitable alternative for water quality monitoring. It provides higher
accuracy and 25 % larger data set in 50 % less acquisition time compared
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with Landsat 8. On the other hand, the Landsat imagery enables the
analysis of long-term trends, seasonal variations and historical changes in
surface water quality.

Prediction: The trained ANN and SVM models are applied to water
bodies extracted from Landsat 8 and Sentinel 2 imagery to estimate the
concentration and spatial distribution of selected WQP. The spatial
variation of WQP across the study area is presented in the maps below.

SVM NN
Landsat8 dsat8 _ __ Sentinel 2.

o O .
L2y 7
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15CONVOLUTION NEURAL NETWORK

Convolution Neural Networks (CNN) are introduced as alternatives to
regular NN. Although FCN has been extensively used in early stages of deep
learning, dealing with high-dimensional data is challenging. Consider a
satellite image of size 256 x 256 pixels and 6 bands corresponding to B, G, R,
NIR, SWIR1, and SWIR2. In a feedforward NN, each pixel corresponds to the
node in the input layer, resulting in 256 x 256 x 6 = 393 216 nodes. Since each
node of one layer is connected to each unit in the next layer, computation of
just one neuron in the first layer will require 393 216 weights. The high
number of connections is computationally expensive, and it requires a huge
amount of training data to avoid overfitting.

To address these challenges, we can utilize any existing structural knowledge
about how inputs should map to outputs, even before we see any data. This
concept is based on a prior probability distribution (see Section 11). Since
input neurons can connect to any output neuron and the model must learn all
dependencies from scratch, the FCN has a very weak prior about the structure
of the function. On the contrary, CNN can be viewed as a specialized FCN
with an infinitely strong prior on its weights. The priors leverage the invariant
properties of the structured data by effectively assigning zero probabilities to
connections that violate locality and translation invariance constraints. As a
result, CNN is well-suited for processing grid-like structured data such as
images or time series. For example, an image is a 2D grid of pixels, audio can
be represented as a special form of time series data (1D sequence where values
are sampled at regular intervals in time), while video has a 3D grid structure
(height x width x time plus channels).

The CNN has completely revolutionized image classification, object detection,
and pattern recognition, leading to accuracy that was unattainable with
traditional machine learning algorithms.
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15.1 CNN architecture

Similar to NN, CNN has an input layer, an output layer, and many hidden
layers in between. The hidden layer of a CNN consists of three different types
of layers: a convolutional layer, a pooling layer, and a fully connected layer
(also known as a dense layer).

The convolution layer applies multiple learnable filters in parallel to produce
a set of linear activations. A nonlinear activation function, such as RelLU, is
then applied to each linear activation, followed by a pooling layer that reduces
the spatial dimensionality of the output feature maps. Those operations are
performed over a large number of layers, where each layer detects different
features, gradually transforming a raw input into a more abstract
representation. Finally, once the size of feature maps becomes reasonably
small, fully connected layers combine all the extracted features from the
previous layer with all the features in the next layers into a higher
representation used for the final prediction.

The key aspects of designing CNN architecture are the selection of network
depth (number of layers), and width (number of filters in the convolution
layer and number of neurons in the FC layer). The network size and number
of associated parameters directly influence its performance and complexity.

The depth and width of the network are functions of several factors, including
task complexity, size of training dataset, and computational resources. Each
convolution layer increases the number of feature maps that compensate for
the amount of information lost due to the pooling layer. Deeper networks can
capture more complex patterns but demand a large training dataset.
Moreover, input data resolution should be taken into consideration, as a high-
resolution image requires more depth to progressively downsample and
extract features at multiple scales. In most CNNs, the width increases with
depth. A common rule is to start with 32-64 filters and double them every few
layers.

As in NN, there is no clear guidance on how to design an optimal CNN
architecture (Figure 95). It is usually determined based on expert opinion and
a trial-and-error approach.
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Figure 95 CNN Architecture. K1,K2,K3 denote the number of kernels in each convolution
layer

15.1.1Convolution operation

Convolution is a mathematical operation that describes a rule for combining
two functions to form a third one. It is crucial in signal and image processing.
Convolution operates on two signals, where one is considered the input and
the other is a filter (or kernel) applied to the input signal, producing a third
function as output, also known as a feature map.

Let's consider the 1D convolution. For example, tracking the location of a car
by using GNSS. A sensor will provide a single output x(t) that represents the
position of the car at time f. Let's say that GNSS sensors provide a
measurement at regular intervals, once per second. If a signal gets noisy due
to environmental or sensor-induced errors, we can obtain a more precise car
position by averaging several measurements (Figure 96). Since more recent
measurements are more relevant, we need to compute a weighted average
that gives higher importance to recent measurements by using a weighted
function w(a). By applying the weighted average operation at every moment,
we obtain a third function s that provides a smoothed estimation of the car
position. This operation is called convolution, and it is given by

s(t) = (x=w)(t) = fx(a)w(t —a)da

where a is the age of measurement.
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-
Smooth signal

Figure 96 Tracking the car position by GNSS

In deep learning, inputs are usually a multidimensional array (tensor) of data,
and the filter is usually a multidimensional array of parameters that are
adapted by the learning algorithm. For example, if input is a 2D image
denoted by I and we use a 2D kernel K, then the convolution is given by:

SGf) = UG = ) > 1ommK(i—m,j = n)
m n

When designing and training a NN for image classification, there are several
key structural knowledge that convolution layers use to improve the
accuracy. Firstly, nearby pixels are more strongly correlated than more distant
pixels. Convolution layers exploit this property by extracting local patterns
within a small 2D window of the input. Therefore, only a local neighborhood
is affected by neurons from the previous layer. The spatial extent of the
neighborhood is also known as the receptive field or filter size. The size of the
filter, denoted as f, is typically set to 3x3 or 5x5 pixels. The filter size must be
the same within a layer, but it may vary between layers. Although each
neuron is connected only to the local region, the extent of the filter along the
depth axis is always equal to the depth of the input volume. Focusing on a
small receptive field enables convolution to detect simple patterns such as
edges, corners, and textures.
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For example, consider an input image with a size of 256x256x6. If the
filter size is 3x3, each neuron in the convolution layer will have a total of
3x3x6 = 54 connections, plus one bias parameter.

Secondly, the visual world is translation invariant, meaning that the same
pattern can appear anywhere in the image. For example, after learning a
certain pattern in the upper right corner of an image, convolution can
recognize it anywhere, such as in the lower left corner. In contrast to fully
connected networks, where each weight is used only once, convolution layers
leverage parameter sharing, where the same filter is applied across the entire
input. Parameter sharing ensures that learned parameters in one region can
be reused to recognize the same patterns in another, rather than requiring a
separate set of parameters for every location (Figure 97). This significantly
reduces the number of parameters and training samples required to learn
representations, thereby improving the network's generalization ability.

51 52 S3 Sa 55
X1 X2 X3 X4 X5
(a)
S1 52 S3 S4 S5
|
|
Xq X2 X3 X4 X5
(b)

Figure 97 Parameter sharing (a) convolution - the blue arrow represents the center of the 3-
element kernel. The same parameter is used at all input locations. The input neuron xs affects
only three outputs. (b) fully connected - there is no parameter sharing, and the blue arrow is
used only once. The input neuron x3 influence all outputs.
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Finally, the images are fundamentally spatially hierarchical, where low-level
features combine to form higher-level representations. The lower
convolutional layer will learn small local patterns, such as edges. A second
convolutional layer will learn larger patterns composed of features from the
tirst layer, and so on (Figure 98). This allows convolution to efficiently learn
increasingly complex and abstract visual concepts.

dog

Output layer
A

2" Jayer o ?‘; ' Q Qp O

A
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Figure 98 Image hierarchy. Edges combine into corners, corners combine into more specific
features such as eyes or ears, which combines into complex concepts such as dogs

Convolution works by sliding small windows over the 3D input feature maps.
At each position, the kernel is centered on a pixel of interest, extracting the 3D
patch of the local neighborhood (Figure 100). Each such patch is transformed
by an element-wise multiplication with the learned weights of the
convolution filter and summed up to a single scalar value. All of these outputs
are then spatially reassembled into a 3D output feature map.
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Each spatial location in the output feature map corresponds to the same
location in the input feature map. The size of the output feature map is
controlled by three hyperparameters: depth, padding, and stride. Padding
and stride control the spatial extent of output (width and height), and depth
controls the number of channels.

The convolution can be computed only in positions where all components of
the filters have corresponding input components. This is not the case with the
input boundaries. Padding controls the spatial dimensionality of output by
adding additional pixels, usually zeros, around the border of the input map
before applying the convolution operation. Therefore, if no padding is used,
the output size gradually shrinks after each layer, leading to a loss of

information around edges.

Consider applying the kernel size 3x3 to the 5x5 input feature map. Since
the kernel can only be centred where a full 3x3 window fits inside the
input, output will be reduced to 3x3.

3102 4
8161439 1 0 -1 24 2 -8
0 1 7|18 . 1 0 -1 ~ 5|3 -8
4 2 6|28 1 0 -1 6|-1|-2
512123 |1

By adding a one-pixel-wise border of zeros (padding=1) enables
application of the kernel at the edges as well and the output size remains
5x5.
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Moreover, in images the pixel values change gradually, which means that it
is not always necessary to apply a filter at every location. Instead certain
blocks can be skipped. Stride parameter controls the number of steps the
kernel moves each time it slides across feature maps (Figure 99). The stride
one means that the kernel shifts by one pixel at a time, covering every possible
location. If stride increases to 2, the kernel skips one pixel between positions,
so the output feature map becomes smaller because fewer local
neighborhoods are visited. The larger stride reduces spatial dimension and
computational cost but also leads to loss of fine-gradient details.

(a) (b)

Figure 99 (a) stride=1, (b) stride=2

For example, applying a 3x3 kernel with strid 1 on 7x7 input gives the
output size of 5x5, while using stride 2 reduces it further to 3x3.

The depth of output represents the number of filters used by the convolution.
If we use k filters, then the result is k new images. Increasing the number of
filters enhances the network's capacity to learn various types of features at the
same spatial locations.
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Figure 100 Convolution operation using a 3x3x3 Kernel

15.1.2Pooling layer

The output of the convolution layer is the input to the pooling layer. The
pooling layer reduces the spatial dimensionality while preserving the most
important information. It works by sliding a small receptive field across the
input and computing a single output for each region. Different approaches,
such as max pooling and average pooling, can be used. Typically, a max
polling (Figure 101), which returns the maximum value of the elements
within the receptive field, is used. So, the pooling layer indicates that the
feature has been detected somewhere within the receptive field, ensuring the
translation invariance. Therefore, from a probability perspective, it can be
observed as a prior assumption that output is insensitive to small translations
of the corresponding regions in the input.

To ensure a balance between dimensionality reduction and information
preservation, the 2x2 max pooling with a stride of 2 has been the standard
approach. While a 2x2 pooling operation with a stride of 2 reduces both the
height and width of the feature map by half, the depth remains unchanged,
allowing the network to maintain all feature representations learned by
previous convolutional layers.
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Figure 101 2x2 Max pooling

Contrary to the convolution layer, the pooling layer does not have any
learnable parameters. Pooling reduces both the number of parameters and
computations in the network, which helps to control overfitting.

Moreover, the pooling layer helps the network to learn a global representation
of an object. Early convolution layers detect local features such as edges,
corners, or textures. The pooling layer gradually aggregates this local
information, producing the feature maps with coarser spatial resolution. By
repeatedly applying pooling, the network essentially compresses information
from the entire input into a smaller spatial map where each activation is
sensitive to a larger receptive field.

For example, in an image of a dog (Figure 98), the early layers will detect the
edges of the eye or ear. After several convolution and pooling operations,
output feature maps encode information from many of these local patterns
together, allowing the network to create a representation of the dog as a single
object.

15.1.3Fully connected layer

A fully connected layer is typically used as the final layer in a CNN
architecture. Each neuron in this layer shares its weights with all other
neurons of its preceding layer, enabling the learning of global relationships
between features. Once convolution and pooling layers significantly reduce
the size of the feature map, the fully connected layer integrates high-level
features into a global representation and uses this representation to produce
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the final prediction. In classification tasks, the fully connected layer is
typically followed by a softmax activation function.

15.2 Training convnet

15.2.1Preprocessing

Images are usually very large with tens or even hundreds of megapixels. Since
the convolution operation is performed across the whole image, the
computational and memory requirements grow quadratically with image
size. This can make training very slow or even impossible on standard GPUs.
To address this, the standard practice is to split images into small patches,
usually 256x256 pixels, depending on available GPU memory.

15.2.2Backpropagation

As already mentioned, CNNs are deep feed-forward networks where an
input, such as an image, is passed through a convolutional layer to extract
local features, an activation function to introduce non-linearity, a pooling
layer that reduces dimensionality, and a fully connected layer that combines
the extracted features to produce an output. This output is compared with the
ground truth data using a loss function to calculate an error. The entire
network is trained through error minimization using backpropagation to
calculate the gradient of the error function. In CNN, the gradient is computed
with respect to both the input and the filter.

In the fully connected layers, the gradient is propagated backward in the same
way as in standard neural networks. The propagation of the error signal
through the convolution layer involves a slight modification of the usual
backpropagation algorithm to ensure that the shared weights constraints are
satisfied. For each convolution filter, the gradient is represented as a
convolution operation between the error signal from the next layer with the
corresponding region of the input feature map. Since a filter is applied across
many positions, its weight updates are obtained by summing the
contributions from all locations where the filter was applied. This ensures that
each kernel learns features that are useful across the entire input space. Unlike
the filters that affect all outputs, each input influences one or more of them.
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The gradients with respect to the input are also computed by convolving the
flipped filter weights (flipping first vertically and then horizontally) with the
error signal, allowing the backward flow of information through the network.
Each input pixel receives gradient contributions only from outputs whose
respective fields. In order to ensure that the spatial dimensionality of the
propagated gradients matches those of the input feature map and that every
element receives an appropriate gradient update, the gradient of the loss with
respect to the output is zero-padded.

Moreover, the pooling layer requires special treatment during
backpropagation. In max pooling, the gradient is passed back only to the
location of the maximum value selected during the forward pass, while all
other positions receive zero gradient. In average pooling, the gradient is
distributed equally among all inputs in the pooling region. In this manner,
backpropagation ensures that this is the case.

The final step is the parameter update, where the gradients are used to update
the weights and biases of the network through an optimization algorithm
such as SGD or Adam. This process is repeated over many epochs and batches
of training data until the model converges.

15.3 Regularization of CNN

One of the most important characteristics of deep learning is that it can
automatically detect important features, eliminating the need for manual
feature engineering. This can be done only if a large number of training
samples are available. As already mentioned, the deeper the network is, the
more complex patterns it can learn; however, it requires more training data.
In training CNN networks, overfitting is the main challenge. Hypothetically,
if we had an infinite data set, the model would never overfit. However, it is
relatively rare to have a dataset of sufficient size, since labelling data is a time-
consuming and financially demanding process.

15.3.1Data augmentation

To expand the dataset, we can utilize data augmentation. Data augmentation
is used to enlarge the training dataset by augmenting the real samples via a
number of random transformations. The aim is to diversify the training
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dataset without altering image semantics, thereby enabling the model to learn
various aspects of the object and enhance its generalization ability.

In remote sensing, images are acquired with different sensors under varying
climate conditions, resulting in differences in spectral reflectance and spatial
resolution that affect the object's appearance in the image. Different data
augmentation techniques, such as geometric transformation (rotation,
translation, flipping, scaling, cropping), change of brightness and contrast of
image, adding noise (salt and pepper, additive Gaussian, additive Poisson),
as well as simulation of clouds, smoke, and fog, have been successfully used
to diversify the dataset.

Data augmentation provides better generalization, helps solve class
imbalance, and preserves network capacity. However, the inputs remain
highly intercorrelated because they originate from a small number of original
images. Consequently, it is often combined with dropout to enhance the
generalization ability (see Section 9.14.3).

15.3.2Batch Normalization

One of the main challenges during deep network training is internal covariate
shift [49], where the distribution of each input feature map changes due to
parameter updates during training. As networks become deeper, the small
changes to the network parameters amplify even further. Batch normalization
(BN) [39] stabilizes the training process by normalizing sub-networks and
layers to maintain a constant variance (see also Section 9.11). It is given by

x — g

OB

BN(x) =y O +B

where B is minibatch x € B, [ip is the sample mean, 3 is the sample standard
deviation, y is the scale parameter, and f is the shift parameter. Both
parameters are learned during training. The BN layer is incorporated in the
network architecture after convolution and before the nonlinear activation
function. The BN significantly speeds up the training process, stabilizes
training, and reduces both the vanishing and exploding gradient issues. It is
less sensitive to changes in learning rate and weight initialization, and often
eliminates the need for dropout. Moreover, each mini-batch will be
normalized by using different fiz and 65 each time, introducing additional
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noise into the training process and leading to the better generalization ability
of the model.

15.4 Transfer learning

As already mentioned, CNNs can learn local, translation-invariant features,
making them extremely efficient for perceptual problems, and can be easily
repurposed for different tasks. In reality, we often have a limited dataset for
anew task. Therefore, it is relatively rare to train models from scratch. Instead,
transfer learning, which utilizes a pre-trained model's knowledge on another
learning task, has been extensively used.

A pre-trained model is a model that has been previously trained on a large
dataset. So, if the original dataset is large enough and general enough, then
the pre-trained network has a small number of task-specific features, while it
shares a common low-dimensional representation across different tasks. Due
to that, learned features can be useful in many different problems, even
though these new problems may be completely different from the original
task.

For instance, you might train a network on ImageNet databases that contain
1.4 million labeled images and 1000 classes (mostly animals and everyday
objects), and then reuse it for detecting objects in high-resolution
orthophotography.

There are two primary ways to utilize pre-trained models: feature extraction
and fine-tuning.

Feature extraction involves utilizing the representation learned by a previous
network as a fixed feature extractor for new samples. These features are then
run through a new classifier, which is trained from scratch. So we use the
convolution base of previously trained networks, running the new data
through it, and training a new classifier on top of the output. This is due to
the fact that convolutions detect the generic concepts over a picture, which are
useful regardless of the computer-vision problem at hand. The generality of
features extracted by a specific convolution layer depends on the depth of the
layers. Shallow layers extract local, highly generic feature maps (edge, colors,
texture) while deeper layers extract more abstract concepts (ears, eyes, etc).
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So, if the new dataset is significantly different from the dataset on which the
original model was trained, only the first few layers of the model should be
used. Feature extraction is computationally efficient and reusable

The second strategy is fine-tuning. Fine-tuning enables slight adjustments of
pretrained models to fit the target task, refining the parameters to make them
more relevant for specific problems. Typically, a few top layers are replaced
to match the number of classes in a new task; the weights of those layers are
randomly initialized and then fine-tuned to fit specific tasks. Different
strategies, such as full fine-tuning (where all layers of the pre-trained model
are adjusted) or partially fine-tuning (where only the high convolutional layer
and classifier are fine-tuned). The more parameters you train on the small
dataset, the higher the risk of overfitting. Thus, in this situation, it is a good
strategy to train only the top few layers. Typically, during fine-tuning, an
optimizer with a very low learning rate is used to limit the magnitude of the
modification.

There are several parameters that should be considered when deciding on a
type of transfer learning. The most important are the size of the new dataset
and its similarity to the original dataset:

o If the target dataset is small and similar to source datasets, the feature
extraction may be the most effective approach.

e If the target dataset is large and similar to the original dataset, we can
fine-tune through the full network, allowing all layers to adapt to the
new task.

e If the target dataset is small but very different from the original
dataset, it is recommended to train just the top layers of the network
or consider traditional machine learning algorithms.

e If the target dataset is large and very different from the original
dataset, we can initialize the network with weights from a pretrained
model and fine-tune it throughout the entire network.

Transfer learning substantially reduces the size of the training dataset and
speeds up training.
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15.5 CNN architectures

Modern CNN architectures employ a modular design, facilitating easier
design, training, and optimization. The network consists of predefined
structural blocks of layers, and stacking those blocks creates a deep network
capable of modeling spatial and temporal -correlations. Regarding
architecture, research efforts have focused on designing new building blocks.

15.5.1LeNet

LeNet-5 [50] is one of the earliest CNNs, designed for handwritten digit
recognition of the MNIST dataset. It consists of input layers, two
convolutional layers followed by two pooling layers, three fully connected
layers, and finishes with an output layer with a softmax activation function
(Figure 102). Although it is designed for small-scale problems, LeNet-5
introduced several key concepts, including convolution, non-linearity, and
pooling units, as well as end-to-end learning via backpropagation in a
complex, dynamic architecture. It was the first to demonstrate practically the
capabilities of CNN in automatic learning hierarchical features and became a
foundation for all subsequent DL models.
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Figure 102 LeNet 5 architecture

15.5.2 AlexNet

AlexNet [15] extended LeNet architecture to a larger and deeper model,
demonstrating that these principles could be successfully scaled to large and
complex visual tasks when combined with sufficient data. They won the
ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) with a 15.4%
error rate. It consists of five convolution layers followed by a max pooling
layer, and three fully connected layers (Figure 103). It implements several new
features to improve performance. It utilizes a ReLU as an activation function
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to accelerate convergence, employs GPU parallelization to facilitate the
training of large models, and incorporates data augmentation and dropout to
mitigate overfitting. The model is trained by using batch SGD with
momentum and weight decay. They emphasize the importance of depth in
achieving high classification accuracy.
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Figure 103 AlexNet Architecture
15.5.3VGGNet

VGGNet [51] is built on the foundation of AlexNet. VGG network uses small
convolution filters of size 3x3 and padding 1 to maintain a spatial resolution,
followed by ReLU, and stacks them in multiple consecutive layers (Figure
104). The max pooling layer, 2x2 with a stride of 2, is used after each stack of
convolution layers (rather than after every single convolution layer, as in
AlexNet). The core idea behind using a small filter size is to increase the
network depth while maintaining computational efficiency. Stacking multiple
3x3 convolutions effectively enlarges a receptive field (for example, two
tacked 3x3 convolutions are equal to a receptive field of a single 5x5),
introduces more non-linearity, and increases network capacity while
preserving the number of parameters.

Following the convolution part of the network, the three fully connected
layers are included. The VGG architecture varies between VGGI1 and
VGG19, differing only in depth: VGG11 contains 8 convolutional and 3 fully
connected layers, while VGG19 includes 16 convolutional and 3 fully
connected layers. Moreover, the number of channels increases by a factor of 2
after each max pooling layer. The VGG demonstrated that the increasing
network depth significantly improves classification accuracy.
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Figure 104 VGGNet 16 architecture
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15.5.4ResNet

Although VGG confirmed that network depth is of crucial importance for
classification accuracy. However, even after batch normalization, the deeper
network leads to lower accuracy for both the training and validation datasets.
meaning that degradation in classification accuracy is not caused by
overfitting, and that adding more layers to a suitable deep model results in
higher training error even if added layers are identity mapping (returning the
input without changing it). It often makes training harder due to vanishing or
exploding gradients.

The Residual Network (ResNet) [46] addresses this problem by changing the

learning objective from fitting a full transformation (H(x)) to each few
stacked layers to fit only residual mapping. This is done through a simple
operation

F(x) = H(x) — x therefore
y=F(,w)+x

where y is the output vector, F(x, w) represents the learned residual mapping
and x is the input vector to those layers. The residual block consists of two 3x3
convolutional layers, followed by a batch normalization layer and a ReLU
activation function. The skip connection bypasses two convolutions, ensuring
that if the residual path learns nothing (i.e., the gradient is zero), the network
still behaves as an identity function (Figure 105). Moreover, the skip
connection does not add any parameters to the model.

The ResNet is built by stacking residual blocks. The network ends with a
global average pooling layer and a fully connected layer with softmax
activation. The ResNet 34, ResNet 50, ResNet 101, and ResNet 152 are the most
commonly used models. In deeper networks (from ResNet 50 and beyond),
the bottleneck block is introduced to reduce memory and computational
complexity by using two Ix1 convolutions (Figure 105). The first 1x1
convolution reduces the number of feature maps, while the second 1x1
convolution layer restores the dimensionality.
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Figure 105 (a) Building block ResNet 34, (b) bottleneck building block for ResNet 50 and
deeper

To provide better insights into the effect of skip connection, Lee et al. [52]
visualise the loss landscape. It shows that in traditional models that don't use
skip connections, as the depth of the network increases, the loss landscape
transforms from nearly convex to extremely irregular, containing many local
minima and saddle points (Figure 106 (a)). This makes gradient-based
optimization.

By introducing skip connections, the loss landscape becomes smoother and
flatter (Figure 106 (b)), which facilitates stable and efficient training. The
flatness represents the wider region around the minima where training loss
remains low, ensuring that small changes in parameters cause smaller
changes in loss, which is crucial for both training stability and better
generalization
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(2) (b)

Figure 106 Loss landscape of ResNet 56 (a) without skip connection, (b) with skip connection
(courtesy of Le et al. [54])

The ResNet fundamentally changed deep learning. It has several benefits:

e mitigates the vanishing gradient problem, enabling networks to be
trained with hundreds of layers,

e improves optimization, allowing the model to converge faster,

e introduces a modular design, i.e. residual block, which can be easily
stacked to build deeper architecture in a systematic way, and

e provide better generalization, achieving state-of-the-art accuracy in

many computer vision tasks.

15.5.5UNet

UNet architecture, introduced by Ronneberger et al. [18], is one of the most
important CNN models for semantic segmentation. Semantic segmentation is
a challenging task since the output is an image that contains the prediction for
each pixel. If we have an input 224x224 that is passed through ResNet, the
output will be 7x7 convolution activations. In the end, we need to have a
224x224 pixel segmentation mask. However, the 7x7 grid does not contain
enough information to fully regenerate every pixel in the output.
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The primary concept behind UNet is to capture both the context and precise
localization of features within an image. The architecture consists of a
symmetrical encoder and a decoder part, as well as a skip connection that
combines them (Figure 107).

The encoder type follows a typical CNN design consisting of two 3x3
convolutions, followed by ReLU and a 2x2 max pooling operation with a
stride of 2. Pooling gradually reduces spatial resolution while increasing the
number of channels, enabling the network to learn abstract and context-rich
representations.

The decoder part is responsible for reconstructing spatial detail and
producing a segmentation map of the same resolution as the input. Each step
in the decoder consists of a transposed convolution that doubles the spatial
information, followed by concatenation with the corresponding feature maps
from the encoder. These skip connections preserve spatial information,
allowing the decoder to recover fine-grained details. After concatenation, two
3x3 convolutions and ReLU activation are applied to fuse the features. After
the final layer, a 1x1 convolution maps the resulting feature representation to
the predefined number of output classes.

Although primarily designed for medical imaging, it has been widely adopted
in remote sensing communities for semantic image segmentation. The main
benefits of UNet:

e skip connection and symmetrical design allow precise localization,

e it works well with a limited amount of training data and

e computationally efficient and flexible.
Due to its simplicity and modularity, it can utilize pre-trained models, such
as ResNet, as an encoder, combining the strong representation power of
ResNet with the precise localization ability of UNet (Figure 107).
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Example: Extraction of floating plastic pieces from very high resolution
remote sensing images based on deep learning algorithms. This research is
published in [53].

Semantic segmentation of floating plastic is highly challenging due to
several limitations: low amount of training data, highly imbalanced data
sets, limited accuracy of ground truth data, and frequent scene changes due
to constant plastic movement.

The proposed workflow consists of three main steps: preprocessing,
classification and accuracy assessment.

The study area is the confluence of the Crna Rijeka and the Vrbas Rivers,
near Mrkonjic Grad, Bosnia and Herzegovina. A net for collecting floating
garbage was installed to mitigate pollution in the area. Floating waste in
this area is primarily caused by the disposal of the garbage in illegal
landfills and picnic sites along the river or directly in the river. In order to
detect and map the plastica UAV survey was conducted, using a DJI Mavic
pro equipped with an RGB camera. The flight height was set to 90 m.

Preprocessing: The acquired images, together with the SfM algorithm were
used to generate a high-resolution orthophoto with a spatial resolution of 3
cm. The creation of training data was both challenging and time consuming,

due to the small size of the object, variations in color and spectral
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signatures, different levels of submersion, and the constant moving of the
floating plastic items.

To reduce the errors caused by the manual delineation,, the multiresolution
segmentation algorithm was applied. This algorithm merges pixels into
meaningful non-overlapping segments/polygons. Each segment was then
manually labeled using QGIS software, based on a visual inspection of the
orthophoto. Plastic waste was categorized into two groups: plastic and
maybe plastic. The maybe plastic class was introduced to reduce the
spectral confusion in the plastic class, and it was assigned to the segments
where the operators were not able to state whether it was plastic by visual
inspection and by analyzing the spectral signature.

Classification: An end-to-end semantic segmentation model for a floating
plastic segmentation was developed based on ResUNet 50 architecture.
This architecture is well suited for application with limited training data
and provides precise segmentation results.

The performance of deep neural networks is highly limited by the low
number of training data. As already mentioned, the size of the dataset
needed for network training is a function of the size of the network (width
and depth) and the complexity of the problem. To reduce overfitting the
data augmentation techniques were applied including: rotating, horizontal
and vertical flipping, zooming and brightness variation . Although the
produced images are intercorrelated they are not the same, contributing to
a better generalization capability. In addition to reducing overfitting, data
augmentation also enhances performance in cases of class imbalance within
the dataset.

Additionally, transfer learning was employed through fine-tuning of
ResNet-50 model pretrained on the ImageNet dataset. The weights of the
upper layers of the pretrained network were unfrozen and updated during
the training phase to adapt to the specific characteristics of the datasets,
while the lower layers remained frozen.

Implementation: Due to the limited processing power, the original images
were decomposed to 256 x 256 px patches. The ResUNet model, which uses
3x3 convolution layers with padding of 1 and stride of 1, was fine-tuned on
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the Crna Rijeka dataset. The dataset, consisting of 1846 images, was split
into 80% of the data for training and 20% for validation. The batch size was
limited by the GPU and it was chosen as large as possible.

Different loss functions, such as cross entropy, cross entropy weighted, and
focal loss were tested. Since the highest accuracy was obtained using cross
entropy, it was adopted for the final model. The models were implemented
in Python 3 using popular deep learning libraries such as PyTorch,
TensorFlow, Keras, and Matplotlib. Training was performed on the
publicly available cloud platform Colaboratory (Google Colab), which is
based on Jupyter Notebooks.

Accuracy assessment: To test the accuracy of the classification results three
standard parameters were calculated: precision, recall, and F1-score. The
results of the accuracy assessment are presented below

Class Precision | Recall | F1
Plastic 0.82 0.75 0.78
Maybe plastic | 0.62 034 (043

The ResUNet-50 model demonstrated a stable performance in classifying
plastic. The highest confusion was obtained for the “maybe plastic” class,
which was occasionally misclassified as water or plastic. For this class the
precision was high, while recall was low, indicating the underestimation of
the area covered by the maybe plastic class. Although metrics such as
precision, recall, and F1 score provide a deeper insight into the performance
of the algorithm, the area and volume of the detected plastics are more
relevant for stakeholders. In the Crna Rijeka case study, the algorithm only
underestimated the plastic area by 3.4%, highlighting its strong potential
for optimizing cleaning campaigns.

Visual inspection shows that the locations of the plastic pieces were
accurately detected, although some pixels along edges of plastic items were
misclassified as the surrounding class. No differences were observed in the
performance of the model between grouped (a) or single plastic items (b).
Interestly, the algorithm detected plastic accurately in shallow water (c)

350



Introduction to Geospatial Artificial Intelligence

which is typically challenging because the presence of the river bed
increases water reflectance (same as plastic does). In this study case, the
algorithm accurately extracted the plastic pieces that were omitted from the
training data (d), showing good generalization abilities. Moreover, the
model showed its potential for plastic detection not just in water but also
on land, with lower accuracy compared with the floating plastics (e).

Orthophoto True data Classification result

(@)

(b)

(c)

(d)

Legend: Il water [l land [l wood Ml plastic lll maybe plastic [l rock
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16 FUTURE OF GEOAI

Over the past few years, GeoAl has revolutionized many geospatial tasks,

rapidly becoming a growing subfield of spatial data science across various
domains (Table 18).

Table 18 Overview of GeoAl application across different domains and research topics

Geospatial Research Description Commonly used
domain topic architectures
Remote Scene assigning the entire RS [ CNN, ResNet
sensing classification | image to a predefined
category
Semantic assigning each pixel to [ UNet, ResUNet
segmentation | predefined classes
Object extracting the R-CNN, Fast
detection boundary box of the CNN
detected geospatial
object
Instance object-level Recurrent Neural
segmentation | classification Network (RNN),
Transformers
Super- increasing spatial | CNN, GAN,
resolution resolution or enabling
and data fusion of different
fusion sources  such  as
optical+SAR+LIDAR
Change monitoring spatial [ Siemens network,
detection changes across time temporal CNN
series of  satellite
images
Cartography [ Automatic feature extraction CNN, UNet
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map feature | from geospatial
extraction images
Automatic automatic generation | GAN
map of vector maps from
generation satellite images, and
generation of semantic
maps for autonomous
driving
Cartographic | altering the map CNN, Graph
generalizatio | visualisation when the | Neural Network
n scale changes (GNN), GAN
Environment | Monitoring Track snow and ice CNN, Conv Long
climate melting, modeling Short Term
changes climate parameters Memory
(convLSTM),
GNN
Disaster Detect hazards, CNN
events and provide information
early for disaster response
warning and resilience
systems
Agriculture crop type mapping, CNN, ANN
and food health monitoring,
security
Water water body mapping, | CNN, ANN,
availability water quality RNN
monitoring, wetland
monitoring

While classical machine learning and deep learning models significantly
advanced geospatial analysis, they are often task-specific, requiring large
labeled datasets and retraining for each new sensor, region, or application.
Moreover, most models are trained on geography-specific datasets, encoding
location explicitly instead of considering it as another attribute. This limits
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their scalability and generalization across geographic regions with different
characteristics, making them unsuitable for global, dynamic Earth
observation. In addition, many traditional models struggle to capture non-
stationary and multi-scale dynamics that characterize complex real-world
systems, such as climate and hydrological ecosystems.

16.1 Foundation models

In recent years, the launch of ChatGPT marked a major turning point,
drawing high attention in Large Language Modeling (LLMs). The LLM
models, such as Generative Pre-trained Transformers (GPT), are designed to
encode a sophisticated understanding of the syntax, semantics, and
contextual relationships within human language. By leveraging enormous
amounts of data during training, these models develop a generalized
representation that can be applied to a wide range of applications, including
question answering, summarization, and code generation, demonstrating
their ability to transfer knowledge across domains. Taking into account their
fundamental roles in completing various domain-specific tasks, LLMs and
other large-scale models are also referred to as foundation models (FMs) [54].

FMs [54], are pre-trained on large-scale data in a task-agnostic manner, and
can be easily adapted to a wide range of downstream tasks across domains by
fine-tuning.

With the introduction of AlexNet and ResNet, the GeoAl frameworks have
shifted rapidly from custom-built, task-specific models trained from scratch
to frameworks that leverage pre-trained models as feature extractors. This
form of transfer learning dramatically reduces training time, improving
model accuracy by exploiting learned rich and more abstract patterns that
only need to be adapted to the specified task. While transfer learning enables
the creation of foundation models, it is the scale of training that makes them
powerful. The scale is determined by three main factors: access to massive and
diverse datasets, improvements in computational hardware (such as GPUs
and TPUs), and advances in Transformer-based architectures.

Transfer learning with annotated datasets has been standard practice for the
last decades. However, the costs of annotation are often substantial, which
limits practical scalability and benefits from pretraining. In contrast, self-
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supervised learning performs pretraining tasks automatically using
unlabeled data, enabling models to leverage massive datasets at an Internet
scale. This approach provides more scalability to adaptively handle large
quantities of high-dimensional data.

The transformer network [55] is built on a self-attention mechanism, which
allows it to compare all elements across the input simultaneously and to
capture long-range dependencies. This enables parallelized computation,
offering a more flexible alternative to the rigid, fixed-weight computation of
MLP and CNN.

One of the main advantages of attention over prior architectures is its
generality: it is not strongly tied to a specific task or domain, unlike the local
receptive fields of convolution. This general-purpose nature of attention and
transformers contributes to their broad applicability.

16.2 Geospatial Foundation Models

The foundation models can generalize effectively only within the scope of
their training data. While they have been trained on vast amounts of text,
tabular data, images, and other forms of web-accessible content, they have
had limited exposure to geospatial vector data, multi-spectral images,
spatiotemporal datasets, or point clouds. Because these data types were
largely absent during pretraining, general-purpose FMs are not expected to
perform reliable geospatial reasoning or prediction tasks.

Moreover, many geospatial tasks are highly specialized and require types of
reasoning beyond the capabilities of current general-purpose FMs, including;:

e Data modality diversity - Geospatial applications often involve
heterogeneous input (multispectral, radar images, LIDAR) and output
formats. General-purpose FM is mostly trained on RGB imagery.
Moreover, aerial or satellite images are characterized by different
geometries, spectral properties, and object scales compared to a street-
level view.

e Topological reasoning - understanding spatial relationships such as

connectivity, adjacency, or containment between geospatial features
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(such as buildings, parcel borders, roads, etc) is crucial for spatial
analysis but remains difficult for existing FMs [56], and
e Spatial and temporal variability - Geospatial processes operate across

large, continuous areas over time, requiring models to handle both

local context and long-term temporal dependencies, which most FMs

currently do not explicitly model.
These challenges underscore the need for Geospatial foundation models
(GeoFMs) specifically designed to handle the unique properties of spatial
data. Emerging GeoFMs aim to address these limitations by: employing LLMs
as agents that can synthesize geospatial workflow using existing geospatial
toolset and APIs (such as geopandas, rasterion, Google Earth Engine or
remote sensing APIs), leveraging large-scale geographic knowledge graphs to
encode spatial relationships and domain knowledge, and integrating the
LLMs with knowledge graphs to enhance spatial reasoning and contextual
understanding [57], [58].

To achieve state-of-the-art accuracy across diverse remote sensing tasks,
GeoFM must incorporate the unique characteristics of remote sensing data. In
addition to being task agnostic, it is desired to be:

e Sensor agnostic - capable of reasoning seamlessly across data collected
from different sensors with varying spatial, spectral, and temporal
resolution,

e Spatiotemporally aware - able to handle the spatiotemporal data of
imagery while performing geospatial reasoning for tasks such as
image geolocalization, change detection, and object tracking,

e Environmentally invariant - able to distinguish the intrinsic spectral
properties of the objects of interest regardless of seasonal,
atmospheric, or environmental conditions.

Another critical challenge in developing FMs for GeoAl is the complexity of
vector data, which differs fundamentally from structured text or imagery data
typically used in NLP. The vector data exhibit more complex data structures
such as points, polylines, polygones, triangulated irregular network (TINs),
3D building models, point clouds, etc., which require a flexible NN
architecture capable of learning from graphs, meshes, and irregular
topologies. In other data modalities, such as geo-tagged videos or images,
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spatial social network posts, and sensor data, contribute further to the
multimodal nature of GeoAl. To effectively process and integrate these
sources, GeoFM must develop advanced topological and semantic reasoning
capabilities.

The multimodality of geospatial data thus represents one of the greatest
challenges in developing GeoFMs. As a result, future research in geospatial
data sciences and GeoAl must focus on designing models that can integrate
and reason across these modalities in a coherent manner.

Recent examples demonstrate the potential of GeoFMs models. Prithvie-EO-
2.0 is a multi-temporal transformer-based GeoFM pretrained on 4.2 million
globally sampled time-series tiles from the NASA Harmonized Landsat-
Sentinel 2 dataset at 30 m resolution and incorporates both temporal and
location embedding to improve performance across three main tasks: disaster
response, land cover mapping, and ecosystem dynamic monitoring [59].
SatClip learns an implicit representation of geographic locations by
contrastively matching visual patterns from satellite imagers with their spatial
coordinates, significantly improving generalizations across diverse location-
based tasks [60]. These developments illustrate the ongoing shift in GeoAl
toward multimodal, scale-aware, and geographically grounded models,
making a new era of robust, task-agnostic tools for Earth observation and
environmental analytics.

Although GeoFM is a recent development, emerging only in the last one to
two years as a convergence of geospatial science and large foundation model
research, its progress is accelerating rapidly. Currently, GeoFMs are mainly
focused on raster images, primarily leveraging optical and radar satellite
imagery. The next major step is expected to be the expansion across data
modalities, integrating raster, vector, and point cloud data into a unified
embedding space. In parallel, research will increasingly emphasize temporal
transformations and change-aware embedding that capture the dynamics of
processed and forecasting modalities. This evolution will transform GeoFM
from a static mapping system into a dynamic Earth reasoning system, capable
of understanding and predicting processes such as deforestation or
urbanization.
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In summary, future efforts should prioritize the development of sensor-
agnostic, spatiotemporally aware, and environmentally invariant GeoFMs
that leverage remote sensing to address urgent environmental and climate-
related challenges. Such models have the potential to transform our
understanding of complex Earth system dynamics at a global scale and to
enable evidence-based decision-making. Beyond achieving technical
accuracy, it is essential that GeoFM development also maximizes long-term
social and environmental benefits. Without such a shift, there is a risk that
advances in GeoAl may fail to translate into meaningful real-world impact or
support comprehensive monitoring of SDG indicators.
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